
Grassroots Operator Search for Model Edge Adaptation

Hadjer Benmezianea, Kaoutar El Maghraouib, Hamza Ouarnoughia, Smail Niara

aUniv. Polytechnique Hauts-de-France, CNRS UMR8201 LAMIH, Valenciennes, 59300, France
bIBM T. J. Watson Research Center, Yorktown Heights, New York, 10598, USA

Abstract

Hardware-aware Neural Architecture Search (HW-NAS) is increasingly being used to design efficient deep learning architectures.
An efficient and flexible search space is crucial to the success of HW-NAS. Current approaches focus on designing a macro-
architecture and searching for the architecture’s hyperparameters based on a set of possible values. This approach is biased by
the expertise of deep learning (DL) engineers and standard modeling approaches. In this paper, we present a Grassroots Operator
Search (GOS) methodology. Our HW-NAS adapts a given model for edge devices by searching for efficient operator replacement.
We express each operator as a set of mathematical instructions that capture its behavior. The mathematical instructions are then
used as the basis for searching and selecting efficient replacement operators that maintain the accuracy of the original model while
reducing computational complexity. Our approach is grassroots since it relies on the mathematical foundations to construct new
and efficient operators for DL architectures. We demonstrate on various DL models, that our method consistently outperforms
the original models on two edge devices, namely Redmi Note 7S and Raspberry Pi3, with a minimum of 2.2x speedup while
maintaining high accuracy. Additionally, we showcase a use case of our GOS approach in pulse rate estimation on wristband
devices, where we achieve state-of-the-art performance, while maintaining reduced computational complexity, demonstrating the
effectiveness of our approach in practical applications.

Keywords: Neural Architecture Search, Edge AI, optimization, Deep Learning

1. Introduction

Hardware-aware Neural Architecture Search (HW-NAS) is
a technique to design efficient Deep Learning (DL) architec-
tures for different tasks such as image classification [1] and ob-
ject detection [2] in computer vision.

HW-NAS follows three steps. First, a search space is de-
fined with a set of possible DL architectures. Second, a multi-
objective search strategy is implemented to explore the search
space to find the best architecture. The search strategy uses an
evaluation methodology to evaluate each sampled architecture
against different objectives such as accuracy, latency, and en-
ergy consumption. Finally, the architecture that presents the
best objectives’ trade-off is defined as the ”best” architecture.
In this paper, the term architecture refers to the DL architec-
ture and the term architecture performance refers to combin-
ing task-performance metrics, such as the accuracy or average
precision, and the hardware efficiency computed using latency,
energy consumption, and memory occupation of a sampled ar-
chitecture.

The definition of the search space is a critical step in NAS.
It determines the range of possible architectures and can sig-
nificantly impact the final performance. The size of the search
space matters. A large search space hinders the exploration but
diversifies the results. In contrast, a small search space restricts
architectural diversity. Currently, there are three primary ap-
proaches to define the search space in HW-NAS [3]:

1. Cell-based search space, which involves searching for
a repeated cell, also called block, within a pre-defined

macro-architecture. The cell is defined by a list of op-
erators, such as convolution and batch normalization and
an adjacency matrix that defines the connections between
the operators. NAS-Bench-101 [4] is a common NAS
benchmark designed using a cell-based search space.

2. Hierarchical search space [5] extends the cell-based ap-
proach by selecting the operators composing the cell, defin-
ing the cell-level connections, and merging multiple cells.

3. Supernetwork search space [6], in which each architec-
ture is represented as a subgraph within a larger and more
complex network called the supernetwork. The weights
of the supernetwork are shared among all subgraphs, al-
lowing the subnetworks to share computation and en-
abling efficient exploration of the search space. The su-
pernetwork is called an over-parameterized network. The
subgraphs can differ in terms of their connectivity, layer
types, layer sizes, and other architectural hyperparame-
ters.

A prevalent limitation of such definitions is the bias in-
troduced by the dependence on human-designed architectures,
which restricts the search algorithms from exploring novel and
innovative operations and architectures. This bias towards pre-
viously handcrafted architectures hinders the discovery of more
efficient and effective models for specific tasks. Consequently,
there is a need to develop novel methodologies that can help
discover more optimized architectures and operations that can
perform well on various devices and scenarios without relying
on pre-existing models. Such methodologies would be the holy
grail of NAS, as they would enable the creation of truly novel

Preprint submitted to Future Generation Computer Systems September 21, 2023

ar
X

iv
:2

30
9.

11
24

6v
1

 [
cs

.L
G

]
 2

0
Se

p
20

23

architectures that can push the limits of deep learning perfor-
mance even further.

One solution defines a giant search space where the archi-
tecture and operations are generated from scratch and then eval-
uated based on their performance. However, given the vast
search space, such an approach requires a massive amount of
computational resources and is often infeasible for practical
use. AutoML-Zero [7], for example, presents a strategy capa-
ble of defining the architecture and the training procedure from
standard mathematical operations using reinforcement learn-
ing. This approach breaks the innovation barrier for NAS but
at a significant time complexity price. Due to the highly com-
plex search, AutoML-Zero only achieves linear regression on
the MNIST dataset, which is impractical for complex and real-
world datasets.

Selecting the right set of operators for a specific task is cru-
cial, however, the actual implementation of the operator can
also greatly impact the hardware efficiency of the DL model.
To overcome this challenge, recent works have focused on us-
ing DL compilers [8, 9] that can automatically select the most
efficient implementation and optimization for a given hardware.
These compilers use techniques such as code generation and
optimization, which automatically translate the high-level DL
operators to hardware-specific low-level code to improve the
efficiency of DL models on different hardware devices such
as edge devices. The use of deep learning compilers high-
lights the importance of not only selecting the right operator
but also optimizing its implementation to achieve the best pos-
sible hardware performance. MCUNet [10] combines the use of
NAS and TinyEngine, a deep learning compiler for microcon-
trollers, to efficiently look for the best architecture and its hard-
ware efficient implementation in an iterative manner. However,
their search space is limited to a set of standard DL operators,
whose implementations are not optimized for edge or resource-
constrained devices.

This paper presents a search algorithm that adapts the ar-
chitecture to edge devices without previous human experience.
To overcome the time complexity of AutoML-Zero, we apply
our search algorithm on a specific layer at each iteration. In
the first step, we analyze each layer’s latency and memory oc-
cupancy distributions in a given model. We consider a model
as a set of layers such as convolution. Each layer corresponds
to a sequence of operators implemented by a graph of mathe-
matical instructions. Table 1 gives the list of mathematical in-
structions considered in this work. In the second step, the most
inefficient layer is optimized. Costly operators in this layer are
replaced by efficient operators. An operator is a set of math-
ematical instructions that capture its behavior. For example,
standardization is defined by subtracting the mean of the input
over a mini-batch and dividing it by the standard deviation of
that input. The mathematical instructions are then used as a ba-
sis for searching and selecting efficient replacement operators
that maintain the accuracy of the original model while reducing
computational complexity.

We repeat these two steps until we find an architecture suited
for the targeted edge device without dropping accuracy. Our
technique aims to break the time-consuming barrier of non-
restrictive search spaces while searching for new and innovative

architectural designs.
We summarize the contributions described in this paper as

follows.

