
Citation: Hemmati, M.;

Biglari-Abhari, M.; Niar, S. Title. J.

Imaging 2022, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c� 2022 by the authors.

Submitted to J. Imaging for possible

openaccesspublicationundertheterms

andconditionsoftheCreativeCommons

Attri- bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Adaptive Real-Time Object Detection for Autonomous Driving
Systems
Maryam Hemmati 1,* , Morteza Biglari-Abhari 1 and Smail Niar 2

1 Department of Electrical, Computer, and Software Engineering, The University of Auckland;
m.hemmati@auckland.ac.nz (M.H.) ; m.abhari@auckland.ac.nz (M.B.-A.)

2 Institut National des Sciences Appliquées (INSA) Hauts-de-France, Université Polytechnique
Hauts-de-France; smail.niar@uphf.fr (S.N.)

* Correspondence: m.hemmati@auckland.ac.nz

Abstract: Accurate and reliable object detection is one of the main tasks of Autonomous Driving 1

Systems (ADS). Considering various circumstances for different types of objects and obstacles on 2

the road results in more intensive computations and more complicated systems. Moreover, the 3

stringent real-time requirements of ADS, resource constraints, and energy efficiency considerations 4

on embedded platforms add to the design complications. This work presents dedicated hardware 5

accelerators for pedestrian detection and vehicle detection in different environmental conditions, 6

which are implemented on FPGA. These lighting conditions include three scenarios of day, dusk, and 7

dark. We take a hardware-software co-design approach on Zynq UltraScale+ MPSoC and develop 8

a dynamically reconfigurable ADS that adapts itself to the environment lighting conditions. Our 9

analysis of the results shows that the system adaptability is achieved with minimal resource overhead, 10

while more reliability and robustness are added to the ADS. 11

Keywords: Real-time detection; hardware accelerator; partial reconfiguration; pedestrian detection; 12

vehicle detection; FPGA; Adaptive ADS; HOG; SVM; DBN 13

1. Introduction 14

Autonomous driving systems (ADS) will be used more widely when their use on 15

the roads is legislated. ADS legal implications are mostly related to their reliability and 16

safety concerns, which could be addressed when these systems guarantee reliable actions 17

in the case of any hazardous situation. It is expected that ADS provide safer and more 18

reliable driving than human drivers. Accurate obstacle detection is an essential prerequisite 19

to make a reliable decision in these autonomous systems. There are various types of 20

obstacles, and they could appear on the road in different environmental conditions. Change 21

of environment could affect the appearance of objects and make the detection task more 22

challenging. All these variations should be taken into account for robust detection in a 23

system which is designed for a safety-critical application such as ADS. Adaptive designs 24

where the system changes its functionality based on the environmental conditions could be 25

a useful solution in these scenarios. 26

Moreover, the safety-critical nature of ADS imposes hard real-time requirements to 27

the system. Real-time systems are responsible for completing their task within a specified 28

period, otherwise, the task is considered as failed. Hard real-time systems, also known 29

as immediate real-time systems, should be able to complete their operation within the 30

stringent deadline. While missing a deadline in soft real-time systems may lead to a 31

significant loss, it would be catastrophic in hard real-time systems. The simple example of 32

such hard real-time applications is the anti-lock brakes in a car. Time constraints associated 33

with hard real-time applications add more complexity to the design of these systems. 34

We present an adaptive ADS capable of detecting pedestrians and vehicles in different 35

environmental conditions. Implemented on Zynq UltraScale+ MPSoC, a specific memory 36

Version February 28, 2022 submitted to J. Imaging https://www.mdpi.com/journal/jimaging

