
Performances Modeling of Computer Vision-based CNN on Edge

GPUs

HALIMA BOUZIDI, Université Polytechnique Hauts-de-France, LAMIH/CNRS, France

HAMZAOUARNOUGHI, Université Polytechnique Hauts-de-France, LAMIH/CNRS, INSA Hauts-de-France,

France

SMAIL NIAR, Université Polytechnique Hauts-de-France, LAMIH/CNRS, INSA Hauts-de-France, France

ABDESSAMAD AIT EL CADI, Université Polytechnique Hauts-de-France, LAMIH/CNRS, INSA Hauts-de-

France, France

Convolutional Neural Networks (CNNs) are widely used in various ields nowadays, particularly for computer vision
applications. Edge platforms have drawn tremendous attention from academia and industry due to their ability to improve
execution time and preserve privacy. However, edge platforms struggle to satisfy CNN’s needs due to their computation and
energy constraints. It is then challenging to ind the most eicient CNN that respects accuracy, time, energy, and memory
footprint constraints for a target edge platform. Furthermore, given the size of the design space of CNNs and hardware
platforms, performance evaluation of CNNs entails several challenges and eforts. Consequently, the designers need tools to
quickly explore the large design space and select the CNN that ofers the best performance trade-of for a set of hardware
(HW) platforms. This paper proposes a Machine Learning (ML) based modeling approach for CNN performances on edge
GPU-based platforms for vision applications. We implement and compare ive (5) of the most successful ML algorithms for
accurate and rapid CNN performances predictions on three (3) diferent edge GPUs in image classiication. Experimental
results demonstrate the robustness and usefulness of our proposed methodology. For three of the ive ML algorithms, namely
XGBoost, Random Forest, and Ridge Polynomial regression, an average error of 11%, 6%, and 8%, have been obtained for CNN
inference execution time, power consumption, and memory usage, respectively.

CCS Concepts: ·Computingmethodologies→Modelingmethodologies;Machine learning algorithms; ·Computer

systems organization→ Embedded hardware; · Hardware→ Power estimation and optimization.

Additional Key Words and Phrases: Performance Modeling, CNN, Edge GPU, Execution Time, Power Consumption, Memory
Usage, Machine Learning, Regression Analysis

1 INTRODUCTION

Machine Learning (ML) algorithms demonstrated their eiciency in several application domains such as Computer
Vision (CV) and Natural Language Processing (NLP). Powerful hardware (HW) platforms combined with large and
varied datasets allow ML algorithms to address complex issues in various use cases, such as autonomous driving
or healthcare. As a part of ML, many Deep Learning (DL) algorithms, such as Convolutional Neural Networks
(CNN), outperform state-of-the-art approaches in CV applications. For instance, in autonomous driving where

Authors’ addresses: Halima Bouzidi, Université Polytechnique Hauts-de-France, LAMIH/CNRS, Valenciennes, France, Halima.Bouzidi@
uphf.fr; Hamza Ouarnoughi, Université Polytechnique Hauts-de-France, LAMIH/CNRS, INSA Hauts-de-France, Valenciennes, France,
Hamza.Ouarnoughi@uphf.fr; Smail Niar, Université Polytechnique Hauts-de-France, LAMIH/CNRS, INSA Hauts-de-France, Valenciennes,
France, Smail.Niar@uphf.fr; Abdessamad Ait El Cadi, Université Polytechnique Hauts-de-France, LAMIH/CNRS, INSA Hauts-de-France,
Valenciennes, France, Abdessamad.AitElCadi@uphf.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Association for Computing Machinery.
1539-9087/2022/3-ART $15.00
https://doi.org/10.1145/3527169

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1145/3527169

2 • H. Bouzidi et al.

more than 85% of applications are based on CV, CNNs are widely used for scene understanding and perception
[29].

Processing data near sensors makes edge computing mandatory for privacy and network congestion concerns.
CNNs can also take advantage of the opportunities provided by edge computing. Furthermore, several HW
platforms have been proposed to support CNNs in the edge. For this purpose, Application Speciic Integrated
Circuits (ASIC), Field Programmable Gate-Arrays (FPGA), Graphics Processing Units (GPU), or Micro-Controller
Units (MCU) have been widely used in edge computing for CNNs.