• We present a new adaptation methodology via operator
replacement. We replace the most hardware-inefficient
layer iteratively by building new operators from scratch
with minimal human bias.

• We develop an optimized multi-objective evolutionary search
algorithm that effectively selects the appropriate oper-
ators for deploying an efficient architecture on the tar-
geted device. This enables the deployment of deep learn-
ing models on edge devices with improved efficiency and
without sacrificing accuracy.

Our methodology has been validated with different types of
architectures: Convolutional neural networks (ConvNets) and
Vision transformers (ViT). In particular, we identified a novel
convolution implementation suitable for Raspberry Pi, is a sig-
nificant contribution to the field of edge computing. Addition-
ally, we applied our methodology for Pulse Rate estimation
with Photoplethysmography (PPG) sensors and achieved state-
of-the-art results. Overall, our approach consistently improves
the model’s hardware efficiency with an average of 2x speedup
without any loss in the model’s accuracy. These results demon-
strate the effectiveness and versatility of our methodology for
optimizing DL models for different hardware platforms and ap-
plications.

2. Related Works & Background

In this section, we review related works on two different as-
pects of our methodology: defining fine-grained search spaces
and using deep learning compilers for optimizing DL operators
in HW-NAS.

2.1. Fine-grained Search Space for NAS
The term ”fine-grained search spaces” refers to search spaces

that consist of a set of mathematical and low-level functions.
Such search spaces for NAS. The reason is due to the large
number of possible operators created from this search space,
hindering the exploration.

AutoML Zero [7] is the only AutoML tool that defines a
search space from basic operators. Their goal is to search for
the end-to-end learning pipeline, i.e., from architecture building
blocks to optimizing the loss function. This work is a seminal
step towards the holy grail of AutoML: automatically design-
ing a network and training pipeline for any given dataset. How-
ever, their methodology took a tremendous amount of time to
come up with an already human-designed logistic regression.
Recently, BANAT [11] proposes an algebraic representation of
the architecture to enable a more general search space defini-
tion. This is a promising direction for efficiently and effectively
searching over our huge search spaces.

Other works [11, 12, 13] consider modifying a single op-
erator, namely batch normalization. EvoNorms [12] evolves
the normalization operator from basic mathematical functions.

2

They discovered novel implementations and functions for the
normalization and activation fusion which improved the overall
average precision of multiple standard models.

Due to their recent application and high time complexity,
low-level search spaces are only considered in NAS with a task-
specific objective. In other terms, our work is the first to search
for adapting the model for resource-constrained devices using a
low-level search space.

2.2. DL Compilers&Hardware-aware Neural Architecture Search
In addition to search algorithms that operate on high-level

architectures and operations, several works have explored the
optimization of DL models at the hardware and software levels.
One approach to this problem is through the use of DL com-
pilers [8, 9], which automatically optimize the code of a given
model for a target hardware platform. These compilers employ
a range of techniques, such as graph rewriting, operator fusion,
and kernel selection, to reduce memory usage, improve com-
pute performance, and exploit hardware-specific features. For
instance, MCUNet [10] developed a dedicated compiler that en-
hances the convolutions with loop tiling. The search iterates
over searching for the architecture, then searching for the best
optimization and extracting the hardware performance. While
this methodology is proven efficient, their search space consists
of standard operations which hinder the innovation and adap-
tation of multiple hardware platforms in HW-NAS. Other DL
compilers such as TVM [8] and Tiramisu [9] predict the ade-
quate optimization to apply for a given operator.

Our primary goal is to tailor the DL architecture to a spe-
cific hardware platform by systematically replacing the least-
efficient operator in an iterative manner, employing a fine-grained
search space. This approach streamlines the resource-intensive
process of exploring an extensive search space by concentrating
on the adaptation of individual operators step-by-step.

2.3. Pulse Rate Estimation
Pulse rate estimation [14] has been the subject of extensive

research in the field of physiological monitoring. Various ap-
proaches utilize photoplethysmography (PPG) signals captured
from wearable devices, such as wrist-worn sensors or fingertip
sensors, to estimate the pulse rate. Among the state-of-the-art
pulse rate estimation models, we compare our results against
DeepHeart [15], CNN-LSTM [16], and NAS-PPG [17].

DeepHeart uses an ensemble of denoising convolutional neu-
ral networks (DCNNs) to denoise contaminated PPG signals
that are then passed through spectrum-analysis-based calibra-
tion to estimate the final pulse rate.

CNN-LSTM uses a hybrid convolutional and LSTM neural
network. The proposed model is comprised of two convolu-
tional layers, two LSTM layers, one concatenation layer, and
three fully connected layers including a softmax.

NAS-PPG is the first NAS applied to pulse rate estima-
tion. Their search space is defined with a convolutional macro-
architecture comprising time-distributed convolutions and two
final LSTM layers. Thanks to their automatic search, they pro-
vide the best performance on Troika dataset [18].

This task serves as an excellent validation use case for our
methodology, specifically tailored to edge devices, where lim-
ited computational resources and power constraints present unique
challenges. By effectively optimizing pulse rate estimation mod-
els for edge devices, we showcase the practicality and robust-
ness of our approach in overcoming these constraints and meet-
ing the specific requirements of edge environments.

3. GOS: Grassroots Operator Search

Figure 1 shows the overall structure of our methodology.
Given a model, denoted as m, our goal is to adapt it to a targeted
edge platform. We define an operator as a collection of opera-
tions applied within a layer. These operations can encompass a
single layer, as commonly found in deep learning frameworks
(e.g., convolution), or a fused layer, such as the combination of
ReLU and Batch Normalization (ReLU-BN) [19]. This distinc-
tion allows us to work with both individual and composite layer
types in our adaptation process.

The process goes through two stages:

1. Operator Complexity Analysis: First, our process iden-
tifies the least efficient operator within the given model
(m) by conducting Ni inference runs on the target edge
device. The efficiency metric is computed with different
objectives, such as latency and the number of parameters.
The number of parameters reflects the size of the opera-
tor. Additional criteria such as energy consumption may
be added. Among the list of operators in m, the least ef-
ficient operator is selected based on algorithm 1. If the
model is not deployable on the target platform, i.e., the
size of the network exceeds the memory capacity, we se-
lect the operator with the highest number of parameters
denoted as num param in algorithm 1. Otherwise, we
rank the architectures with latency and number of param-
eters in descending order and select the first operator. Our
strategy of ranking is as follows: if the architecture is de-
ployable on the target device, the number of parameters
is a less important objective, we rank the operators based
on the latency and if two operators are of close latencies
then we consider the number of parameters. This behav-
ior is checked at each iteration. If more criteria are con-
sidered, then the ranking should be multi-objective [20].
This operator corresponds to the slowest operator that has
the highest number of parameters possible. If an operator
is selected, it cannot be selected for another optimiza-
tion iteration. In ConvNets, it is common knowledge that
the least-efficient operator is the convolution. However,
according to its input and output shape, the convolution
may be optimized differently. To efficiently select the op-
erator to be replaced, we define No as the maximum num-
ber of similar operators and select the top operators each
time. For example, if the No least efficient operators are
all convolutions, we will replace them all with the same
generated optimized operator. By selecting the top No
least efficient operators during each iteration, we strike
a balance that ensures both effective optimization and a
manageable adaptation time complexity.