Version February 28, 2022 submitted to J. Imaging 2 of 20

hierarchy [1] is employed in our hardware implementations to maximize the data reuse 37

and detection throughput. Hardware implementations of the vehicle detection algorithms 38

are discussed, and the adaptability of the system for vehicle detection is achieved through 39

dynamic and partial reconfiguration of FGPA fabric on programmable logic (PL). Through 40

partial reconfiguration, the system maintains its functionality of detecting pedestrians, 41

while it changes its vehicle detection algorithm on the fly. The reconfiguration process is 42

initiated and triggered by the processing system (PS) on Zynq UltraScale+ MPSoC. Our 43

approach in partial reconfiguration of the FPGA results in added adaptability to the system 44

with negligible increased hardware resources. 45

The rest of the paper is organized as follows. A review of object detection methods is 46

provided in Section 2. Section 3 presents our pedestrian detection hardware accelerator 47

for single and multi-scale detection. Vehicle detection methods during different lighting 48

conditions and their corresponding hardware accelerators are explained in Section 4. The 49

evaluation results including hardware implementations on PL and algorithm profiling on 50

the PS are discussed in Section 5 followed by a discussion on the advantages of partial and 51

dynamic reconfiguration in providing the adaptability of system with minimal resource 52

overhead. Concluding remarks are discussed in Section 6. 53

2. Literature Review and Background 54

During the last few decades, various detection algorithms have been proposed and 55

evaluated for object detection. These methods could be divided into different categories of 56

shape-based detection, motion-based detection, and a combination of shape and motion- 57

based detection. They range from conventional machine learning (ML) approaches [2–6] to 58

deep learning (DL) based techniques [7–9]. In conventional ML approaches, the features are 59

extracted and described through some human-defined algorithms and are passed through 60

a classification stage for the final decision. However, in the DL approach, both feature 61

extraction and classification stages are managed within the network, and it is only the art 62

of designing suitable network architectures so that the required features could be extracted 63

and distinguished efficiently. 64

Several algorithms are developed in the context of conventional ML. However, most 65

of them rely on a few well-known feature descriptors with some modification in either 66

extraction algorithm or classification structure. One of these early developed features is 67

Haar-like features where a wavelet template is used to define the shape of an object in terms 68

of a subset of the wavelet coefficients of the image [10]. Cascades of Haar-like features 69

proposed by Viola and Jones in 2001 [2] is one of the other earliest methods used for object 70

detection. Originally developed for face detection, this method has the advantage of low 71

computation by introducing a new image representation called "integral image" and yields 72

the detection rate of 15 frame per second (fps) in the original work of face detection [2]. 73

A modified version of AdaBoost classifier is used for the classification purpose in this 74

study [3]. This approach is tailored to human detection by taking into account the motion 75

information by Viola and Jones in 2003 [4]. 76

Histogram of oriented gradients (HOG) introduced by Dalal and Triggs in 2005 is the 77

other well known early approach in human detection [5]. HOG features are considered as 78

one of the most efficient and promising features for human detection within the context 79

of conventional machine learning approaches where the features are handcrafted. These 80

features are usually used in conjunction with a classifier such as AdaBoost [3] or support 81

vector machine (SVM) [6] to detect specific class of objects [11]. HOG features have also 82

been employed in the detection of other object classes such as vehicles and have shown 83

reasonably accurate detection results compared to the other vehicle detection algorithms 84

widely used [12]. 85

Several research works have studied detection of the car either based on its appearance, 86

its motion, or a combination of both [12]. While motion-based methods look at the sequence 87

of frames and employ both detection and tracking algorithms [13,14], appearance-based 88

detection mainly relies on the pixel information of one image frame. In general, these 89

Version February 28, 2022 submitted to J. Imaging 3 of 20

methods extract vehicle appearance features and compare them with a pre-trained model 90

through the classification stage. Various visual features of vehicles are used for this purpose, 91

including the overall shape of car, edges, corners, underneath shadow of the vehicle, 92

headlight or taillight position, and their color. However, all of these features are somehow 93

affected by the environmental condition, which makes the challenge of accurate detection 94

even more complicated. 95

Modern approaches for object detection are mostly based on deep neural networks 96

(DNN) and convolutional neural networks (CNN). In these approaches, the features are not 97

extracted by a human. Instead, the first few layers of the networks are meant to extract the 98

features and build up more complicated features through the network layers. Final layers 99

of the network act as the classification stage to make the final decision and classify the 100

image into several categories. One of the main concerns in DL-based detection is the high 101

computation requirements which need to be addressed properly. These concerns are partly 102

addressed by employing region-based convolutional network (R-CNN), fast region-based 103

convolutional network (Fast R-CNN), and some other lightweight variations of CNN [7–9]. 104

