
111

Multi-Objective Hardware-Aware Neural Architecture Search
with Pareto Rank-Preserving Surrogate Models
HADJER BENMEZIANE, Univ. Polytechnique Hauts-de-France, UMR 8201 - LAMIH - F-59313 Valenci-
ennes, France
HAMZA OUARNOUGHI, Univ. Polytechnique Hauts-de-France, UMR 8201 - LAMIH - F-59313 Valenci-
ennes, France
KAOUTAR EL MAGHRAOUI, IBM T. J. Watson Research Center Yorktown Heights, NY, USA
SMAIL NIAR, Univ. Polytechnique Hauts-de-France, UMR 8201 - LAMIH - F-59313 Valenciennes, France

Deep learning (DL) models such as convolutional neural networks (ConvNets) are being deployed to solve
various computer vision and natural language processing tasks at the edge. It is a challenge to �nd the right
DL architecture that simultaneously meets the accuracy, power and performance budgets of such resource-
constrained devices. Hardware-aware Neural Architecture Search (HW-NAS) has recently gained steam
by automating the design of e�cient DL models for a variety of target hardware platform. However, such
algorithms require excessive computational resources. Thousands of GPU days are required to evaluate and
explore an architecture search space such as FBNet [45]. State-of-the-art approaches propose using surrogate
models to predict architecture accuracy and hardware performance to speed up HW-NAS. Existing approaches
use independent surrogate models to estimate each objective, resulting in non-optimal Pareto fronts. In
this paper, HW-PR-NAS 1, a novel Pareto rank-preserving surrogate model for edge computing platforms is
presented. Our model integrates a new loss function that ranks the architectures according to their Pareto rank,
regardless of the actual values of the various objectives. We employ a simple yet e�ective surrogate model
architecture that can be generalized to any standard DL model. We then present an optimized evolutionary
algorithm that uses and validates our surrogate model. Our approach has been evaluated on seven edge
hardware platforms from various classes, including ASIC, FPGA, GPU and multi-core CPU. The evaluation
results show that HW-PR-NAS achieves up to 2.5x speedup compared to state-of-the-art methods while
achieving 98% near the actual Pareto front.

CCS Concepts: •Computingmethodologies! Simulation evaluation;Object recognition; Speech recognition;
Discrete space search.

Additional Key Words and Phrases: Deep Neural Networks, Hardware-aware Neural Architecture, Design
Space Exploration, Surrogate Models, Model Accuracy, Execution Time, Power Consumption

1Extension of conference paper: HW-PR-NAS [3]. In the conference paper, we proposed a Pareto rank-preserving surrogate
model trained with a dedicated loss function. This article extends the conference paper by presenting a novel lightweight
architecture for the surrogate model that enables faster inference and, thus, more e�cient NAS. We also evaluate our
HW-PR-NAS on an NLP use case, namely KWS, and validate that HW-PR-NAS only needs �ve epochs of �ne-tuning to
generalize to a new dataset and a new hardware platform.

Authors’ addresses: Hadjer Benmeziane, hadjer.benmeziane@uphf.fr, Univ. Polytechnique Hauts-de-France, UMR 8201
- LAMIH - F-59313 Valenciennes, France; Hamza Ouarnoughi, hamza.ouarnoughi@uphf.fr, Univ. Polytechnique Hauts-
de-France, UMR 8201 - LAMIH - F-59313 Valenciennes, France; Kaoutar El Maghraoui, kelmaghr@us.ibm.com, IBM T. J.
Watson Research Center Yorktown Heights, NY, USA; Smail Niar, smail.niar@uphf.fr, Univ. Polytechnique Hauts-de-France,
UMR 8201 - LAMIH - F-59313 Valenciennes, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1544-3566/2022/09-ART111 $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Arch. Code Optim., Vol. 37, No. 4, Article 111. Publication date: September 2022.

111:2 Benmeziane et al.