GPUs exploit massive data parallelism but consume a signiicant amount of power. However, GPU’s companies,
such as NVIDIA, have recently designed promising technologies for edge applications. For instance, Nvidia
edge GPUs used in this paper support multiple power modes. Nvidia Jetson Nano delivers up to 472 GFLOPS
at 5W. Compared to other HW platforms, GPUs also ofer fast and lexible product development and short
time-to-market. For this reason, they represent attractive solutions for companies interested in lexible DL-based
systems [30, 35].
As CNNs are becoming more accurate, and then more complex, edge platforms struggle to deal with CNNs

heavy computation and memory workload. With all advances in edge computing, inding the best trade-of
between CNNs accuracy and their HW performances regarding latency, energy eiciency and resource utilization
is still challenging. Finding the best combination between CNNs models and HW platforms is a tedious task [12]
that needs a long time to explore the large and complex design space. State-of-the-art approaches propose to model
CNNs as a computation workload represented by their FLoating-point OPerations (FLOPs) and memory usage. It
has been demonstrated that CNNs’ performances are not exclusively correlated with their FLOPs or memory
consumption [9]. In this paper, the term performances refers to the three (3) CNN metrics: Inference execution
time, power consumption and memory usage. Consequently, in our work, the term maximizing performances
means reducing execution time, power consumption and memory usage.

Rapid CNN performance estimation becomes crucial to reduce design time and eiciently implement CNN on
edge platforms. Early CNN performance estimation helps quickly determine the best CNN implementation and
the most eicient corresponding HW. This approach can either help to choose the best CNN for a given HW
platform or in exploring diferent HW platforms for a speciic CNN. It can also be used as a surrogate-based
model to guide the optimization process to the most promising CNN/HW architectures.

This paper proposes a methodology that helps HW and CNN designers choose the most eicient CNN while
considering diferent edge GPUs based on early and rapid performances estimation. We believe that a good
performance predictor must have the following features:

• It must be accurate and provide performances estimations rapidly.
• It must be highly lexible to be easily adapted to diferent CNNs and edge GPUs.
• If any, the number of the model hyperparameters must be reduced and easy to tune.

In this work, we implement and compare ive (5) of the most frequently used state-of-the-art prediction
algorithms to estimate the CNN’s inference performances on three (3) diferent NVIDIA edge GPUs. As these
algorithms have a set of parameters and hyper-parameters, they are denoted Models in the rest of the paper.

The following ML-based models have been used as performance predictors: Multiple Linear Regression using
Ridge Polynomial Regression (denoted Poly), Multi-Layer Perceptrons (denoted MLP), Support Vector Regression
(denoted SVR), Random Forest (denoted RF) and eXtreme Gradient Boosting (denoted XGBoost). The aim of our
work is to compare the ive (5) abovementioned models by analyzing their strengths and weaknesses regarding
CNN performances prediction. For these models, we analyze:

(1) The performance of the prediction models by measuring the Mean Absolute Percentage Error (MAPE).
We also assess the generalization power of the models regarding new and unseen CNN architectures (see
subsections 5.2.1, 5.3.1 and 5.4.1).

ACM Trans. Embedd. Comput. Syst.

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 3

(2) The time to tune and train the ML-based prediction models, as well as the the time to run the prediction
models on diferent HW platforms (see subsections 5.2.2, 5.3.2 and 5.4.2).

(3) Finally, the capacity of the prediction models to preserve the rank of the estimations regarding the rank of
the measured values on the real HW platforms (see subsections 5.2.3, 5.3.3 and 5.4.3).

The resulting performance prediction models have been evaluated on diferent test data. Moreover, we validate
the portability of the proposed models on three NVIDIA edge GPUs: Jetson Nano, TX2 and AGX Xavier. Finally,
our modeling methodology can be extended to other edge GPUs since it relies on a high-level characterization of
CNNs independently from the HW platform.
Our experimental results show an average prediction error of 11%, 6% and 8%, for CNN inference execution

time, power consumption and memory usage, respectively, on the three edge GPUs. We have also noticed a strong
rank correlation between the measured and predicted performance metrics. Furthermore, the studied models
demonstrated their eiciency regarding prediction error, rank-preserving, tuning, training costs and prediction
latency. This makes the models suitable for real-time scenarios when the trade-of between the abovementioned
factors is highly desired.
Our paper is structured as follows. Section 2 gives a literature review of CNN performance estimation and

design space exploration. In section 3, we irst analyze and discuss the CNN features that should be considered for
performances prediction, then a survey of the used ML-based approaches is presented. The followed evaluation
methodology and the used experimental setup are detailed in Section 4. Section 5.1 presents experimental results.
Then we discuss results, limitations and future work of our approach in 6. Finally, conclusion will be given in
section 7.

2 RELATED WORK

CNNs implementation on edge platforms has drawn several challenges. Considering both accuracy and execution
eiciency is mandatory for optimal deployment of CNN on edge platforms. Therefore, the designer must maximize
the CNN accuracy while minimizing its execution time, power consumption and memory usage. In this context,
many solutions have been proposed in order to consider these metrics when designing CNNs for the edge. This
section presents the most relevant related works going from handcrafted CNNs, to performance proiling and
modeling.

2.1 Handcrated CNN

These strategies are based on designing CNNs that are particularly tailored for the edge [19, 60, 67, 68]. However,
these techniques aim to manually reduce the overall computational load and the memory footprint. Thus, the
performances of the resulting CNNs may vary depending on the hardware platform as they are not designed for
speciic hardware. Other model-level optimization techniques have been widely investigated such as quantization
[18, 51] and pruning [38, 39, 73].