3. Pedestrian Detection 105

Pedestrian detection is one of the vital tasks in driver assistance systems (DAS) and 106

autonomous driving systems (ADS) with the aim of bringing more safety to our daily 107

transportation. It is considered as one of the most challenging tasks due to the variation of 108

human poses and their appearance. Reliable detection of pedestrians and humans is also 109

important in several other domains such as video surveillance, and robotics. 110

3.1. Detection Algorithm 111

The DL approaches in object detection achieve more accurate results at the cost of more 112

computation. Although in some scenarios, the traditional ML approaches might achieve 113

lower detection accuracy compared to DL-based techniques, these methods are considered 114

as a good candidate in real-time applications with constrained computation power. The 115

combination of HOG feature extractor and linear SVM has shown its competency in human 116

detection, and we base our pedestrian detection on this method. 117

The principle of object detection in the traditional approach includes two different 118

stages of feature extraction and object classification. At the first stage, specific features of 119

an image are extracted. In the next stage, the classifier decides whether the object belongs 120

to the particular class based on the calculated features in the initial stage. Figure 1 shows a 121

block diagram of object detection using HOG feature extractor followed by SVM classifier. 122

In this method, the HOG features of the input image are first calculated and then passed to 123

the SVM classifier. The classifier compares the HOG features of input with its pre-trained 124

model data, which represents the human model in this case. The result of classifier defines 125

if the image belongs to the pedestrian class or not. 126

Input�
Image�

HOG�Feature�
Extractor

Detection�
Result

SVM�Classifier

Input�
Image�

HOG�
Normalizer

HOG�
Descriptor

Detection�
Result

SVM�
Classifier

1920x1080

Trained�
Model

HOG�
Memory

.���.�����. Normalized
HOG�

Memory

Pedestrian

Non�Pedestrian

Figure 1. Block diagram of detection based on HOG feature extractor and SVM classifier.

Calculating HOG features incorporates dividing the input image into small parts 127

called cells, normally 8x8 pixels as shown in Figure 2. Then the gradients in both x and 128

y direction are calculated for each pixel within the cell. Simple [�1, 0, 1] and [�1, 0, 1]T 129

gradient filters are applied to the pixel value f (x, y) in order to obtain both fx(x, y) and 130

fy(x, y) which are defined as 131

fx(x, y) = f (x + 1, y)� f (x � 1, y) (1)

Version February 28, 2022 submitted to J. Imaging 4 of 20

fy(x, y) = f (x, y + 1)� f (x, y � 1) (2)

The gradient magnitude m(x, y) and gradient direction q(x, y) are then computed as 132

m(x, y) =
q

f 2
x (x, y) + f 2

y (x, y) (3)

q(x, y) = arctan
fy(x, y)
fx(x, y)

(4)

The gradient histograms are then generated for each cell within the image. The interval 133

of [0, p) is evenly divided into nine bins. This value chosen as the number of orientations 134

is offered by Dalal and Triggs [5] to result in better human detection. The association of a 135

bin with each pixel is based on the value of q(x, y) and is weighted by the value of m(x, y). 136

Two nearest bins to the value of q(x, y) are updated to avoid aliasing effect. 137

The normalization process is the final step in HOG feature extraction. The blocks are 138

the overlapping number of adjacent cells and usually consists of four cells, i.e., a set of 2x2 139

neighboring cells [5]. Feature vectors of the four cells within a block are accumulated to 140

generate a normalization factor. This factor depends on the normalization scheme adopted 141

for this step. We use L1-sqrt normalization scheme where e is a small constant and L1-sqrt 142

is defined as 143

L1-sqrt :
r

n

(knk1 + e)
(5)

With n as the unnormalized feature vector, knkk, known as the k-norm of the vector is 144

defined as: 145

knkk =
⇣ n

Â
i=1

|xi|k
⌘ 1

k (6)