ACM Reference Format:
Hadjer Benmeziane, Hamza Ouarnoughi, Kaoutar El Maghraoui, and Smail Niar. 2022. Multi-Objective
Hardware-Aware Neural Architecture Search with Pareto Rank-Preserving Surrogate Models. ACM Trans.
Arch. Code Optim. 37, 4, Article 111 (September 2022), 22 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
With the rise of Automated Machine Learning (AutoML) techniques, signi�cant progress has
been made to automate ML and democratize Arti�cial Intelligence (AI) for the masses. Neural
Architecture Search (NAS), a subset of AutoML, is a powerful technique that automates neural
network design and frees Deep Learning (DL) researchers from the tedious and time-consuming task
of handcrafting DL architectures 2. Recently, NAS methods have exhibited remarkable advances
reducing computational costs, improving accuracy, and even surpassing human performance
on DL architecture design in several use cases such as image classi�cation [12, 23] and object
detection [24, 40].

As we are witnessing a massive increase in hardware diversity ranging from tiny Microcontroller
Units (MCU) to server-class supercomputers, it has become crucial to design e�cient neural
networks adapted to various platforms. Traditional NAS techniques focus on searching for the most
accurate architectures, overlooking the target hardware e�ciency’s practical aspects. Considering
hardware constraints in designing DL applications is becoming increasingly important to build
sustainable AI models, allow their deployments in resource-constrained edge devices, and reduce
power consumption in large data centers. The standard hardware constraints of target hardware
where the DL application is deployed are latency, memory occupancy, and energy consumption.

Hardware-aware NAS (HW-NAS) [2] addresses the above-mentioned limitations by including
hardware constraints in the NAS search and optimization objectives to �nd e�cient DL architectures.
HW-NAS is comprised of three components: 1 the search space which de�nes the types of DL
architectures and how to construct them, 2 the search algorithm, a multi-objective optimization
strategy such as evolutionary algorithms or simulated annealing and 3 the evaluation method
where DL performance and e�ciency, such as the accuracy and the hardware metrics, are computed
on the target platform. In conventional NAS (�gure 1.A), accuracy is the single objective that the
search thrives on maximizing. Thus, the search algorithm only needs to evaluate the accuracy of
each sampled architecture while exploring the search space to �nd the best architecture. On the
other hand, HW-NAS (�gure 1.B) is formulated as a multi-objective optimization problem, aiming
to optimize two or more con�icting objectives, such as maximizing the accuracy of architecture
and minimizing its inference latency, memory occupation and energy consumption. Dealing with
multi-objective optimization becomes especially important in deploying DL applications on edge
platforms. In a multi-objective optimization, the result obtained from the search algorithm is often
not a single solution but a set of solutions. These solutions are called dominant solutions because they
dominate all other solutions with respect to the trade-o�s between the targeted objectives. A formal
de�nition of dominant solutions is given in section 2. In the case of HW-NAS, the optimization
result is a set of architectures with the best objectives’ trade-o� (�gure 1.B). Formally, the set of
best solutions is represented by a Pareto front (see section 2.1).

NAS algorithms train multiple DL architectures to adjust the exploration of a huge search space.
This requires many hours/days of datacenter-scale computational resources. This time complexity
is exacerbated in the case of HW-NAS multi-objective assessments, as additional evaluations are
needed for each objective or hardware constraint on the target platform. To address this problem,
researchers have proposed surrogate-assisted evaluation methods [16, 33]. Surrogate models use

2In the rest of the paper, we will use the term "architecture" to refer to "DL model architecture"

ACM Trans. Arch. Code Optim., Vol. 37, No. 4, Article 111. Publication date: September 2022.

Multi-Objective Hardware-Aware Neural Architecture Search with Pareto Rank-Preserving Surrogate Models 111:3

Search Algorithm Accuracy Predictor Best Architecture Search Space

3. Get accuracy of A

4. Accuracy of A

A- Neural Architecture Search without Hardware
Considerations

2. Sampled Architecture A

1. Sample a new Architecture

Search Algorithm

Accuracy Predictor

Best Pareto front
Approximation

Search Space

3.Get accuracy of A

4. Accuracy of A

B- Hardware-aware Neural Architecture Search with Independent Evaluations

2. Sampled Architecture A

1. Sample a new Architecture
HW Metric Predictor

3’.Get HW perf of A

4’. HW Perf of A

Search Algorithm Pareto Rank Predictor Best Pareto front
Approximation

Search Space

3. Get accuracy/HW metrics
 tradeoff of A

4.Pareto score of A

C- HW-PR-NAS: Hardware-aware Neural Architecture Search with Pareto Rank Predictor