2.2 Benchmarking and performances analysis

This involves implementing and executing CNNs on a target edge platform then measuring and analyzing their
performances to investigate further optimization techniques [28, 36, 52, 63, 66, 69]. However, this solution entails
signiicant eforts given the complexity of the deployment process and the diversity of CNNs and edge platforms.
To overcome this issue, it is needed to characterize the CNN performances to infer a generalized model capable
of predicting the performances of any CNN. In the literature and in our paper, this kind of approach is called
performances modeling.

ACM Trans. Embedd. Comput. Syst.

4 • H. Bouzidi et al.

2.3 Performances modeling

In the following, we review existing performance modeling approaches, classiied according to the target perfor-
mance metric.

2.3.1 Execution time modeling. CNN inference execution time is an important metric for real-time applications
with hard constraints, such as autonomous driving. Thus, it is necessary to consider the execution time when
designing CNN for this kind of systems.
In the literature, models are used either to predict CNN training and/or inference execution time. In [4], the

authors characterize inference execution time on GPU platforms by using diferent ML-based approaches: linear
regression, SVR and RF with a Bulk Synchronous Parallel (BSP) based analytical model. They exploit proiling
results obtained from nine (9) benchmarks executed on nine (9) diferent GPUs. However, the proposed approach
considers general purpose applications that cannot be adapted to DL applications.
In [65], the authors propose analytical models to characterize DL training workloads in large computing

clusters. Using diferent training hyperparameters, the authors identify performance bottlenecks for various
DNN workloads. For instance, updating CNN weights and gradients consumes almost 62% of the total execution
time on average for the training phase.

Authors in [55] propose a set of prediction models for training time, with Stochastic Gradient Descent (SGD)
optimization. They target distributed GPUs in four (4) diferent DL frameworks. The authors analytically modeled
the overall training time as the sum of the communication time between GPU nodes, I/O processing time and
GPU processing time. The resulting prediction models have been used to compare and identify the performance
bottleneck of the four (4) frameworks to further optimize them according to the workload features. However,
the authors didn’t provide a detailed description of the considered features to model the GPU processing time.
Furthermore, they only evaluated their prediction models on three CNNs: AlexNet, GoogleNet and ResNet50.
PALEO [50] is another tool for estimating training execution time. In PALEO, the number of Floating-point

OPerations (FLOPs) required for an epoch is multiplied by a scaling factor to obtain the training phase’s execution
time. However, PALEO does not consider numerous other operations that do not scale linearly with the number
of FLOPs and signiicantly impact execution time. These works are complementary to ours as here we focus on
inference performance.
Authors in [10, 31, 57, 64] leverage ML approaches to model CNN inference execution time on a layer-wise

granularity. Contrary to these works, we propose CNN performances modeling on model-level granularity. Hence,
providing more generalization for diferent types of CNN architectures. Layer-wise modeling approaches are
not adapted to complex CNN architectures with dependencies between layers. For instance, ResNet [20, 21] and
DenseNet [27] are characterized by skip and dense connections between layers. Another example is the parallelism
in CNNs such as GoogleNet [59] where layers within the inception block can be evaluated simultaneously on
the GPU [50]. These dependencies can therefore lead to higher prediction errors when estimating the overall
performance of the CNN model [8].

In [44, 70], the authors analytically model the execution time of CNNs to ind the best design on FPGA-based
platforms. In [2], the authors propose a latency prediction model on FPGA, composed of a lookup table and a
scheduler. The lookup table stores DNN operations and their corresponding latencies, where the scheduler maps
operations to parallel units and calculates the overall latency. In our case, such an approach will lead to poor
performance given the diiculty of implementing the scheduler part. Also, the Cuda scheduler of GPU is not
open-source. Hence, it is hard to make precise assumptions on how DNN operations are scheduled on the GPU.
Therefore, approaches based on analytical modeling are hard to implement for edge GPUs due to the complex
interactions between the processing units (CPU and GPU).

ACM Trans. Embedd. Comput. Syst.

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 5

2.3.2 Power and energy consumption modeling. Power consumption is an essential metric in edge computing.
Indeed, minimizing power consumption is a critical factor for battery-based systems. For this reason, having a tool
to evaluate the power and energy consumption of diferent CNNs and edge hardware architectures is important.
In the following papers, as in our current work, both the static and dynamic energy or power consumption are
considered in the estimation.
In [53], the authors propose a multi-variable linear regression to predict the energy consumption of the

inference phase for CNNs based on the number of SIMD instructions and main memory accesses. The authors
used Nvidia Jetson TX1 GPU and obtained about 20% of an average relative error. However, modeling CNN power
consumption using only the features aforementioned is insuicient to obtain accurate estimation (see section 5.3).
Other features such as CNN architectural dependencies must be taken into account.
The idea behind tools proposed in [10, 57, 64] is to explore the hyperparameter space of the most common