Once the features are extracted and normalized, a window of generated features is 146

passed to the classifier to evaluate the presence of a specific object, i.e., human in the case 147

of pedestrian detection. The concept of overlapping blocks and sliding detection window 148

is depicted in Figure 2. 149

The classification stage is based on using a SVM classifier. The linear SVM is a 150

discriminative binary classifier which is defined by the hyper-plane separating positive and 151

negative regions. Given the training data together with their class labels, SVM constructs 152

an optimum hyper-plane by its support vectors which define either a specific set of features 153

belongs to a class of objects or not [6]. In its simplest form for two-dimensional feature 154

space, SVM generates a line to divide positive and negative samples. SVM classifier looks 155

for the answer of Equation 7 in a way that w is minimized so that E(w), the total hinge loss, 156

is minimized. 157

Version February 28, 2022 submitted to J. Imaging 5 of 20

8 x 8 Pixel ...

...

Input Image

Cell

2 x 2 Cell
Block

Sliding Window

16 x 8 Cell

Figure 2. Cell, block, and sliding window in detection algorithm based on HOG and SVM. Detection
window of 64x128 pixels, equivalent to 8x16 cells is used for pedestrian detection.

E(w) =
l

2
kwk2 +

1
n

n

Â
i=1

max{0, 1 � yihw, xi} (7)

During the detection and at the classification stage, linear SVM classifier compares the 158

test data with the model data by calculating the dot product of the features vector x, and 159

the weight vector w. The weight vector w is calculated and obtained during the training 160

stage. A bias value b is also calculated during the training stage and is used in Equation 8 161

during the classification. 162

y(x) = w.x + b (8)

The resulted y(x) defines whether the feature vector belongs to the specific class of 163

objects or not by checking its sign as 164

⇢ y(x) > 0 =) positive (9)
y(x) < 0 =) negative (10)

3.2. Hardware Implementation 165

3.2.1. HOG-SVM Hardware Accelerator 166

The pedestrian detection hardware accelerator includes two main stages of HOG 167

extractor and SVM classifier as shown in Figure 3. The HOG feature extraction consists of a 168

few computation stages. Figure 3 shows two different processing stages within the HOG 169

extraction stage. The gradient calculation and histogram generation steps process the pixels 170

within a cell, while the final step of block normalization modifies the generated histograms 171

within a block. Processing the pixels within the cells has a different data access pattern 172

than the normalization stage. This means some intermediate storage elements are required 173

between these two functional blocks. Moreover, the histograms of cells are updated several 174

times during the processing of different pixels within a cell or its neighbor cells. In our 175

hardware implementation, the gradient calculation and histogram generation are merged 176

into one module named as HOGDescriptor. Block normalization is kept as a separate 177

module named as HOGNormalizer. Three different memory structures are considered 178

at start, middle, and end of the implemented pipeline to address different data access 179

requirements of each processing stage. The input image is read from off-chip memory and 180

Version February 28, 2022 submitted to J. Imaging 6 of 20

is passed through a line buffer, ImageBuffers, where four rows of the image are stored. This 181

is because three rows of pixels are required for the calculation of fy(x, y). The other row is 182

updated with new data which is required for the calculations in the next row of pixels. 183

Object�
Classification

Pedestrian�

Model

SVM�
Buffer

Pedestrian�Classifier

SVMClassifier

NͲHOGMem
4�x

�HogWidth�x�18�x�
Bin

ImageMem

ImageWidth�x�

ImageHeight

Gradient�
Calculation�&
Histogram�
Generation

HOGMem

4�x�
HogWidth�x�

Bin

Block�
Normalization

Pixel�
Values

Image�
Buffers

4�x�
ImageWidth

HOGExractor

HOGNormalizerHOGDescriptor

16x8�Model�
Data

16�Feature�
Data

Normalized�
Features

Cell�
Histogram

Gradient�
Calculation�&
Histogram�
Generation

HOGMem

4�x�
HogWidth�x�

Bin

NͲHOGMem
4�x�HogWidth�x�
HogHeight�x�Bin

ImageMem

ImageWidth�x�

ImageHeight

Block�
NormalizationCell�Histogram

Normalized�Block�
Histogram

Pixel�Values

Control�Signals

Image�
Buffers

4�x�
ImageWidth

ImageData Cell�Histogram

HOGExractor

HOGNormalizerHOGDescriptor

Figure 3. Block diagram of implemented hardware accelerator for pedestrian detection.