2. Sampled Architecture A

1. Sample a new Architecture

Fig. 1. Simplified illustration of using HW-PR-NAS in a NAS process. HW Perf means the Hardware perfor-
mance of the architecture such as latency, power, etc.

analytical or ML-based algorithms that quickly estimate the performance of a sampled architecture
without training it. Existing HW-NAS approaches [2] rely on the use of di�erent surrogate-assisted
evaluations, whereby each objective is assigned a surrogate, trained independently (�gure 1.B).
However, this introduces false dominant solutions as each surrogate model brings its share of
approximation error and could lead to search ine�ciencies and falling into local optimum (�gures 2.a
and 2.b).
Learning-to-rank theory [4, 33] has been used to improve the surrogate model evaluation

performance. This was motivated by the following observation: it is more important to rank a
sampled architecture relatively to other architectures throughout the NAS process than to compute
its exact accuracy. Rank-preserving surrogate models signi�cantly reduce the time complexity of
NAS while enhancing the exploration path. However, in the multi-objective context, training each
surrogate model independently cannot preserve the Pareto rank of the architectures, as illustrated
in �gure 2.
To speed up the exploration while preserving the ranking and avoiding con�icts between the

surrogate models, we propose HW-PR-NAS, short for Hardware-aware Pareto-Ranking NAS.
HW-PR-NAS is a uni�ed surrogate model trained to simultaneously address multiple objectives in
HW-NAS (�gure 1.C). The contributions of the paper are summarized as follows:

ACM Trans. Arch. Code Optim., Vol. 37, No. 4, Article 111. Publication date: September 2022.

111:4 Benmeziane et al.

Real accuracy: 86.7%
Real latency: 3.6 ms

Real accuracy: 81.5%
Real latency: 3.6 ms

Architecture A

Architecture B

Accuracy Predictor

Latency Predictor

Predicted accuracy: 85%
Predicted latency: 3.4 ms

Predicted accuracy: 83%
Predicted latency: 3.4 ms

Architecture A

Architecture B

Real accuracy: 86.7%
Real latency: 3.6 ms

Real accuracy: 81.5%
Real latency: 3.6 ms

Architecture A

Architecture B

Score: 77
Architecture A

Architecture B

Pareto Rank
Predictor

Score: 80

Ground truth : B>>A
Using predictions: A>>B

Ground truth: B>>A
Using predictions: B>>A

Independently trained predictors Predictor trained with multi-objectives B >> A : B dominates A

(a) State-of-the-art HW-NAS

(c) HW-PR-NAS

A B

Fig. 2. This figure illustrates the limitation of state-of-the-art surrogate models alleviated by HW-PR-NAS. a)
and b) illustrate how two independently trained predictors exacerbate the dominance error and the results
obtained using GATES and BRP-NAS. c) illustrates how we solve this issue by building a single surrogate
model.

(1) We introduce a �exible and general architecture representation which allows gener-
alizing the surrogate model to include new hardware and optimization objectives without
incurring additional training costs.

(2) We propose a novel training methodology for multi-objective HW-NAS surrogate
models. Our surrogate model is trained using a novel ranking loss technique. The goal is to
rank the architectures from dominant to non-dominant ones by assigning high scores to the
dominant ones. These scores are called Pareto scores.

Our approach has been evaluated on seven edge hardware platforms, including ASICs, FPGAs,
GPUs and multi-cores for multiple DL tasks, including image classi�cation on CIFAR-10 and
ImageNet and keywords spotting on Google Speech Commands. Experimental results demonstrate
up to 2.5x speedup while guaranteeing that the search ends near the true Pareto front. We have
evaluated HW-PR-NAS in the context of edge computing but our surrogate model’s approach can
be adapted to other platforms such as HPC or cloud systems.

Preliminary results show that using HW-PR-NAS is more e�cient than using several independent
surrogate models as it reduces the search time and improves the quality of the Pareto approximation.

The rest of this paper is organized as follows. Section 2 provides the relevant background. Section 3
discusses related work. Approach and methodology are described in Section 4. In Section 5, we

ACM Trans. Arch. Code Optim., Vol. 37, No. 4, Article 111. Publication date: September 2022.