3

 Operator Adaptation

 Operator Complexity Analysis

standard
model

target edge
platform

1

conv16
conv15
conv19
conv17

…

Operator Ranking &
Selection

2

Le
as

t-e
ffi

ci
en

t
op

er
at

or

Model with
optimized
operator

Least-efficient
operator

Generate initial
computation graph

Generate search
population

Check Accuracy
drop after
fine-tuning

HW-efficiency
Evaluation

Mutation & Crossover

Stopping
criteria

Optimized
Model

N
o

Ye
s

Figure 1: Overview of the Grassroots Operator Search (GOS) framework.

2. Operator Adaptation: Then, we adapt the selected oper-
ator by searching for a variation that can keep the same
input and output shapes but optimizes the computations.
This phase is done with an evolutionary search on a set
of mathematical operations. Section 3.1 and section 3.2
describe the search space and methodology respectively.
During the search, only the parameters of the adapted op-
erator are fine-tuned.

The two steps are repeated until satisfactory hardware efficiency
is reached or a maximum number of layers have been replaced.

3.1. Operator Search Space
Unlike previous HW-NAS search spaces that are based on

pre-defined operator sets, our search space is defined with a set
of mathematical operations. The operator is represented with a
computation graph. The computation graph is a directed acyclic
graph (DAG) with N nodes and E edges. The edges describe
the inputs and outputs of each node. Figure 1 (step 2) shows an
example of such a graph.

Each node in the context can be classified into one of the
following three types:

• Instruction: This node corresponds to any mathematical
instruction in table 1.

• Input: This node corresponds to the input feature maps
or weights that are given as operands to the instruction
node.

• Constant: This introduces hyperparameters fixed in the
mathematical instruction equation. These constants can
be tuned and mutated during the search.

Algorithm 1 Least-efficient Operator Selection
Input: Model m, Number of inference Ni
is deployable← deploy(m)
if not is deployable then

for each o in m do # for each operator o get its number
of parameters

num param[o]← number o f params(o)
end for
return argmax(num param, No)
return the operator with highest value in num param

and its number of occurrences No
end if
for each o in m do

latency[o] ← average latency(o,Ni) # compute the
mean latency of each operator o for Ni inferences

num param[o]← number o f params(o)
end for
return Top No similar operators
return the operator with highest value in num param and its
number of occurrences No

4

We constrain the generated computation graphs with 1 <
N <= 20 and 1 < E <= 25. These values have been fixed by
analyzing standard models’ operators. During the generation,
the input node is fixed, and its shape is defined by the output
of the previous operation in m. The output node’s shape is also
known as it is constrained by the input shape of the next op-
erator in m. To ensure a valid network, we optionally add a
reshape operation at the end of the computation graph to keep
the same output shape as expected by the next operator in the
given model. Nodes that can’t be reached from the input or
that do not have a path to the output are considered unused and
therefore pruned from the computation graph.

Table 1 shows the basic operations in the search space, in-
cluding arithmetic, linear algebra, probability, and aggregation
operations. The aggregation operations enable to merge be-
tween the output of multiple nodes. We include code optimiza-
tions such as loop tiling and unrolling as special aggregation
functions that are called to optimize the generated operator’s
code. Note that this is a general application of these optimiza-
tions that can be hardware-specifically defined by a compiler.

Note that each operator has a list of hyperparameters dedi-
cated to it. These hyperparameters are illustrated in the equa-
tions as constants in table 1.

Example of Operator Computation Graph. In this paragraph,
we explain how the convolution 2D is turned into a computa-
tion graph. In its simplest form, the convolution 2D can be for-
mulated as in equation 1, where N is the batch size, C denotes
the number of channels, H is the height of input planes in pix-
els, and W is the width in pixels. in and out refer to the input
and output respectively. ∗ in the equation denotes the cross-
correlation operation [21].

conv2D(N,Cout) = bias(Cout)+
k=Cin−1∑

k=0

weight(Cout, k)∗input(N, k)

(1)
The convolution first splits the input into weight-shaped chunks.

We compute the multiply-accumulate of each of these chunks
with the weights (i.e., kernels), using the cross-correlation in-
struction. We then sum up all the multiplied values over the
input channels Cin. Finally, we add the bias to each output chan-
nel Cout.

To create the computation graph, we divide the equation
into instructions found in table 1. Figure 3 shows the com-
plete convolution 2D graph with a 2-dimensional input and 2
kernels. To have a compact and simple graph, we include the
constant nodes inside the instruction node as a list of hyperpa-
rameters. In the rest of the paper and for the sake of clarity,
we use high-level operator names such as Linear for the matrix
multiplication between weight and input matrices.

In this search space, we perform small-scale experiments
with random sampling to understand its behaviors. The pur-
pose is to measure the sparsity of the search space and to de-
termine the number of valid and accurate operations generated
during the exploration. In this experiment, we replace all sim-
ilar operators at once. For example, we replace all convolu-
tions in the model with a generated replacement. Figure 2 (a)

0.2 0.4 0.6 0.8
0

20 original conv

0.2 0.4 0.6 0.8
0

20 original relu

0.2 0.4 0.6 0.8
0

20 original bn

Operator: Convolution2D

Operator: ReLU

Operator: BatchNorm

CIFAR-10 Validation Accuracy (%)

N
um

be
r

of
 s

am
pl

es

(a) Randomly generating replacement

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
0

50 original conv

0.65 0.70 0.75 0.80 0.85 0.90 0.95
0

100 original relu

0.5 0.6 0.7 0.8 0.9
0

200 original bn

Operator: Convolution2D

Operator: ReLU

Operator: BatchNorm

CIFAR-10 Validation Accuracy (%)

N
um

be
r

of
 s

am
pl

es

(b) Operator replacement with Adaptation

Figure 2: CIFAR-10 accuracy histograms of 1k architectures randomly gener-
ated (a) and adapted from the original operator (b).

shows the results of 1000 randomly generated operator replace-
ments for three operators: Conv2D, max-pooling, and batch
normalization, in resnet-18 [22]. Random generation, inspired
by EvoNorm [12], starts from the input node and sequentially
selects an operation from the search space. In all the cases, the
ImageNet accuracy drops significantly for most of the replace-
ments, which reflects the high sparsity of our search space. In
figure 2 (b), rather than randomly generating the operator re-
placement, we start with the original operations but adapt one
operation in the computation graph. The adaptation is per-
formed while being aware to keep the same arity and type of
arguments for each operation. With adaptation, the results are
much closer to the original accuracy of the model but the com-
plexity is modified.