As discussed above, memory access could impose latency in the processing pipeline, 184

especially in the case of off-chip memories. Furthermore, with the potential resource 185

constraints for on-chip memories and the power/energy overhead, considerations should 186

be taken into account for the wise and efficient use of storage elements. This could be 187

addressed partly by defining the optimum memory access pattern within the algorithm. 188

The generation of histograms starts by gradient magnitude and direction calculation. 189

The image pixels are read and gradient values are calculated starting from the top left of the 190

image. Calculating the values for each pixel continues by scanning the image through each 191

row. When it reaches the end of the row, scanning the next row is started. Keeping the pixel 192

data from two adjacent rows as well as the data of the current row in the ImageBuffers results 193

in accessing all the required data at the same cycle and improves the performance. This 194

requires utilizing three line buffers and a shift register. An extra line buffer is considered to 195

get updated for the calculation of the next row. 196

Implementation of HOGDescriptor is based on pipelined architecture and similar to 197

the other related works, the floating point calculation and trigonometric computations are 198

replaced by fixed-point calculation and lookup table (LUT) implementation. Calculation 199

of gradients in HOGDescriptor is done in parallel for x and y directions. Once fx(x, y) and 200

fy(x, y) are calculated, the magnitude and direction, as well as all distance weights required 201

for bilinear interpolation, are calculated in parallel within the pipelined architecture to 202

maximize the throughput. In this case, some Xilinx pre-generated IP cores are employed to 203

provide a fully pipelined architecture for the mathematical functions used in the algorithm. 204

The square root calculation is done by instantiating CORDIC IP core, which results in less 205

resource utilization. The pipelined architecture of the HOGDescriptor results in generating 206

one output value for the histogram in every cycle after passing the initial delay of about 207

100 clock cycles. It updates the value of histogram in HOGMem by calculating the gradient 208

at every pixel within the image. Since the histogram of each cell is affected by the gradients 209

in its neighbor cells, four histogram values within the HOGMem requires to get updated in 210

each clock cycle. This could potentially put constraints on the throughput if not handled 211

properly within the memory hierarchy. 212

The HOGMem is updated by the HOGDescriptor and accessed by the HOGNormalizer 213

to provide a normalized version of the histogram across the blocks. For an optimal result, 214

memory access requirement at both ends should be taken into account so that the feasibility 215

of parallel and high throughput pipeline processing is obtained. Special memory pattern is 216

defined for HOGMem where different cells within the image are divided into four different 217

groups. Each cell is surrounded only by the cells belonging to the other groups. The 218

pattern is shown in Figure 4 where G1 to G4 indices show the group for which the cell is 219

assigned. Once the gradient at each point is calculated, its value will affect the histogram 220

in four adjacent cells, and consequently, four histograms should be updated in HOGMem. 221

The effect of one gradient on all adjacent cells is due to the spatial bilinear interpolation. 222

Version February 28, 2022 submitted to J. Imaging 7 of 20

Update process requires four clock cycles unless the target memory places are accessible 223

independently and in parallel, which is feasible by defining cell group division, as shown 224

in Figure 4. 225

���������������������������...�
������������������������

G1

G3 G4

G2 G1

G3 G4

G2

G1

G3 G4

G2 G1

G3 G4

G2

G1

G3 G4

G2

G1

G3 G4

G2

G1

G3 G4

G2

G1

G3 G4

G2 G1

G3 G4

G2

...
Figure 4. Division of cells into four different groups of G1-G4 results in simultaneous access to all
cells contributing in each HOG block.