layers of DNNs, such as convolution, pooling and fully-connected, to estimate their power consumption. Then,
these papers estimate each layer’s power consumption separately to provide an average power consumption for
the whole DNN. However, it is diicult to capture the exact power consumption of each layer as its execution
time is very short, leading to higher errors in the overall model power consumption prediction.
In [24] authors use regression-based performance estimators for both energy consumption and accuracy to

explore the best quantization and scaling factors for DNNs on FPGA-based platforms. Unlike our work that
uses ML to model the correlation between CNN workloads and power consumption, authors in [42, 43, 58]
use analytical models to estimate the average power consumption of DNNs on FPGA and ASIC platforms.
Nevertheless, analytical models lack lexibility as they require calculating low-level details of the CNN execution,
such as memory transactions and processing elements utilization.

2.3.3 Memory usage modeling. Memory usage sets up a constraint on whether the CNN can be deployed on
the target edge platform or not. Thus, it is necessary to minimize the memory needed to load the CNN and run
the inference properly. In fact, the total amount of memory needed to run a single CNN inference comes from
three primary sources: 1) parameters (i.e., weights and biases), 2) intermediate activations (i.e., features maps)
and 3) the computation added by the DL framework. However, as detailed in section 3.2, calculating the total
memory usage by measuring only the memory needed for CNN weights and activations is not accurate. The DL
framework requires the most considerable amount of memory to run the inference. In our work, we estimate
the total memory needed to run the CNN inference on the edge GPU by considering the memory allocated to
the DL framework. [57] proposes to model memory usage from structural hyperparameters of the CNN, such as
the number of hidden units. The authors use linear regression to approximate the memory prediction function
for modeling. However, they have trained their prediction models on only variants of AlexNet [34]. In [41], the
authors propose a modeling methodology for CNN memory usage on CPU and GPU platforms. Their approach is
based on characterizing the memory requirements of convolutional and fully-connected layers to predict the
entire CNN’s memory usage.

Authors in [5, 33] propose prediction models of cache memory hierarchies for DNNs on modern discrete GPU
platforms to investigate further optimization of memory performance on GPUs. There are also works that leverage
performances estimators to reduce CNN memory footprint during training [11], or inference [40]. However, they
didn’t consider other performance metrics such as execution time and power consumption. Moreover, these
works didn’t target edge GPUs.

3 PROPOSED APPROACH

The ever-increasing complexity of CNN on edge platforms has made the co-optimization of accuracy and hardware
eiciency extremely important. In this paper, we focus on studying computer vision-based CNNs on edge GPUs.

ACM Trans. Embedd. Comput. Syst.

6 • H. Bouzidi et al.

Figure 1 illustrates the complex correlation between the aforementioned metrics for state-of-the-art CNNs for
image classiication.

Fig. 1. Correlation between CNN accuracy, on ImageNet dataset, and their energy consumption and memory usage. The size

of the circle corresponds to the total memory usage from 1 Gigabyte to 7 Gigabytes

In igure 1, each circle represents a CNN model. The size of the circles represents the maximum amount of
memory required to run the CNN during the inference. Typically, the CNN memory usage relects the memory
used to hold the CNN parameters as well as the inference computations using the DL framework [41]. The x-axis
shows the measured energy consumption calculated from the execution time and the power usage during the
inference. The y-axis shows the TOP-1 accuracy of each CNN, obtained using the ImageNet dataset [17]. We note
two main observations:

(1) The accuracy is not always correlated with either energy consumption or memory usage. For instance,
EicientNet-B4 [61] and NASNet-Large [72] both achieve about 83% TOP-1 accuracy. However, EicientNet-
B4 consumes ∼89% less energy and requires ∼53% less memory than NASNet-Large.

(2) The memory usage is often correlated with energy consumption. Thus, NASNet-Large , DPN-98, DPN-107
and DPN-137 [14], for instance, have signiicant memory footprints and consume a large amount of energy.

These observations conirm the complexity of inding the best trade of between CNNs requirements and edge
platforms constraints. Moreover, an exhaustive exploration of CNNs on target hardware is tedious as the CNN
performances evaluation is time-consuming. The exploration complexity becomes even worse in the case of
multiple CNNs and multiple target edge platforms. Thus, one of the best ways to overcome this issue is to design
accurate and reusable performance prediction models to estimate CNN performances on a target edge platform
without executing the inference.

We propose in this paper a modeling methodology to design prediction models for CNN performances on
edge GPUs. Ultimately, the goal is to use the elaborated prediction models within a multi-objective optimization
process to explore the design space of CNN architectures and edge platforms. Hence, the prediction models can
be easily re-used as objective functions to be optimized during the design exploration.

ACM Trans. Embedd. Comput. Syst.

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 7

Our modeling approach is based on inding the correlation between the most important CNN features (e.g.,
image input size, number of hidden layers, neurons, activations, weights) and the performance metrics (i.e.,
execution time, power consumption and memory usage) on edge GPUs.