3.2. Search Algorithm
Given an operator computation graph, the search algorithm

aims at finding a variant that preserves the accuracy of the model
with reducing complexity. We rely on an evolutionary algo-
rithm for this purpose. The evolutionary algorithm allows us
to handle the sparse search space by exploring a population of

5

Table 1: List of mathematical instructions defining the search space

Category Instruction Equation

Linear Algebra Matrix multiplication C = AB
Matrix addition and subtraction C = A + B or C = A − B
Vector multiplication c = Ab
Matrix inversion A−1

Dot product a⊤b
Determinant det(A)

Trace tr(A)

Eigenvalues and eigenvectors Av = λv
Singular value decomposition (SVD) A = UΣV⊤

QR decomposition A = QR
Cholesky decomposition A = LL⊤

Matrix pseudoinverse A†

Matrix rank rank(A)

Hadamard product C = A ⊙ B
Kronecker product C = A ⊗ B
Outer product C = ab⊤

Vector norm ∥x∥
Matrix norm ∥A∥
Frobenius norm ∥A∥F
Identity matrix I
Zero matrix 0

Calculus Gradients ∇θL(θ)

Partial derivatives ∂ f
∂x

Chain rule ∂ f
∂x =

∂ f
∂g
∂g
∂x

Activation Functions Sigmoid σ(x) = 1
1+e−x

ReLU ReLU(x) = max(0, x)

Tanh tanh(x) = ex−e−x

ex+e−x

Softmax softmax(xi) = exi∑k
j=1 ex j

Convolution cross-correlation (f ∗ g)(x, y) =
∑k

i=−k
∑k

j=−k f (x − i, y − j)g(i, j)

Pooling Max pooling maxpool(xi:i+s, j: j+s) = maxs
m=1 maxs

n=1 xi+m, j+n

Average pooling avgpool(xi:i+s, j: j+s) = 1
s2

∑s
m=1
∑s

n=1 xi+m, j+n

Probability and Statistics Probability distributions p(x)

Bayesian inference p(θ|x) = p(x|θ)p(θ)
p(x)

Aggregation Function Summation
∑n

i=1 xi

Mean 1
n
∑n

i=1 xi

Maximum max(x1, x2, ..., xn)

Minimum min(x1, x2, ..., xn)

Square Root
√

x

Concatenation
[
A B
]

Weighted Mean
∑n

i=1 wi xi∑n
i=1 wi

6

I_dim1

cross-correlation

Stride: S1
Padding: P1
Dilation: D1

cross-correlation

Stride: S1
Padding: P1
Dilation: D1

I_dim2

cross-correlation

Stride: S2
Padding: P2
Dilation: D2

cross-correlation

Stride: S2
Padding: P2
Dilation: D2

W_dim1

kernel_size: K1

W_dim2

kernel_size: K2

bias1

+

bias2

bias3

+ +

+ +

Concat

instruction Node

Mutations

Modify a hyperparameter

Modify an instruction

Remove an instruction

Add an instruction

input Node

Figure 3: Detailed computation graph of the standard convolution 2D including the possible mutations applied to it.

valid computation graphs. The computation graph is consid-
ered valid if it maintains the shapes of the input and output data
and if there exists a path from every intermediate node, includ-
ing the input node, to the output node. Besides, mutation and
crossover provide an efficient way to generate complex adapta-
tions. We use tournament selection which ensures that the best
individuals have a higher chance of being selected, while still
allowing for some diversity in the population. This helps to
prevent premature convergence and promotes the discovery of
novel solutions in our large search space.

Mutations. The mutation operations involve modifying the com-
putation graph. Figure 3 summarizes the possible mutations ap-
plied on the conv2D computation graph. Each instruction node
in the computation graph is typed with the corresponding type
in table 1. The most important mutation is modifying any in-
termediate node with a possible operation. For each operation,
we associate a list of possible replacements. The replacement
satisfies two constraints: (1) having the same argument’s type
and arity, (2) the output shape is equal or can be converted to
the original output shape by adding a reshape operation. The
replacement operation from the list is selected uniformly at ran-
dom. We also allow for a modification of the aggregation func-
tion, and an addition or deletion of a node. When adding or
removing a node, we make sure that a path from the input to the
output is still possible and that no unused node appears in the
graph.

The mutations also include modifying the hyperparameter
of the operator. The hyperparameters are properties associated
with a vertex in the computation graph. For each instruction,
a list of possible hyperparameters; i.e., constants, is available.
For each hyperparameter, we constrain the ranges with speci-
fied values obtained from the literature. For example, the out-
put channel size of a convolution may change. This mutation
may reduce the accuracy of the model. If this is the case, the

operator is invalidated and is not considered in the novel popu-
lation.

Crossover. In general, the crossover is not applied to NAS al-
gorithms. When we consider high-level operators, it is rarely
the case to find a splitting point where the shapes fit. However,
in our case, the crossover is beneficial and allows more flexi-
bility. Algorithm 2 and figure 4 detail the crossover procedure.
We perform a crossover between two computation graphs in our
population. Because all the variants start from the same point,
we have more chances to find a split point. We perform a pre-
order traversal of the two computation graphs and store all the
possible split points. We randomly select a split point between
each pair of computation graphs and generate offspring.

Multi-objective Fitness Function. The evaluation is specific to
the given model and task. We do not generalize the resulting
operation to multiple standard models because our goal is to
adapt the network for a given hardware platform in a practical
time. This allows a more flexible and multi-objective fitness
function.

The fitness function evaluates the performance of the adapted
operator, formulated in equation 2. In our methodology, we
consider hardware efficiency with multiple objectives. Our def-
inition considers latency and the number of parameters. But
one can add other objectives such as energy consumption or
memory occupancy. We rely on the crowding distance [23] to
minimize multiple objectives under an accuracy constraint. The
crowding distance is calculated for each solution in a Pareto
front and is based on the distances between neighboring solu-
tions in the objective space. The solutions with larger crowding
distances are preferred in the selection process, as they repre-
sent areas of the objective space with lower solution density,
and hence are more diverse and representative of the Pareto
front.

7

Input

Pad conv.weight

MultAcc

conv.bias

Stack

Sqrt

Max pooling

constant1=2

Output

Input

Pad conv.weight

MultAcc

conv.bias constant1=2

Stack

Output

Candidate 1

Split point
I nputs

Candidate 2 Crossover Results
Input

Pad conv.weight

MultAcc

conv.bias constant1=2

Stack

Sqrt

Max pooling

constant2=2

Output

Instructions

Constants

Figure 4: Illustration of the cross-over operation.

Algorithm 2 Crossover procedure
Input: Two computation graphs of two operators (o1 and o2)
split points = []
Stack s = Stack()
Push (o1, o2) to s # pre-order traversal of both computation
graphs
while s not empty do

Pop a node pair (o1, o2) from the top of the stack
while o1 not empty and o2 not empty do

Pop a node pair (o1, o2) from the top of the stack
end while
if shape(o1.output) == shape(o2.input) then

Add (o1, o2) to split points # add to possible split
point

end if
for child of o1 do

Add (child, o2) to stack
end for
for child of o2 do

Add (o1, child) to stack
end for
Uniformly select (o1, o2) from split points # randomly

select a split points between all the possibilities
Perform a merge illustrated in Figure 4

end while

During the search, we want to maximize the hardware ef-
ficiency of the adapted operator while keeping the difference
between the loss of the original model m and the model with
the adapted operator, denoted as madapted, minimal. We add a
small value, ϵ, to ensure exploration. We fine-tune the network
after adapting the operator for a few epochs. This fine-tuning is
done with all the other operator’s weights frozen.

The operator’s latency is computed with the difference be-
tween the original model’s latency and the latency of the adapted
model. The number of parameters can be reduced or increased
by adding weight input to the computation graph.