On the other hand, HOGNormalizer requires accessing the value of four adjacent cells 226

to generate a block and calculate the normalization factor for the block. In the defined 227

pattern, it is guaranteed that each block, as defined in HOG algorithm, consists of four cells 228

where each of them belongs to one group. In other words, such pattern assures that in any 229

HOG block, only one cell from any specific group exists. As a result, HOGNormalizer is 230

capable of accessing data from four separate memories in parallel to provide the values 231

of the normalized histogram for all contributing cells of a block. By dividing the cells in 232

this way and storing the value of cell histograms within a group in a separate memory, 233

both functional blocks of HOGDescriptor and HOGNormalizer can update and access four 234

different parts of HOGMem in parallel which reduces the total required processing time. 235

A similar pattern is defined for the memory storing the results of the HOGNormalizer, 236

called N-HOGMem. As shown in Figure 4, each cell contributes to four different blocks by 237

changing its local position within the block. Consequently, by the end of the normalization 238

process, four different versions of a cell histogram are generated based on the normalization 239

factors obtained through the formation of four different blocks containing each specific 240

cell. In this case, four memory banks are associated with each group of G1 to G4, to store 241

four different versions of the cell histogram. Figure 5 shows the structure of HOGMem and 242

N-HOGMem and their relation with the processing blocks within the HOGDescriptor. 243

�������������Normalized�Value

Gradient�
Calculation�&
Histogram�
Generation

HOGDescriptor
HOGMem

4�x�Histogram�Values

4�x�Histogram�Values

4�x�Histogram�Values

4�x�Histogram�Values

HOGNormalizer

NͲHOGMem

G4
G3

G2
G1

HogWidth�
x�Bin

Final�Copy

G4
G3

G2
G1

HogWidth�
x�Bin

Temporary�Copy

G4�
Normalizer
G3�

Normalizer

G2�
Normalizer

G1�
Normalizer

RB
LB

RU
LU

¼�x�
HogWidth�x��
HogHeight�x�

Bin

Normalized�G3

RB
LB

RU
LU

¼�x�
HogWidth�x��
HogHeight�x�

Bin

Normalized�G1
RB

LB
RU

LU

¼�x�
HogWidth�x��
HogHeight�x�

Bin

Normalized�G2

Normalized�Value

������������������������Normalized�Value

RB
LB

RU
LU

¼�x�
HogWidth�x��
HogHeight�x�

Bin

Normalized�G4

Figure 5. Memory hierarchy of HOGMem and N-HOGMem. The HOGMem consists of two copies
update by HOGDescriptor. The final copy is accessed by HOGNormalizer. The N-HOGMem includes
four instances of memory for each group cell, which is defined based on its position within the
normalized block. The LU, RU, LB, and RB stand for left up, right up, left bottom, and right bottom
positions correspondingly.

Version February 28, 2022 submitted to J. Imaging 8 of 20

The final values of HOG descriptor are stored in N-HOGMem and HOGMem is just 244

playing the role of an intermediate memory to store the un-normalized histograms. Hence, 245

it is more efficient to reduce the memory size as much as possible to both satisfy its 246

functional requirement and reduce the required resource usage. Considering the required 247

time for processing of each block in HOGNormalizer, it is concluded that normalization of 248

one row of HOG blocks is fast enough to be completed during the time one new row of cell 249

histograms are updated completely in HOGMem. As a result, storing only four rows of cell 250

histograms within the HOGMem and overwriting the same area once new cell histograms 251

are calculated is sufficient. 252

Parallel and pipelined architecture is considered in the implementation of HOGNor- 253

malizer as well so that it does not impose any delay to the whole process. The calculated 254

normalization factor of a block is used for normalization of all cells within the block at the 255

same time in parallel. This approach results in data reuse and saves both power and time. 256

As shown in Figure 3, the last stage in pedestrian detection is the classification of 257

HOG features through linear SVMclassifier. The access pattern at this stage differs from the 258

order it is generated at the HOGNormalizer side. Therefore, the use of intermediate memory, 259

N-HOGMem is inevitable. We show how the choice of compatible pipelined architecture for 260