Benchmarking Modeling

State-of-the-art CNNs Handcrafted CNNs

Software & Hardware Platform

Implementation & Execution

Data Collection

CNN Parser
(Features
Extraction)

Performance
Profiler

(Measurements
Collection)

Data Preprocessing
(Training + Test)

ML Model Training

ML Model Evaluation

CNN Performance
Prediction Models

Fig. 2. Modeling methodology for CNNs performances prediction models

Our proposed methodology is depicted in igure 2 and is composed of three main steps.

(1) Benchmarking where we measure the execution performances of several CNNs on various edge GPUs.
For this purpose, we establish the main CNN model-level features that impact the execution performance
metrics. This impact is evaluated using diferent data analysis methods such as correlation and regression
analysis.

(2) Data Collectionwhere we collect two types of data from our benchmarks: Performance measurements and
CNN features to be utilized as input prediction variables. These data are obtained using CNN architecture
parser and performance proilers. On the one hand, the model parser takes a CNN architecture description
as an input and outputs its detailed architectural features. On the other hand, the performances proiler
takes a CNN architecture description, generates a ready-to-deploy CNN, deploys and executes the CNN
on the target edge GPU, then returns the execution performance metrics values (execution time, power
consumption and memory usage).

(3) Modeling which consists on elaborating a set of ML-based prediction models for each performance metric
and edge GPU. In our paper, we design models for execution time, power consumption and memory usage.
This step also involves the data pre-processing to perform feature transformation (i.e., data encoding and
transformation) and feature selection for the ML-based prediction models. The prediction models are
trained on the collected data from the previous step. The training process includes tuning the prediction
model’s hyperparameters and learning the model’s internal parameters. Finally, we validate the generated
prediction models for each performance metric and edge GPU by following the evaluation methodology
detailed in section 4.

The next section presents the modeling problem formulation. Before detailing the modeling formulation, the
table 1 summarizes the notation used in the rest of the paper.

3.1 Problem formulation

Predicting CNNs performance metrics on edge GPUs can be formulated as follows: As inputs, we have a CNN
(cnni) characterized by a vector of n features (f1, f2, . . . , fn). For instance, the number of convolutional and
fully-connected layers, the input image size and the number of neurons are all considered CNN features. A

ACM Trans. Embedd. Comput. Syst.

8 • H. Bouzidi et al.

Table 1. Summary of notations

Name Description
n # of CNN input features
fi CNN input feature (e.g., FLOPs, number of layers, parameters..etc)
cnni Vector of CNN input features
edдpuj Edge GPU indexed by j
k Performance metric: execution time, power consumption, or memory usage
ˆyi jk Predicted value of the performance metric k of cnni on edдpuj

yi jk Measured value of the performance metric k of cnni on edдpuj
D jk Dataset of input features and measured values of k on edдpuj

performance metric prediction functionTk ,edдpuj where k ∈ {execution time, memory usage, power consumption}
and edдpuj is an edge GPU, is a mapping function from cnni to R+. The functionTk ,edдpuj is deined below:

Tk,edдpuj : cnni −→ ˆyi j

ˆyi jk = Tk,edдpuj (fi1, fi2, . . . , fin)

Where ˆyi jk is the estimated value of the performance metric k of cnni on edдpuj . In this paper, we study
the case of three diferent NVIDIA edge GPUs, namely Jetson AGX Xavier, Jetson TX2 and Jetson Nano. Our
methodology consists of applying the same modeling approach on each edge GPU. Given that we model each
metric by a speciic mapping function, we obtain three sets of prediction models for each edge GPU.

Unlike prior works on CNNs performances prediction such as [10, 31, 57, 64], which are based on a layer-wise
performances estimation, our work aims to estimate CNN performances on a model-level granularity. To this
end, we analyze the correlation between model-level features that describe the whole CNN architecture and the
performance metrics. As demonstrated in the experimental results section 4, such a modeling approach leads to
better generalization between diferent types of CNN architectures. The section below details the main CNN
features considered in our proposed modeling methodology.

3.2 CNN characterization

Our proposed methodology characterizes CNN execution performances on a model-level granularity. Regarding
the CNN architecture and the target edge GPUs, we assume that the following factors impact the performances
of the CNN inference execution:
(1) Computational complexity, which directly impacts the GPU activities during the CNN inference;
(2) Memory workload, which corresponds to read and write memory operations for input, intermediate and

output data;
(3) CNN hyperparameters, which corresponds to structural dependencies between computation and memory

operations.
Considering the above factors, we search for the most correlated features with CNN performance. Since we

target to model diferent performance metrics, the impact of the features may difer from one target performance
metric to another. For instance, CNN features related to memory requirements are the most relevant to model
CNN memory usage. We further discuss the CNN features related to each impact factor and the followed process
to select the most relevant features for the prediction models.