Multi-Objective Hardware-Aware Neural Architecture Search with Pareto Rank-Preserving Surrogate Models 111:5

validate the proposed methodology by comparing our Pareto front approximations with state-of-
the-art surrogate models, namely, GATES [33], and BRP-NAS [16]. Section 6 concludes the paper
and discusses existing challenges and future research directions.
To allow a broad utilization of our work by the scienti�c community, we made the code and

supplementary results available in a GitHub repository3.

2 BACKGROUND
2.1 Multi-objective Optimization
Multi-objective optimization [31] deals with the problem of optimizing multiple objective functions
simultaneously. Equation 1 formulates a multi-objective minimization problem, where � is the set
of all the solutions, U is one solution and 58 with 8 2 [1, . . . ,=] are the objective functions.

min
U2�

51 (U), . . . , 5= (U) (1)

There is no single solution to these problems since the objectives often con�ict. This means
that we cannot minimize one objective without increasing another. Instead, the result of the
optimization search is a set of dominant solutions called the Pareto front. In a two-objectives
minimization problem, dominance is de�ned as: If B1 and B2 denote two solutions, B1 dominates B2
(B1 � B2) if and only if 88 58 (B1) 58 (B2) AND 9 9 59 (B1) < 59 (B2).

There is plenty of optimization strategies that address multi-objective problems, mainly based on
meta-heuristics. One commonly used multi-objective strategy in the literature is the evolutionary
algorithm [37]. The quality of the multi-objective search is usually assessed using the hypervolume
indicator [17]. This metric computes the area of the objective space covered by the Pareto front
approximation, i.e. the search result. The hypervolume, �⌘ , is bounded by the true Pareto front as a
superior bound and a reference point as a minimum bound. Maximizing the hypervolume improves
the Pareto front approximation and �nds better solutions.
In our experiments, for the sake of clarity, we use the normalized hypervolume, which is com-

puted with �⌘ (Pareto front approximation)/�⌘ (true Pareto front). The closest to 1 is the normalized
hypervolume, the better it is. However, if the search space is too big, we cannot compute the true
Pareto front. Only the hypervolume of the Pareto front approximation is given.

2.2 Hardware-aware Neural Architecture Search (HW-NAS)
HW-NAS achieved promising results [7, 38] by thoroughly de�ning di�erent search spaces and
selecting an adequate search strategy. It refers to automatically �nding the most e�cient DL
architecture for a speci�c dataset, task, and target hardware platform. HW-NAS approaches often
employ black-box optimization methods such as evolutionary algorithms [13, 33], reinforcement
learning [1], and Bayesian optimization [47].

The optimization problem is cast as: a A single objective function using scalarization such as a
weighted sum of the objectives, i.e., task-speci�c performance and hardware e�ciency. The weights
are usually �xed via empirical testing. In this case, the result is a single architecture that maximizes
the objective. b A pure multi-objective optimization where the result is a set of architectures
representing the Pareto front. In formula 1, � refers to the architecture search space, U denotes a
sampled architecture and 58 denotes the function that quanti�es the performance metric 8 , where 8
may represent the accuracy, latency, energy consumption, or memory occupancy, etc.
During the search, the objectives are computed for each architecture. Because the training of

a single architecture requires about 2 hours, the evaluation component of HW-NAS became the

3https://github.com/IHIaadj/HW-PR-NAS

ACM Trans. Arch. Code Optim., Vol. 37, No. 4, Article 111. Publication date: September 2022.

111:6 Benmeziane et al.

bottleneck. For instance, MNASNet [38] needs more than 48 days on 64 TPUv2 devices to �nd
the most e�cient architecture within their search space. Evaluation methods quickly evolved into
estimation strategies. The estimators are referred to as Surrogate models in this paper. Indeed, many
techniques have been proposed to approximate the accuracy and hardware e�ciency instead of
training and running inference on the target hardware as described in the next section.

3 RELATEDWORK
Table 1 illustrates the di�erent state-of-the-art surrogate models used in HW-NAS to estimate the
accuracy and latency.

Surrogate Model Objective Encoding Loss Dataset Size Ranking
GATES [33] Accuracy GCN Hinge Pair-wise 7318 yes

BRP-NAS [16] Accuracy
Latency

GCN
GCN

MSE
KL Div 900 no

ProxylessNAS [7] Latency AF RMSE 5000 no
LRLC [44] Accuracy LSTM Logistic Loss 1000 yes

Table 1. State-of-the-art surrogate models used for HW-NAS. AF stands for architecture features such as the
number of convolutions and depth.