SVMclassifier helps in minimizing the size of N-HOGMem memory. 261

The classifier requires both the normalized feature data from N-HOGMem memory 262

and the model data to calculate the dot product of them. The pedestrian model, resulted 263

from off-line training process, is stored in a separate memory and accessed by SVMclassifier 264

as shown in Figure 3. Each detection window for pedestrian detection is 16x8 blocks, and 265

each block has a 36-element feature vector. 266

N-HOGMem provides access to 16 different HOG features through 16 memory banks. 267

Even though 16 simultaneous data could be accessed in a cycle; these features do not 268

provide one full column of the detection window. However, in two cycles, one feature for 269

two columns of the window could be obtained from N-HOGMem. SVM classifier obtains 270

the feature vectors of two columns every 72 clock cycles by circling through four different 271

categories of feature data groups, i.e., LU, RU, LB, and RB shown in Figure 5. This is 272

equivalent to accessing the feature vector of one column every 36 clock cycles when the 273

buffers are full. 274

A parallel architecture matching with memory access is defined for the processing 275

units in SVMclassifier. To increase the throughput as much as possible and satisfy the 276

real-time requirements, we have defined a deep pipelined parallel architecture for the 277

calculation stage. Maintaining the same processing speed at both stages of feature ex- 278

traction and classification results in eliminating unnecessary storage elements. The data 279

features for one column of the window are fed to the classifier. At the same time, the dot 280

products are calculated by 16 different MAC units that are responsible for multiplication 281

and accumulation required in the dot product. We name this processing unit MACBAR. 282

Figure 6 shows MACBAR parallel architecture, which consists of 16 MAC units working in 283

parallel, each fed with a model data and data feature separately. 284

Version February 28, 2022 submitted to J. Imaging 9 of 20

MAC�1

Accumulator�
Stage

MAC�BAR

MAC�3

MAC�4

MAC�2

MAC�15

MAC�16

Feature�1

Feature�2

Feature�3

Feature�4

Result�1

Result�2

Result�3

Result�4
Accumulated�Result16�Feature�Data

Feature�15

Feature�16

Result�15

Result�16

.�.
�.

Figure 6. The MACBAR parallel architecture consisting of 16 MAC units.

Figure 7 shows the parallel and pipelined architecture of the SVM classifier with eight 285

parallel MACBAR computation units. The feature data is fed to the classifier and pipelined 286

through eight stages to calculate eight columns of eight different windows. Consequently, 287

once all eight MACBAR units are filled with the data, the classifier calculates the SVM result 288

of a window through 36 cycles. The detection window slides horizontally through the 289

image until it reaches to the end of the row, when a new window starts from the next row. 290

This approach results in classification speed exceeding the rate of feature extraction. This 291

guarantees that the limited size of N-HOGMem considered in the design fully addresses 292

our requirements. 293

Accumulator�Stage

MAC
BAR�1

Feature�1

Feature�2

Feature�16

.�.
�. MAC

BAR�2

Feature�1

Feature�2

Feature�16

.�.
�. MAC

BAR�3

Feature�1

Feature�2

Feature�16

.�.
�. MAC

BAR�4

Feature�1

Feature�2

Feature�16

.�.
�. MAC

BAR�5

Feature�1

Feature�2

Feature�16

.�.
�. MAC

BAR�6

Feature�1

Feature�2

Feature�16

.�.
�. MAC

BAR�7

Feature�1

Feature�2

Feature�16

.�.
�. MAC

BAR�8

Feature�1

Feature�2

Feature�16

.�.
�.

Detection�Result16�Feature�Data

16�Model�Data

Window�Result

SVM�Classifier

Figure 7. The parallel and pipeline architecture of SVMclassifier with 8 parallel MACBAR computation
unit.