ACM Trans. Embedd. Comput. Syst.

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 9

0 1 2 3 4 5 6
Total number of FLOPs ×1010

0

25

50

75

100

125

Inf
ere

nce
 ex

ecu
tio

n t
im

e (
ms

)

Correlation between FLOPs and execution time
Jetson AGX

Fig. 3. Inference execution time VS. Flops for AGX

0 1 2 3 4 5 6
Total number of FLOPs ×1010

0

50

100

150

200

250

Inf
ere

nce
 ex

ecu
tio

n t
im

e (
ms

)

Correlation between FLOPs and execution time
Jetson TX2

Fig. 4. Inference execution time VS. Flops for TX2

0 1 2 3 4 5 6
Total number of FLOPs ×1010

0

100

200

300

400

500

600

Inf
ere

nce
 ex

ecu
tio

n t
im

e (
ms

)

Correlation between FLOPs and execution time
Jetson Nano

Fig. 5. Inference execution time VS. Flops for Nano

Table 2. FLOPs details for state-of-the-art CNNs

CNN Conv2D Add Mul Pool

ResNet-50 7.71B 31.02M 25.58M 1.81M
DenseNet-121 5.67B 7.89M 8.02M 1.98M

DPN-98 23.34B 70.54M 61.63M 2.71M
GoogleNet 3.00B 6.61M 6.64M 12.55M

ResNet-101V2 14.38B 52.32M 44.59M 2.16M
Inception-v3 5.67B 23.80M 23.85M 12.18M

3.2.1 Computational complexity. The theoretical total number of FLOPs (FLoating-point OPerations) is usually
used to quantify the CNN computational complexity. This feature indicates the number of computations needed to
perform a single CNN inference. As reported in table 2, this number is highly dominated by the total computations
performed in convolutional layers, as they represent more than 98% of computations. This conirms that these
layers are the bottleneck of computations in CNNs as they perform many Multiply-Add operations [36]. However,
due to the optimization techniques used by GPUs during the CNN inference execution, the theoretical total
number of FLOPs can not relect precisely the performances. Figures 3, 4 and 5 show the relation between the
total number of FLOP and the inference execution time for the 3 diferent HW platforms. Each point in the graphs
corresponds to a CNN model from our benchmark. We can easily see from these igures that CNN inference
execution time is not correlated to the number of FLOPs for a large set of models. Two models may have the
same number of FLOPS but with diferent execution times. From igure 6.a we observe that there is no linear
correlation between FLOPs and power consumption. Two CNN models may have the same number of FLOPS but
consume very diferent power budget.

3.2.2 Memory requirements. For GPU platforms, memory activities have a signiicant impact on performances.
Our experiments show that three factors can mainly explain the signiicant memory requirements of CNN
inference:
(1) Reading CNN parameters, in terms of weights and biases,
(2) Reading the input data, writing the output results,
(3) Reading and writing the intermediate data, or activations, of the hidden layers.

ACM Trans. Embedd. Comput. Syst.

10 • H. Bouzidi et al.

Figure 6.c depicts the memory requirements for CNN parameters, activations and the measured system memory
allocated for the DL framework -TensorFlow in our case- when running the CNN on the edge GPU.
We can notice that the allocated memory for the DL framework is signiicant and varies from one CNN to

another. As mentioned in [41], existing DL frameworks such as TensorFlow, PyTorch and Cafe, do not take
into account the uniied memory of edge GPUs. Consequently, the data transfer between CPU and GPU creates
redundant data copy on system memory. Moreover, to speed up the computation, the memory allocated to the DL
framework cannot be released until the end of CNN inference, which requires a signiicant amount of memory for
the DL framework. According to our experiments (igure 6.b) the memory usage of CNNs is strongly correlated
with the sum of weights and activations. However, the high memory usage does not necessarily increase its
execution time and power consumption. Indeed, data are not accessed with the same frequency during the
inference. For instance, convolutional weights and activations are constantly accessed, whereas fully-connected
weights are accessed once for each activation [56]. Moreover, execution time and power consumption may
increase when activations and weights cannot be entirely loaded in the GPU cache memories. To quantify the
impact of the number of memory accesses on execution time and power consumption, the CNN data-low on
the diferent levels of the memory hierarchy must be irst determined. However, it is hard to extract memory
activities without proiling the CNN on the target edge GPU. Therefore, this solution is not recommended as it is
time-consuming and will add signiicant overhead to the prediction latency. To overcome this problem, we rely on
CNN features that are mainly correlated to memory activities. Thus, we assume that both weights and activations
highly impact memory activities when performing the inference. This assumption is veriied experimentally.