Below, we detail these techniques and explain how other hardware objectives, such as latency
and energy consumption, are evaluated.

3.1 Accuracy Surrogate Models
Accuracy evaluation is the most time-consuming part of the search. Several approaches [16, 33, 44]
propose ML-based surrogate models to predict the architecture’s accuracy. We can distinguish two
main categories according to the input of the surrogate model:
(1) Architecture Encoding. The straightforward method involves extracting the architecture’s

features and then training an ML-based model to predict the accuracy of the architecture.
GATES [33] and BRP-NAS [16] rely on a graph-based encoding that uses a Graph Convolution
Network (GCN). Each architecture can be represented as a Directed Acyclic Graph (DAG),
where the nodes are the input/intermediate/output data, and the edges are the operations, e.g.,
convolutions, pooling and attention. This makes GCN suitable for encoding an architecture’s
connections and operations.
Other methods [25, 27] use LSTMs to encode the architectural features, which necessitate the
string representation of the architecture. In a smaller search space, FENAS [36] divides the
architecture according to the position of the down-sampling operations. Then, it represents
each block with the set of possible operations. They use random forest to implement the
regression and predict the accuracy.
HAGCNN [41] uses a binary-based encoding dedicated to genetic search. Each operation is as-
signed a code. For example, the convolution 3x3 is assigned the "011" code. Then, they encode
the architecture with a vector corresponding to the di�erent operations it contains. During
the search, they train the entire population with a di�erent number of epochs according to
the accuracies obtained so far.

(2) Learning Curves. The learning curve is the loss obtained after training the architecture for
a few epochs. We extrapolate or predict the accuracy in later epochs using these loss values.
In [44], the authors use the results of training the model for 30 epochs, the architecture

ACM Trans. Arch. Code Optim., Vol. 37, No. 4, Article 111. Publication date: September 2022.

Multi-Objective Hardware-Aware Neural Architecture Search with Pareto Rank-Preserving Surrogate Models 111:7

encoding, and the dataset characteristics to score the architectures. This scoring is learned
using the pairwise logistic loss to predict which of two architectures is the best.

A more detailed comparison of accuracy estimation methods can be found in [43].

3.2 Hardware E�iciency Surrogate Models
Latency is the most evaluated hardware metric in NAS. Several works in the literature have proposed
latency predictors. We can classify them into two categories:
(1) Layer-wise predictor . In a preliminary phase, we estimate the latency of each possible layer

in the search space. We can either store the approximated latencies in a lookup table (LUT) [6]
or develop analytical functions that, according to the layer’s hyperparameters, estimate its
latency. The end-to-end latency is predicted by summing up all the layers’ latency values.
This layer-wise method has several limitations for NAS performance prediction [2, 16].

(2) End-to-end predictor . Similar to the conventional NAS, HW-NAS resorts to ML-based
models to predict the latency. ProxylessNAS [7] uses a surrogate model based on manually
extracted features such as the type of the operator, input and output feature map size, and
kernel sizes. BRP-NAS [16], on the other hand, uses a GCN to encode the architecture and
train the �nal fully-connected layer to regress the latency of the model.

For other hardware e�ciency metrics such as energy consumption and memory occupation, most
of the works [18, 32] in the literature use analytical models or lookup tables.

Novelty Statement. To the best of our knowledge, this paper is the �rst work that builds a
single surrogate model for Pareto ranking task-speci�c performance and hardware e�ciency. Our
approach is motivated by the fact that using multiple independently trained surrogate models for
each objective only delivers sub-optimal results, as each surrogate model will bring its share of
error. Instead, we train our surrogate model to predict the Pareto rank as explained in section 4. A
single surrogate model for Pareto ranking provides a better Pareto front estimation and speeds up
the exploration. For the sake of clarity, we focus on a two-objective optimization; accuracy and
latency. We then explain how we can generalize our surrogate model to add more objectives in
section 5.5.

4 PROPOSED APPROACH: HW-PR-NAS
Figure 3 shows an overview of HW-PR-NAS, which is composed of two main components: 1
Encoding Scheme and 2 Pareto Rank Predictor.