Mino(LAT (o), PARAM(o))
subject to ACC(madapted) > ACC(m) − ϵ

(2)

4. Experiments

4.1. Experiment Settings and Implementation Details
We first conducted our experiments on two edge devices:

Raspberry Pi 3 Model B and Redmi Note 7S mobile phone.
The Raspberry Pi 3 Model B is equipped with a Broadcom
BCM2837 SoC with a 1.2 GHz quad-core ARM Cortex-A53
CPU, and 1GB RAM, and runs the Raspbian operating system.
The Redmi Note 7S mobile phone is equipped with a Qual-
comm Snapdragon 845 SoC with an octa-core CPU and 8GB
RAM, running the Android 10 operating system.

To evaluate the performance of our proposed method, we
used three popular deep learning models: ResNet18 [22], In-
ceptionV3 [24], and MobileNetV2 [25]. We implemented our
approach using Python 3.7 and the PyTorch 1.8.1 deep learning
framework. All three architectures were initially trained for Im-
agenet. The experiment goal is to adapt them for edge devices
by changing the most inefficient operators. We measured the
accuracy of each model on the validation set and recorded each
model’s latency and energy consumption during inference. We
averaged these numbers for 100 inferences to correctly estimate

8

hardware efficiency. The latency and energy consumption are
measured with an inference batch size of 1. For fine-tuning, we
use SGD with a mini-batch size of 128. The learning rate is set
to 0.003. We use a weight decay of 0.0001 and a momentum of
0.9.

The search is set to do 50 iterations per operator replace-
ment. The stopping criterion is the modification of at least 10
layers in the model. The probability of mutation is set to 0.8 and
the cross-over probability to 0.6. We use an epsilon of 1%, i.e.,
assume that a 1% drop in accuracy is acceptable. The epsilon
should be tailored to the dataset and task at hand. Empirical
tuning was done to select these values.

Due to the on-search fine-tuning and hardware efficiency
computation on-device, our search takes about 1h04min. This
time is highly practical as this adaptation is only done once.

Search Setup. The search is achieved on a much more compute-
intensive setup. Our search was conducted using an NVIDIA
GPU 3070, a high-performance graphics processing unit known
for its advanced parallel computing capabilities. The GPU was
connected to a powerful workstation equipped with an Intel
Core i9 processor and 32 gigabytes of RAM, ensuring sufficient
computational resources for the search process.

4.2. Optimizing an architecture for Edge Devices
Table 2 presents the overall hardware efficiency improve-

ment achieved by applying GOS to the evaluated models on
both edge devices. Our operator replacement method consis-
tently outperformed the original models with an average speedup
of 3.17. Notably, our search was able to find a variant that im-
proved the accuracy of ResNet models by 6.13% and 5.34% for
Raspberry Pi and Redmi Note 7S, respectively.

Interestingly, InceptionV3 was found to be unsuitable for
deployment on Raspberry Pi due to its large network size. To
tackle this issue, our search began optimizing by selecting op-
erators that use the largest amount of parameters, which led to a
reduction in the number of parameters and enabled the discov-
ery of a deployable variant.

Although our search space does not directly optimize en-
ergy consumption, we observed that our models presented lower
energy consumption due to the reduction in the number of pa-
rameters and operations.

Furthermore, GOS was able to find a variant of MobileNetV3
that is 2.2x faster with only a minor accuracy drop of 0.4%,
even though the original model was already optimized for mo-
bile devices. Overall, our search consistently outperformed the
original models, indicating the effectiveness of GOS in achiev-
ing hardware efficiency improvements.

In comparing our strategy to other HW-NAS approaches,
namely Once-for-All [26] and FBNetV3 [1], we found that our
operator replacement method yielded superior results. Our ap-
proach consistently outperformed Once-for-All and FBNetV3,
showcasing an average speedup of 1.26. This performance ad-
vantage highlights the effectiveness of our method in optimiz-
ing neural architectures specifically for hardware constraints
and further solidifies the value of GOS in achieving superior
hardware efficiency improvements. Note that our method can

also be used as a specialization phase after the use of these high-
level NAS.

Analysis of Resulting operations. In this paragraph, we discuss
the novel operators that were generated through our operator
search method and the improvements they bring to the mod-
els. Table 3 presents the novel equations for the most efficient
operators that replaced the standard convolution 2D, batch nor-
malization, and activation functions. Table 4 summarizes the
notations. Our discussion is focused on each device separately.

In general, the last convolution 2D operators of the mod-
els are the most inefficient ones. Therefore, in all the models,
we automatically optimized these operators using GOS. For the
Raspberry Pi device, we modified these operators by adding
a dilation rate to the convolutions, similar to dilated convolu-
tions [29]. However, in our operator, the dilation rate is ap-
plied within the filter matrix itself, by adding 1, 2, or 3 ze-
roed columns between different columns of the filter matrix.
This modification enables the operator to have a larger recep-
tive field without increasing its size, which can be helpful in
capturing features at different scales in an image. This oper-
ator is particularly efficient in Raspberry Pi, which has limited
computational resources, as it reduces the number of operations
needed to process the input.

On the other hand, for the Redmi Note 7S, the model’s last
convolution 2D operators were modified to a depthwise con-
volution [30]. Similarly to Raspberry Pi, the dilated rate is
applied here as well. The use of dilated filters and depthwise
convolution allowed for an increase in hardware efficiency. It
is worth noting that we did not start with a depthwise separa-
ble convolution, except for MobileNetV3. Instead, our operator
search method converges to similar operations. In addition, for
resnet18, the search applied a pooling layer at the end of the
convolutions. This is done to further reduce the feature map
size and enhance the latency. Interestingly, this did not impact
negatively the accuracy. However a similar operator was tested
on InceptionV3 and MobileNetV3 and a 5%, 6.7% drop in ac-
curacy was seen.

The first convolutions are particularly different from the last
ones because of the input shape. In the first convolutions, the
channel size is smaller, while the height and width of the feature
maps are large. The opposite happens at the end of the model.
The first convolutions, even in MobileNetV3, were turned into
standard convolutions. The search only changed the hyperpa-
rameters of these operators, using 5x5 kernels for some and
adding different padding.

The generated batch normalization operation uses a polyno-
mial regression to regress the batch normalization values after
the standardization. By incorporating the polynomial regres-
sion into the batch normalization equation, this method can im-
prove the accuracy of the normalization while maintaining a
fast computation time.

The search algorithm almost never changes the activation
functions, as they are usually fast and already efficient. How-
ever, we forced the model to change the activation and look for
a more efficient version. The resulting equation is shown in ta-
ble 3. The equation is a leaky version of ReLU. When removing
the activation functions from the list of instructions, the search

9

Table 2: Performance comparison of original models and adapted models on Raspberry Pi 3 and Redmi Note 7S

Edge

Device
Model Variant # Parameters Top-1

Accuracy
(%)

Latency (ms) Energy (J) Speedup

R
as

pb
er

ry
Pi

Resnet18 [22]
Original 11M 69.3 382.54 1320

5.76
GOS 9.3M 75.43 66.32 220

Inceptionv3 [27]
Original 25M 78.2 - -

-
GOS 7.2M 79.47 101.3 438.3

MobileNetV3 [28]
Original 2.9M 75.2 94.32 348

2.82
GOS 2.9M 74.32 33.44 253

FBNetV3 [1]
Original 5.3M 79.1 25.4 238

1.52
GOS 5.1M 83.4 16.7 187

OFA [26]
Original 4.9M 74.2 22.3 211

1.16
GOS 3.2M 79.3 19.2 204

R
ed

m
iN

ot
e

7S Resnet18 [22]
Original 11M 69.3 93.43 119.4

4.51
GOS 11.5M 74.64 20.7 78.8

Inceptionv3 [27]
Original 25M 78.2 83.5 132.6

3.72
GOS 23.4M 77.9 22.4 104.5

MobileNetV3 [28]
Original 2.9M 75.2 76.3 76.54

2.23
GOS 2.6M 74.8 34.2 78.43

FBNetV3 [1]
Original 5.3M 79.1 21.6 67.9

1.18
GOS 4.8M 81.4 18.3 87.3

OFA [26]
Original 4.6M 76.5 34.6 56.42

1.21
GOS 3.7M 83.4 28.5 58.3

failed to find a differentiable equation.