3.2.2. Multi-Scale Detection 294

Accurate and fast detection of pedestrians is one of the most challenging tasks of 295

ADS. Humans with various sizes appear on the road at different distances from the car, 296

Version February 28, 2022 submitted to J. Imaging 10 of 20

which results in the detection requirement of considering different sizes. Slight changes 297

in human size are considered within the training stage by feeding variations of positive 298

training samples to the SVM classifier. However, the classifier searches for a specific size 299

of a human within its defined window size. Consequently, the presence of objects with a 300

bigger or smaller size, which do not fit in the detection window is not achieved through the 301

detection method shown in Figure 1. By use of down-sampled images at different scales 302

detection of the objects with bigger size or farther distance to the car will become possible. 303

The image pyramid is generated by down-sampling the original image by various 304

factors consecutively. The main parts of detection pipeline, including both HOG feature 305

extraction and SVM classification, is then applied to each of the scaled images separately. 306

The final result is achieved by merging all the detection results and choosing the detection 307

with the highest probability based on the confidence score as generated by the classifier. 308

The last part is usually handled by the non-maximum suppression (NMS) algorithm [15]. 309

NMS considers the results of all windows which have an overlap of more than a specific 310

value and then choose the window with the highest classification result to represent the 311

final detection. 312

The real-time requirements of pedestrian detection in safety-critical applications such 313

as ADS requires the employment of hardware accelerators within the detection pipeline. In 314

the multi-scale detection scenario, where several scales of the image should be processed 315

to check the presence of an object, utilization of hardware accelerator could be done 316

in two different ways or a combination of both. Figure 8 shows two different ways of 317

instantiating the hardware accelerator, which processes the HOG feature extraction and 318

SVM classification. 319

Trained�
Model�

Detection�
Result

Scaled
�INRIA�
Dataset

Image
�Down

Sampling

HOG�
Feature�
Extractor

SVM�
Classifier

Trained�
Model�

Detection�
Result

Scaled
�INRIA�
Dataset

HOG�
Feature�
Extractor

HOG�
Feature��
Down

Sampling

SVM�
Classifier

Feature�Data

Feature�Data
(b)

(a)

Input�Image� Gradient�
Calculation

Feature�DataImage�
Scaling

Histogram�
Generation

Block�
Normalization

SVM�
Classifier

Image�
Pyramid� Model�

Data

Detection�
Result

Feature�
Memory
(Scale�1)

Bilinear�
Downscaler

1

Original�HOG�Feature

16x8�Model�Data

Original�
SVM�

Classifier

HOG�Feature Scale�1�Feature Feature�
Memory
(Scale�2)

Bilinear�
Downscaler

2

Scale�1�HOG�Feature

16x8�Model�Data

Scale�1
�SVM�

Classifier

Scale�1�Feature Scale�2�Feature Feature�
Memory
(Scale�n)

16x8�Model�Data

Scale�n
�SVM�

Classifier

Scale�n�Feature

...

Input�Image� Image�
Scaling

HOG+SVM�
Accelerator

1

HOG+SVM�
Accelerator

2

HOG+SVM�
Accelerator

3

HOG+SVM�
Accelerator

n

...�

Scale�1�
Image�

Scale�3�
Image�

Scale�2�
Image�

Scale�n�
Image�

Input�Image� Image�
Scaling

HOG+SVM�
Accelerator

Scaled�
Image�

Scale�
Arbiter

Scale�1�
Image�

Scale�3�
Image�

Scale�2�
Image�

Scale�n�
Image�

(a) (b)

Figure 8. Potential hardware implementations based on conventional multi-scale detection approach.
(a) represents the fully parallel approach and (b) represents the sequential approach.

In the first approach, shown in part (a), a functional block of image scaling reads an 320

input image and generates various scales by down-sampling the original image. These 321

scaled images are then processed in parallel by having several instances of the hardware 322

accelerator working in parallel. This approach helps in maintaining the high throughput 323

and real-time performance of the detection at the cost of higher resource utilization and 324

consequently, higher power/energy consumption. 325

The second approach, depicted in part (b) of Figure 8, maintain the resource utilization 326

as low as possible. The task of processing scaled images is handled by the same hardware 327

accelerator, which is in charge of processing the original image. The ScaleArbiter functional 328

block circulates through different images in the image pyramid and employ the same 329

hardware accelerator by time multiplexing the access of different scales of the image to it. 330

This approach benefits from low resource utilization; however, it lacks the capability of 331

providing real-time performance and throughput as the processing time is increased by the 332

factor of n. 333