3.2.3 CNN Hyperparameters. In addition to the previously mentioned features, we also include the architectural
proprieties of CNN. We then consider the number of hidden layers, convolutional, fully-connected, batch
normalization and pooling layers. Moreover, we study the impact of various image input sizes on CNNs. Varying
the CNN image input size can be used along with the ine-tuning technique to adapt the CNN to new and/or
customized training datasets.
We aim to generalize our performances prediction methodology to diferent use cases by varying the input

image size. Indeed, we have observed that the execution time, power consumption and memory usage are strongly
correlated to the CNN input image size. As shown in igure 7, increasing the input image size increases the
execution time, power consumption and slightly the memory usage. To characterize the neurons within the CNN,
we introduced a new feature, named the weighted sum of neurons. We calculate this metric by summing up the
number of neurons in convolutional and fully-connected layers. The number of neurons in convolutional layers
is then multiplied by the ilter size: heiдht ×width × depth, to give more importance to neurons with large ilter
sizes. Nevertheless, The number of neurons in fully-connected layers is not weighted because the input neuron is
associated with a single weight (scalar) and not a multidimensional ilter.

3.3 Input features selection

We use the forward stepwise technique to select the most relevant CNN features for our prediction models. For
each prediction model, we begin with an empty set of features. At each step, the most important feature is added
where we use the F-score as a criterion of the feature’s relevance. The F-score is calculated by the XGBoost
[13] algorithm to rank the features from the most to the least important as shown in igure 8. The features are
added to the prediction models until reaching a stopping criterion. We assess this latter by calculating the model
prediction error using the Mean Absolute Percentage Error (MAPE). Hence, the stopping criterion is deined when
no improvement can be observed in the prediction error after adding a new CNN feature. Feature’s importance
also depends on performances metrics. However, we have noticed a similarity in execution time and power
consumption. Features related to the memory requirements are the most important for estimating memory usage.

ACM Trans. Embedd. Comput. Syst.

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 11

107 108 109 1010 1011 1012

Total number of FLOPs (in log scale)

0

5

10

15

20

25

30

P
o
w
er

co
n
su
m
p
ti
o
n
(m

W
)

0 2 4 6 8
Total number of parameters (model size) ×107

2

4

6

8

10

P
ea
k
m
em

o
ry

u
sa
g
e
(G

B
)

Memory (MegaBytes)

DenseNet-121

Inception-v1

MobileNet-v2

EfficientNet-B1

1500 1750 2000 2250 2500 2750

Allocated memory Parameters Activations

Fig. 6. a) On the let: correlation between power consumption and the total number of FLOPs (the two axes are represented

in logarithmic scale) b) In the middle: correlation between the CNN memory usage and the total number of parameters. c)

On the right: details about the memory usage of the CNN on the edge GPU

0 200 400 600 800 1000
Input image size (squared)

0

50

100

150

200

250

E
x
ec
u
ti
on

ti
m
e
(m

S
ec
on

d
es
)

Execution time

Power consumption

Memory Usage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

P
ow

er
co
n
su
m
p
ti
on

(m
W
at
ts
)

×104

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

M
em

or
y
u
sa
ge

(M
B
y
te
s)

ResNet-50

0 200 400 600 800 1000
Input image size (squared)

0

50

100

150

200

250

E
x
ec
u
ti
on

ti
m
e
(m

S
ec
on

d
es
)

Execution time

Power consumption

Memory Usage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
ow

er
co
n
su
m
p
ti
on

(m
W
at
ts
)

×104

2.2

2.3

2.4

2.5

2.6

M
em

or
y
u
sa
ge

(M
B
y
te
s)

DenseNet-121

0 200 400 600 800 1000
Input image size (squared)

0

50

100

150

200

250

E
x
ec
u
ti
on

ti
m
e
(m

S
ec
on

d
es
)

Execution time

Power consumption

Memory Usage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P
ow

er
co
n
su
m
p
ti
on

(m
W
at
ts
)

×104

3.30

3.35

3.40

3.45

3.50

3.55

M
em

or
y
u
sa
ge

(M
B
y
te
s)

Xception

Fig. 7. Correlation between CNN image input size and the performance metrics: inference execution time, power consumption,

memory usage. The reported values have been obtained by executing the three CNNs on the NVIDIA Jetson AGX Xavier.

flo
ps

ac
ti
va
ti
on
s

ne
ur
on
s

v-
pa
ra
m
s

b-
la
ye
rs

in
pu
t-
si
ze

fc
-p
ar
am
s

bn
-p
ar
am
s

bn
-l
ay
er
s

v-
la
ye
rs

fc
-l
ay
er
s

1

10

100

M
A
P
E

MAPE

0

100

200

300

400

500

F
e
a
tu
re

im
p
o
rt
a
n
c
e
(F

-s
c
o
re
)

Execution time

Importance

flo
ps

ac
ti
va
ti
on
s

ne
ur
on
s

v-
pa
ra
m
s

b-
la
ye
rs

in
pu
t-
si
ze

bn
-p
ar
am
s

fc
-p
ar
am
s

bn
-l
ay
er
s

v-
la
ye
rs

fc
-l
ay
er
s

1

10

100

M
A
P
E

MAPE

0

200

400

600

800

1000

F
e
a
tu
re

im
p
o
rt
a
n
c
e
(F

-s
c
o
re
)