Effect of number of instructions. In the previous experiments,
we fixed the maximum number of instructions per operator to
20. Here, we justify this value and analyze the effect of chang-
ing the number of instructions on operator generation, using the
same search space and fitness evaluation as described in Sec-
tion 4.1.

We varied the number of instructions used to define each
operator ranging from 5 to 40 instructions with a step of 5
and compared the resulting architectures’ performance. Specif-
ically, we evaluated the accuracy and inference time of the ar-
chitectures on the Imagenet dataset using the same hardware
setup as in the previous experiments. Figure 5 shows the re-
sults.

The results showed that increasing the number of instruc-
tions used to define each operator generally leads to an im-
provement in the architectures’ performance. This improve-
ment stabilizes after 20 in which we obtain the results shown
in table 2. Below 20, the operators become badly implemented
and the accuracy drops. Above 25, the instruction set is too
large and the operators apply redundant instructions which in-
creases the latency. In addition, the search time highlighted in
green increases with the increase of the maximum number of

Proportional Search Time

Figure 5: Tuning of the maximum number of instructions per operator while
searching for resnet18 GOS variant on Raspberry Pi.

10

Table 3: Efficient Operators Equations for Raspberry Pi and Redmi Note 7S

Device Convolution2D Batch Normalization Activation
Raspberry Pi y =

∑
i, j wi, jxi + di, j, j + di, j

x−µ
σ+ϵ
× α(x − µ)3 + β(x − µ) + γ max(0.01x, x)

Redmi Note 7S
∑Cin

j=1
∑Hk

r=1
∑Wk

c=1 Wi, j,r,c · Ii+(r−1)dr j, j+(c−1)dc j,k
x−µ
σ+ϵ
× α(x − µ)3 + β(x − µ) + γ max(0.03x, x)

Table 4: Notation Summary

Symbol Description
Cin Number of input channels

Cout Number of output channels

Hk Height of the kernel

Wk Width of the kernel

Kw Number of weights in the kernel

d j Dilation rate for input channel j

dr j Dilation rate for input channel j in the row di-
rection

dc j Dilation rate for input channel j in the column
direction

I Input tensor

W Weight tensor

γ Scaling parameter in batch normalization

β Bias parameter in batch normalization

a0, a1, a2 Polynomial coefficients in fast batch normal-
ization

x Input to fast batch normalization

σ Standard deviation in batch normalization

ϵ Small constant for numerical stability

instructions per operator. This is due to the increased latency
and fine-tuning time induced by more complex and redundant
operators.

4.3. Use Case: Pulse Rate Estimation
The ability to estimate pulse rate continuously is a critical

feature in heart attack detection. Estimating pulse rate is essen-
tial for measuring workout intensity during exercise and resting
heart rate, which is often used to determine cardiovascular fit-
ness. Using mobile wearable devices provides valuable insights
into a wearer’s health. Due to the limited hardware resources,
the model needs to be small and fast to provide real-time results.
This task also requires efficient processing of sensor data, which
is a critical aspect of hardware-aware NAS. In addition sensed
information is highly personal and requires edge inference with
a fast and lightweight machine learning model. Typically, wear-
able devices sense an underlying signal, such as Photoplethys-
mography (PPG) and raw motion data to estimate pulse rate.
Complex algorithms can then process raw data into various ac-
tivity classifications or step counts. The algorithms used for
this purpose range from simple linear regression to complex

deep learning models, such as Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) models. In this
use case, we focus on estimating the beats per minute (BPM)
based on PPG and accelerometer raw data.

During this experiment, the same previously used search
hyperparameters are applied.

Dataset. For this task, we are using the Troika dataset [18].
Troika is a publicly available dataset and contains measure-
ments from three sensors to estimate the heart rate of the wearer:
an ECG sensor, a PPG sensor, and an accelerometer sensor.
The dataset was collected in a study where participants were
asked to perform a set of activities while wearing the sensors,
including running, cycling, and sitting. The dataset contains
12 recordings from 8 participants, aged 18 to 35, with each
recording lasting 5 minutes. The ground truth heart rate for
each recording was obtained from the ECG sensor, which is
considered the most accurate method for measuring heart rate.

Wrist-band device. Our latency results were extracted from a
Xiaomi Mi Smart Band 6. The wristband is composed of a
built-in PPG biosensor and a 3-axis accelerometer sensor which
extracts the input to our algorithm. The operating system in-
stalled is Android 6.0. And the battery of the system was at
maximum when extracting the latencies.

Preprocessing. In models designed for pulse rate estimation,
preprocessing of the raw data plays a critical role. Preprocess-
ing is used to clean and enhance raw photoplethysmography
(PPG) signals before the actual analysis. The dataset was di-
vided into subjects, and each subject included the PPG and ac-
celerometer as time-series data. The PPG and individual ac-
celerometer signals undergo bandpass filtering with a range of
40BPM to 240BPM (0.66Hz and 40Hz respectively) to elimi-
nate irrelevant signals. In the next step, characteristic frequen-
cies are calculated for each signal within 8-second windows,
with a 6-second overlap between adjacent windows. The char-
acteristic frequencies for the PPG data are then compared against
the dominant characteristic frequencies for each accelerometer
axis per time window. It is possible that a dominant PPG fre-
quency may be similar to accelerometer frequencies. To ensure
an accurate estimation of pulse rate, we compare up to 10 PPG
frequencies that potentially represent the pulse rate to find one
that is not similar to accelerometer frequencies. In cases where
no alternate frequency is found, we select the PPG frequency
with the largest magnitude as the pulse rate.