Each architecture is encoded into a unique vector and then passed to the Pareto Rank Predictor
in the Encoding Scheme. The Pareto Rank Predictor uses the encoded architecture to predict
its Pareto Score (see equation 7) and adjusts the prediction based on the Pareto Ranking Loss. The
Pareto Score, a value between 00=31, is the output of our predictor. We use a listwise Pareto ranking
loss to force the Pareto Score to be correlated with the Pareto ranks.

4.1 Encoding Schemes
De�nitions. In this paper, we use the following terms with their corresponding de�nitions:
• Representation: is the format in which the architecture is stored.
• Encoding: is the process of turning the architecture representation into a numerical vector.
The surrogate model can then use this vector to predict its rank.

• Encoding scheme: is the methodology used to encode an architecture.
• Encoder: is a function that takes as input an architecture and returns a vector of numbers, i.e.,
applies the encoding process.

ACM Trans. Arch. Code Optim., Vol. 37, No. 4, Article 111. Publication date: September 2022.

111:8 Benmeziane et al.

Architecture Target HW

Architecture Features Extraction GNN Encoding LSTM Encoding

Encoding Scheme

2

3
Pareto Ranking

Loss

Fully-connected NN (FCNN)

Pareto Rank Predictor

Pareto Score

Get the encoded architecture

Select the predictor
for the target HW

4 Get the Pareto score

5
Adjust the predictor

Architecture Dataset

1 Get an architecture

Fig. 3. General Overview of HW-PR-NAS

• Pareto Rank Predictor: is last part of the model architecture specialized in predicting the �nal
score of the sampled architecture (see �gure 3).

To achieve a robust encoding capable of representing most of the key architectural features,
HW-PR-NAS combines several encoding schemes (see �gure 3). Each architecture is described using
two di�erent representations: a Graph Representation, which uses Directed Acyclic Graphs (DAG),
and a String Representation, which uses discrete tokens that express the NN layers. For example
using "conv_3x3" to express a 3x3 convolution operation. We use two encoders to represent each
architecture accurately. Both representations allow using di�erent encoding schemes. Each encoder
can be represented as a function ⇢ formulated as follows:

⇢ : � �! b (2)

� denotes the search space, and b denotes the set of encoding vectors. The encoder ⇢ takes an
architecture’s representation as input and maps it into a continuous space b . The encoding result is
the input of the predictor.

In our approach, three encoding schemes have been selected depending on their representation
capabilities and the literature review (see table 1):
(1) Architecture Features Extraction. From each architecture, we extract several Architecture

Features (AF): number of FLOPs, number of parameters, number of convolutions, input size,
architecture’s depth, �rst and last channel size, and number of down-sampling.

(2) GCN Encoding. To e�ciently encode the connections between the architecture’s operations,
we apply a GCN encoding. Each architecture is encoded into its adjacency matrix and

ACM Trans. Arch. Code Optim., Vol. 37, No. 4, Article 111. Publication date: September 2022.

Multi-Objective Hardware-Aware Neural Architecture Search with Pareto Rank-Preserving Surrogate Models 111:9

Hyperparameter Value

GCN Encoding

Number of layers 2
hidden depth 128

hidden dimension 1
FC dimension 32

LSTM Encoding

Number of layers 2
Hidden units [32, 64]
FC dimension 32

recurrent dropout 0.2

Decoder Number of layers 3
Hidden units [32,32]

Table 2. Hyperparameters associated with GCN and LSTM encodings and the decoder used to train them.

operation vector. It is then passed to a Graph Convolution Neural Network (GCN) [20] to
generate the encoding. The output is passed to a dense layer to reduce its dimensionality.

(3) LSTM Encoding. To represent the sequential behaviour of the architecture, we use an LSTM
encoding scheme. We pass the architecture’s string representation through an embedding
layer and an LSTM model. We then reduce the dimensionality of the last vector by passing it
to a dense layer.

The resulting encoding is a vector that concatenates the AFs to ensure that each architecture
in the search space has a unique and general representation that can handle di�erent tasks [28]
and objectives. The hyperparameters describing the implementation used for the GCN and LSTM
encodings are listed in table 2.
Using a decoder module, the encoder is trained independently from the Pareto rank predictor.