Models. We optimize two models using our methodology:

• RF Model: We first optimize a simple machine-learning
model consisting of two blocks. The first block consists

11

Table 5: Results of Average Absolute Error for Pulse Rate estimation on TROIKA Dataset [18]

Action Subject
RF
Optimized
(Ours)

PPG NAS
Optimized
(Ours)

RF Model
PPG NAS
[17]

CNN-LSTM
[16]

DeepHeart
[15]

T1 1 1.43 0.8 5.9 0.95 0.47 1.47

T1 2 2.08 1.33 1.57 1.22 3.88 2.94

T1 3 3.76 0.06 4.24 0.43 1.52 0.47

T1 4 2.08 0.69 8.68 0.69 2.31 1.02

T1 5 1.05 0.83 2.74 0.72 1.72 2.66

T1 6 4.24 0.72 4.49 0.49 1.47 0.75

T1 7 1.51 0.71 4.8 0.99 2.85 3.45

T1 8 2.57 1.3 10.81 0.87 2.18 2.48

T1 9 3.87 1.44 7.41 1.06 4.9 0.54

T1 10 4.49 0.98 11.18 0.64 0.34 0.72

T1 11 3.7 0.87 20.16 1.01 4.46 1.06

T1 12 2.63 0.77 5.37 0.67 1.79 0.73

T2 13 5.24 1.96 5.56 1.62 3.01 4.8

T2 14 4.2 1.84 23.32 1.95 7.6 2.94

T2 15 9.89 1.24 9.92 0.59 1.58 0.11

T3 16 5.22 0.57 5.49 0.61 0.9 1.63

T3 17 1.32 1.14 1.58 1.32 6.1 1.84

T3 18 1.59 0.48 5.98 0.55 0.31 1.64

T3 19 0.2 0.54 0.61 0.47 0.12 0.18

T3 21 2.52 1.18 4.65 0.39 0.38 0.06

T3 22 0.83 0.93 4.23 0.83 1.26 2.25

T2 23 2.88 1.54 8.17 1.38 4.26 0.94

All 3.13 1.03 7.34 0.93 2.51 1.68

Latency (ms) 2.38 2.68 1.64 5.6 11.8 13.54

Number of
parameters (M)

0.08 0.564 0.02 1.1 3.3 4.4

of a bandpass filter and a Fourier transform. The PPG sig-
nal contains information about the blood flow in the cap-
illaries. This signal is a combination of various frequen-
cies, including the pulse rate. By applying a bandpass
filter to the PPG signal, frequencies outside the range of
interest are eliminated. The Fourier transform is then ap-
plied to the filtered signal to extract the characteristic fre-
quencies that correspond to the pulse rate. This process
helps to remove noise and artifacts from the signal and fa-
cilitates accurate estimation of the pulse rate. The second
block consists of a random forest regressor [31]. While
this first model is fast, it is not optimal in terms of perfor-
mance.

• PPG NAS Model: PPG NAS [17] is a dedicated NAS for
PPG signal analysis and pulse rate estimation. The au-

thors generated an optimized model for pulse rate esti-
mation. The model consists of a 1D convolution layer
followed by 2 LSTM layers and a final fully-connected
layer. The architecture is designed to minimize the num-
ber of parameters and maximize the accuracy of pulse
rate estimation. This is a state-of-the-art model in terms
of the accuracy of the regression and hardware efficiency
on wristband devices.

Results. Table 5 shows the overall average absolute error (AAE)
results on multiple subjects and under different actions: running
(T1), cycling (T2), and sitting (T3), as well as their latency
and number of parameters. We additionally compare our re-
sults to other state-of-the-art models, namely PPG NAS [17],
CNN-LSTM [16], and DeepHeart [15].

Over all subjects and actions, our models outperform their

12

state-of-the-art counterparts with a lesser number of parameters
and faster latency.

Figure 6 shows the final architectures proposed by our Grass-
roots operator search. The optimized final models of
RF Model optimized and PPG NAS optimized were obtained
by modifying their respective base models. RF Model optimized
underwent two stages of modifications. First, the fast Fourier
transform was altered to extract 30 points instead of the 10
peaks in the original model. Additionally, a linear layer was
added to act as a smoother filter that selects the 10 most sig-
nificant peaks. In the second stage, the random forest regressor
was replaced with a multi-layer perceptron (MLP) using a hy-
perbolic tangent (tanh) activation function. While the Random-
ForestRegressor is highly efficient, it reduces the model’s accu-
racy, so the search favored MLP. As for PPG NAS optimized,
the LSTM layers in the original model were replaced with gated
recurrent units (GRUs), which use fewer parameters and do not
affect the performance. The convolution layer was also mod-
ified to use a dilated-like convolution (as shown in the table),
and the final linear function was adjusted to have no activation
at the end. These optimizations resulted in more accurate and
efficient models for pulse rate estimation.

5. Conclusion

In conclusion, we have presented a novel approach for op-
timizing neural network architectures for resource-constrained
devices. Our approach leverages the use of mathematical equa-
tions to replace common operations such as convolution, batch
normalization, and activation functions with more efficient ones,
resulting in models that are optimized for low-power devices
such as Raspberry Pi and mobile phones. We demonstrated
the effectiveness of our approach through experiments on pop-
ular architectures, including ResNet18, InceptionV3, and Mo-
bileNetV3, achieving significant improvements in inference time
and energy consumption compared to the original models. Ad-
ditionally, we applied GOS to a real-world healthcare problem,
namely pulse rate estimation, in which we presented a 2x faster
network with a 0.12 average error drop. Overall, our results
highlight the potential of our approach for creating efficient
neural networks for resource-constrained devices.

References

[1] X. Dai, A. Wan, P. Zhang, B. Wu, Z. He, Z. Wei, K. Chen, Y. Tian,
M. Yu, P. Vajda, J. E. Gonzalez, Fbnetv3: Joint architecture-recipe search
using predictor pretraining, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 16276–
16285.

[2] N. Wang, Y. Gao, H. Chen, P. Wang, Z. Tian, C. Shen, Y. Zhang, NAS-
FCOS: fast neural architecture search for object detection, in: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 11940–11948.

[3] H. Benmeziane, K. E. Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba,
N. Wang, A comprehensive survey on hardware-aware neural architec-
ture search, CoRR abs/2101.09336 (2021). URL: https://arxiv.org/
abs/2101.09336. arXiv:2101.09336.

[4] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, F. Hutter,
Nas-bench-101: Towards reproducible neural architecture search, in:
K. Chaudhuri, R. Salakhutdinov (Eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML, volume 97, PMLR,
2019, pp. 7105–7114.

[5] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, K. Kavukcuoglu, Hier-
archical representations for efficient architecture search, in: 6th Interna-
tional Conference on Learning Representations, ICLR, 2018.

[6] H. Liu, K. Simonyan, Y. Yang, DARTS: differentiable architecture search,
in: 7th International Conference on Learning Representations, ICLR,
2019.

[7] E. Real, C. Liang, D. R. So, Q. V. Le, Automl-zero: Evolving machine
learning algorithms from scratch, in: Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML, volume 119, 2020, pp.
8007–8019.

[8] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, A. Krishnamurthy, TVM: an au-
tomated end-to-end optimizing compiler for deep learning, in: A. C.
Arpaci-Dusseau, G. Voelker (Eds.), 13th Symposium on Operating Sys-
tems Design and Implementation, OSDI, 2018, pp. 578–594.

[9] R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas, Y. Zhang,
P. Suriana, S. Kamil, S. P. Amarasinghe, Tiramisu: A polyhedral compiler
for expressing fast and portable code, in: M. T. Kandemir, A. Jimborean,
T. Moseley (Eds.), International Symposium on Code Generation and Op-
timization, CGO, 2019, pp. 193–205.

[10] J. Lin, W. Chen, Y. Lin, J. Cohn, C. Gan, S. Han, Mcunet: Tiny deep
learning on iot devices, in: H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, H. Lin (Eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Sys-
tems, NeurIPS, 2020.

[11] S. Schrodi, D. Stoll, B. Ru, R. Sukthanker, T. Brox, F. Hutter, Towards
discovering neural architectures from scratch, CoRR abs/2211.01842
(2022). doi:10.48550/arXiv.2211.01842.