The decoder takes the concatenated version of the three encoding schemes and recreates the
representation of the architecture. We set the decoder’s architecture to be a 4-layers LSTM. In
addition, we leverage the attention mechanism to make decoding easier. The encoder-decoder
model is trained with the cross entropy loss. Equation 3 formulates the cross entropy loss, denoted
as !⇢⇡ , where >DC?DC_B8I4 changes according to the string representation of the architecture, ~
and ~̂ correspond to the predicted operation and the true operation respectively. This training
methodology allows the architecture encoding to be hardware-agnostic.

!⇢⇡ = �
>DC?DC_B8I4’

8=1
~8 ⇤ ;>6(~̂8) (3)

The preliminary analysis results in �gure 4 validate the premise that di�erent encodings are
suitable for di�erent predictions in the case of NAS objectives. Figure 4 shows the results obtained
after training the accuracy and latency predictors with di�erent encoding schemes. Each predictor
is trained independently. Using Kendal Tau [34], we measure the similarity of the architectures’
rankings between the ground truth and the tested predictors. Accuracy predictors are sensible to the
types of operators and connections in a DL architecture. When using only the AF, we observe a small
correlation (0.61) between the selected features and the accuracy, resulting in poor performance
predictions. The best predictor is obtained using a combination of GCN encodings, which encodes
the connections, node operation, and AF. For latency prediction, results show that the LSTM
encoding is better suited. An intuitive reason is that the sequential nature of the operations to
compute the latency is better represented in a sequence string format. The last two columns of the

ACM Trans. Arch. Code Optim., Vol. 37, No. 4, Article 111. Publication date: September 2022.

111:10 Benmeziane et al.

�gure show the results of the concatenation, which outperforms other representations as it holds
all the features required to predict the di�erent objectives.

Fig. 4. Results of di�erent encoding schemes for accuracy and latency predictions on NAS-Bench-201 and
FBNet. AF refers to Architecture Features. LSTM refers to Long Short-Term Memory neural network. GCN
refers to Graph Convolutional Networks.

These results were obtained with a �xed Pareto Rank predictor architecture. We used a fully-
connected neural network (FCNN). Table 3 shows the results of modifying the �nal predictor on
the latency and accuracy predictions. While we achieve a slightly better correlation using XGBoost
on the accuracy, we prefer to use a 3-layer FCNN for both objectives to ease the generalization and
�exibility to multiple hardware platforms.

Accuracy Latency
RMSE KT Corr RMSE KT Corr

3-layer FCNN 4.88 0.924 3.238 0.8817
XGBoost [8] 3.12 0.931 3.216 0.8742
LGBoost [19] 3.58 0.864 3.058 0.8247

Table 3. Results of di�erent regressors on NAS-Bench-201. KT Corr stands for Kendal Tau Correlation.

4.2 Pareto Ranking Predictor
HW-PR-NAS is trained to predict the Pareto front ranks of an architecture for multiple objectives
simultaneously on di�erent hardware platforms. The predictor uses three fully-connected layers.
Due to the hardware diversity illustrated in table 4, the predictor is trained on each HW platform.
Prior works [2] demonstrated that the best architecture in one platform is not necessarily the best
in another. Therefore, the Pareto fronts di�er from one HW platform to another.
HW-PR-NAS predictor architecture is the same across the di�erent HW platforms. The only

di�erence is the weights used in the fully-connected layers. The HW platform identi�er (Target
HW in �gure 3) is used as an index to point to the corresponding predictor’s weights.
To train this Pareto ranking predictor, we de�ne a novel listwise loss function to predict the

Pareto ranks.

Pareto ranks de�nition. In a multi-objective NAS problem, the solution is a set of # architectures
(= B1, B2, ..., B# . These architectures may be sorted by their Pareto front rank . The true Pareto
front is denoted as �1 where the rank of each architecture within this front is 1. An architecture is in

ACM Trans. Arch. Code Optim., Vol. 37, No. 4, Article 111. Publication date: September 2022.

Multi-Objective Hardware-Aware Neural Architecture Search with Pareto Rank-Preserving Surrogate Models 111:11

the true Pareto front if and only if it dominates all other architectures in the search space. According
to this de�nition, we can de�ne the Pareto front ranked 2, �2, as the set of all architectures that
dominate all other architectures in the space except the ones in �1. Formally, the rank is the
number of Pareto fronts we can have by successively solving the problem for (�–B8 2�:^:< , i.e.,
the top dominant architectures are removed from the search space each time.