[12] H. Liu, A. Brock, K. Simonyan, Q. Le, Evolving normalization-activation
layers, in: H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin
(Eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems, NeurIPS, 2020.

[13] A. Chen, D. M. Dohan, D. R. So, Evoprompting: Language models
for code-level neural architecture search, CoRR abs/2302.14838 (2023).
doi:10.48550/arXiv.2302.14838.

[14] Pankaj, A. Kumar, R. Komaragiri, M. Kumar, A review on computation
methods used in photoplethysmography signal analysis for heart rate es-
timation, Archives of Computational Methods in Engineering 29 (2022)
921–940.

[15] X. Chang, G. Li, G. Xing, K. Zhu, L. Tu, Deepheart: A deep learning ap-
proach for accurate heart rate estimation from PPG signals, ACM Trans.
Sens. Networks 17 (2021) 14:1–14:18.

[16] H. Chung, H. Ko, H. Lee, J. Lee, Deep learning for heart rate esti-
mation from reflectance photoplethysmography with acceleration power
spectrum and acceleration intensity, IEEE Access 8 (2020) 63390–63402.

[17] S. B. Song, J. W. Nam, J. H. Kim, Nas-ppg: Ppg-based heart rate esti-
mation using neural architecture search, IEEE Sensors Journal 21 (2021)
14941–14949. doi:10.1109/JSEN.2021.3073047.

[18] Z. Zhang, Z. Pi, B. Liu, TROIKA: A general framework for heart rate
monitoring using wrist-type photoplethysmographic signals during inten-
sive physical exercise, IEEE Trans. Biomed. Eng. 62 (2015) 522–531.

[19] W. Niu, J. Guan, Y. Wang, G. Agrawal, B. Ren, Dnnfusion: accel-
erating deep neural networks execution with advanced operator fusion,

13

https://arxiv.org/abs/2101.09336
https://arxiv.org/abs/2101.09336
http://arxiv.org/abs/2101.09336
http://dx.doi.org/10.48550/arXiv.2211.01842
http://dx.doi.org/10.48550/arXiv.2302.14838
http://dx.doi.org/10.1109/JSEN.2021.3073047

PPG Signal

Bandpass filter
(0.66Hz, 40Hz)

Accelerometer

FFT (30)

FFT(10)

Linear (30, 10)

R
a
n
d
o
m
F
o
r
e
s
t
R
e
g
r
e
s
s
o
r W1/b1

tanh

Linear (10, 1)

W2/b2

PPG Signal

Bandpass filter
(0.66Hz, 40Hz)

Accelerometer

Conv (1x3, c=16, s=5)

Batch Normalization

Tanh
LeakyReLU

Conv (1x3, c=32, s=1)

Conv (1x3, c=32, s=3)

Batch Normalization

Relu

Conv (1x3, c=32, s=1)

Batch Normalization

flatten

GRU

GRU

Linear (128,1)

LSTM

LSTM

Linear (128,256)
Linear (256,256)

Softmax

PPG_NAS_OptimizedRF_Model_Optimized

Original Operator

Optimized Operator
Input
Weights

Figure 6: Pulse Rate Estimation final Models. We do not display the weights node for PPG NAS for the sake of clarity.

in: S. N. Freund, E. Yahav (Eds.), 42nd ACMInternational Conference
on Programming Language Design and Implementation PLDI, 2021, pp.
883–898.

[20] H. Benmeziane, S. Niar, H. Ouarnoughi, K. E. Maghraoui, Pareto rank
surrogate model for hardware-aware neural architecture search, in: In-
ternational IEEE Symposium on Performance Analysis of Systems and
Software, ISPASS, 2022, pp. 267–276.

[21] J. Valmadre, L. Bertinetto, J. F. Henriques, A. Vedaldi, P. H. S. Torr,
End-to-end representation learning for correlation filter based tracking,
in: 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, IEEE Computer So-
ciety, 2017, pp. 5000–5008. URL: https://doi.org/10.1109/CVPR.
2017.531. doi:10.1109/CVPR.2017.531.

[22] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-
nition, in: Conference on Computer Vision and Pattern Recognition,
CVPR, 2016, pp. 770–778.

[23] X. Chu, X. Yu, Improved crowding distance for NSGA-II, CoRR
abs/1811.12667 (2018).

[24] G. J. Chowdary, N. S. Punn, S. K. Sonbhadra, S. Agarwal, Face mask
detection using transfer learning of inceptionv3, in: L. Bellatreche,
V. Goyal, H. Fujita, A. Mondal, P. K. Reddy (Eds.), Big Data Analytics -
8th International Conference, BDA, volume 12581, 2020, pp. 81–90.

[25] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, L. Chen, Mo-
bilenetv2: Inverted residuals and linear bottlenecks, in: Conference on
Computer Vision and Pattern Recognition, CVPR, 2018, pp. 4510–4520.

[26] H. Cai, C. Gan, T. Wang, Z. Zhang, S. Han, Once-for-all: Train one
network and specialize it for efficient deployment, in: 8th International
Conference on Learning Representations, ICLR, OpenReview.net, 2020.

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking
the inception architecture for computer vision, in: 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016, IEEE Computer Society, 2016,
pp. 2818–2826. URL: https://doi.org/10.1109/CVPR.2016.308.
doi:10.1109/CVPR.2016.308.

[28] A. Howard, R. Pang, H. Adam, Q. V. Le, M. Sandler, B. Chen, W. Wang,
L. Chen, M. Tan, G. Chu, V. Vasudevan, Y. Zhu, Searching for mo-
bilenetv3, in: 2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2,
2019, IEEE, 2019, pp. 1314–1324. URL: https://doi.org/10.1109/
ICCV.2019.00140. doi:10.1109/ICCV.2019.00140.

[29] F. Yu, V. Koltun, Multi-scale context aggregation by dilated convolutions,

in: Y. Bengio, Y. LeCun (Eds.), 4th International Conference on Learn-
ing Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016.

[30] F. Chollet, Xception: Deep learning with depthwise separable convolu-
tions, in: 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, IEEE Com-
puter Society, 2017, pp. 1800–1807.

[31] M. Benchekroun, B. Chevallier, H. Beaouiss, D. Istrate, V. Zalc,
M. Khalil, D. Lenne, Comparison of stress detection through ECG and
PPG signals using a random forest-based algorithm, in: 44th Annual In-
ternational Conference of the IEEE Engineering in Medicine & Biology
Society, EMBC 2022, Glasgow, Scotland, United Kingdom, July 11-15,
2022, IEEE, 2022, pp. 3150–3153.

14

https://doi.org/10.1109/CVPR.2017.531
https://doi.org/10.1109/CVPR.2017.531
http://dx.doi.org/10.1109/CVPR.2017.531
https://doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.1109/ICCV.2019.00140
http://dx.doi.org/10.1109/ICCV.2019.00140

	Introduction
	Related Works & Background
	Fine-grained Search Space for NAS
	DL Compilers & Hardware-aware Neural Architecture Search
	Pulse Rate Estimation

	GOS: Grassroots Operator Search
	Operator Search Space
	Search Algorithm

	Experiments
	Experiment Settings and Implementation Details
	Optimizing an architecture for Edge Devices
	Use Case: Pulse Rate Estimation

	Conclusion