Theoretically, the sorting is done by following these conditions:

8B8 , B 9 2 �: , B8 ⌥ B 9 ^ B 9 ⌥ B8 (4)

8B8 2 �:+1 8B 9 2 �: , B8 ⌥ B 9 (5)

8B8 2 �:+1 9B 9 2 �: , B 9 � B8 (6)

Equation 4 formulates that for all the architectures with the same Pareto rank, no one dominates
another. Equation 5 formulates that any architecture with a pareto rank : + 1 cannot dominate any
architecture with a pareto rank : . Equation 6 formulates that for each architecture with a Pareto
rank : + 1, at least one architecture with a Pareto rank : dominates it.

Pareto ranking loss de�nition. Our predictor takes an architecture as input and outputs a score.
This score is adjusted according to the Pareto rank. The loss function aims to keep the predictor’s
outputs; scores 5 (0), where 0 is the input architecture, correlated to the actual Pareto rank of the
given architecture.

The scores are then passed to a softmax function to get the probability of ranking architecture 0.
The �nal output is formulated as follows:

>DC (0) = exp 5 (0)Õ
02⌫ exp 5 (0)

(7)

In this equation, ⌫ denotes the set of architectures within the batch, while |⌫ | denotes its size.
We then design a listwise ranking loss by computing the sum of the negative likelihood values of
each batch’s output:

!(⌫) =
|⌫ |’
8=1

{�>DC (0 (8),⌫) + ;>6
|⌫ |’
9=8

4G? (>DC (0 (9),⌫)} (8)

0 (8),⌫ denotes i-th Pareto-ranked architecture in subset B. This loss function computes the
probability of a given permutation to be the best, i.e., if the batch contains three architectures
01,02,03 ranked (1, 2, 3) respectively. The loss function encourages the surrogate model to give
higher values to architecture 01 then 02 and �nally 03. We compute the negative likelihood of each
architecture in the batch being correctly ranked.

Training procedure. To train the HW-PR-NAS predictor with two objectives, the accuracy and
latency of a model, we apply the following steps:
(1) We build a ground truth dataset of architectures and their Pareto ranks. We randomly extract

architectures from NAS-Bench-201 and FBNet using Latin Hypercube Sampling [29]. The
batches are shu�ed after each epoch. The two benchmarks already give the accuracy and
latency results. Thus the dataset creation is not computationally expensive. However, if one
uses a new search space, the dataset creation will require at least the training time of 500
architectures.

ACM Trans. Arch. Code Optim., Vol. 37, No. 4, Article 111. Publication date: September 2022.

111:12 Benmeziane et al.

Fig. 5. Performance of the Pareto rank predictor using di�erent batch_size values during training.

(2) We iteratively compute the ground truth of the di�erent Pareto ranks between the architec-
tures within each batch using the actual accuracy and latency values. Two architectures with
close Pareto score means that both have the same rank.

(3) We calculate the loss between the predicted scores and the ground truth computed ranks.
(4) Using this loss function, the scores of the architectures within the same Pareto front will be

close to each other, which helps us extract the �nal Pareto approximation.

Algorithm 1: Training methodology of the rank predictor component.
Data: 14=2⌘<0A: : Benchmark (U : architecture, acc: accuracy, l: latency)
Result: Trained Surrogate Model
⇡ (0<?;4 (benchmark ,dataset_size)
model �⇠##
initialize model
for epoch < max_epochs do

batches = generate_random_batches(⇡)
for ⌫ in batches do

R ⇠><?DC4_%0A4C>_'0=:B (B)
P <>34; (B)
;>BB #!!(', %)
backpropagate ;>BB and adjust the weights of the model

The most important hyperparameter of this training methodology that needs to be tuned is
the batch_size. Figure 5 shows the empirical experiment done to select the batch_size. We set the
batch_size to 18 as it is, empirically, the best trade-o� between training time and accuracy of the
surrogate model. The accuracy of the surrogate model is represented by the Kendal tau correlation
between the predicted scores and the correct Pareto ranks. This value can vary from one dataset to
another. The hyperparameter tuning of the batch_size takes ⇠1h for a full sweep of 6 values in this
range: [8, 12, 16, 18, 20, 24].

ACM Trans. Arch. Code Optim., Vol. 37, No. 4, Article 111. Publication date: September 2022.