Power consumption

Importance

pa
ra
m
s

ac
ti
va
ti
on
s

in
pu
t-
si
ze

b-
la
ye
rs

ne
ur
on
s

flo
ps

1

10

100

M
A
P
E

MAPE

0

100

200

300

F
e
a
tu
re

im
p
o
rt
a
n
c
e
(F

-s
c
o
re
)

Memory usage

Importance

Fig. 8. The forward stepwise selection of features for CNN performances modeling on Jetson AGX Xavier. These figures show

the results of the stepwise feature selection based on the calculated feature importance with the corresponding improvement

in MAPE for each performance metric on the Jetson AGX Xavier. Features are ranked and added to the prediction model based

on their relevance (i.e., features with high F-score metrics are the most relevant). On the let axis: the feature importance

calculated by XGBoost. On the right axis: improvement of the Mean Absolute Percentage Error (MAPE). A similar trend has

also been observed for the two other edge GPUs (Jetson TX2 and Nano).

ACM Trans. Embedd. Comput. Syst.

12 • H. Bouzidi et al.

3.4 Prediction algorithms

3.4.1 Ridge Polynomial Regression (Poly). Polynomial regression (Poly) [49] is a particular form of linear regres-
sion where we search to it a polynomial equation on the data with a curvilinear relationship between the input
features and output variables. The polynomial regression is formulated as follows:

ˆyi j = αpX
d
p + αp−1X

d−1
p−1 ... + α2X

2
2 + α1X1 + β + ϵ (1)

Where (X 1
1 , . . . ,X

d
p) refers to the vector of polynomial features created from the input features vector of cnni ,

whereas d indicates the polynomial degree. Polynomial regression sufers from overitting, especially for high
values of polynomial degree. To overcome this problem, we rely on the Ridge regularization technique [23] that
penalizes the polynomial features that could present multicollinearity by minimizing the following loss function:

Φ(yi j , ˆyi j) = min
i=n∑

i=1

(yi j − ˆyi j)
2
+ λ

k=p∑

k=1

w2
k (2)

We tune both the polynomial degree d and the regularization factor λ as reported in table 15 in the appendix.

3.4.2 Support Vector Regression (SVR). Support Vector Regression (SVR) [6], which is based on Support Vector
Machine (SVM) [22], has been proved to be efective for regression problems. SVR deals with non-linearity by
using kernels that map the input feature from the original space to a higher-dimensional space. This non-linear
transformation helps ind the optimal hyper-plane by expanding the original dataset’s dimensionality so that the
features can be linearly separable. In general, the hyperplane found by the SVR can be formulated as follows:

f (X) = wX + b (3)

where w is the weight associated with each support vector X for its importance to the prediction. The most
important hyperparameters to tune for the SVR are reported in table 15.

3.4.3 Multi-Layer Perceptrons (MLP). The Multi-Layer Perceptrons (MLP) [45] is a part of Artiicial Neural
Networks (ANN). The architecture of the MLP can indeed model non-linear relationships by using activation
functions which are non-linear transformations. The MLP is a succession of hidden layers where each layer
applies the following transformation on the input features:

ẑ = θ (

n∑

i=1

wixi + b) (4)

where ẑ is the output value,wi is the weight of the feature xi , b is the bias and θ is the activation function. We
note here that xi can refer to one of the input features of cnni -the case of the irst layer of the MLP- or extracted
features from a resulting output vector of a hidden layer. MLP networks require many training data to provide
the best generalization and prevent overitting. We design the optimal MLP models by using the grid search on
the set of hyperparameters deined in table 15.

3.4.4 Random Forest (RF). Random Forest (RF) [37] is one of the ensemble learning methods which is based on the
bagging technique where predictions are made by multiple predictors (i.e., decision trees). Each of them is trained
on a subset of training samples and a subset of features selected randomly. The inal prediction is calculated by
averaging the predictors’ outputs. Technically, this method reduces the error variances since multiple decision
trees contribute to the inal prediction. The most important hyperparameters to tune for the RF are summarized
in table 15.

ACM Trans. Embedd. Comput. Syst.

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 13

3.4.5 eXtreme Gradient Boosting (XGBoost). eXtreme Gradient Boosting (XGBoost) [13] is an ensemble learning-
based algorithm. Unlike Random Forest, XGBoost is based on the boosting technique that makes predictions from
weak predictors arranged sequentially: The irst predictor is trained on the entire dataset, where the subsequent
predictors are trained on the residuals of prior predictors. This technique helps to focus on improving the
mispredicted values. XGBoost creates weak predictors using the gradient descent algorithm until achieving an
acceptable prediction error. XGBoost has several hyperparameters to tune, which are summarized in table 15.

This section detailed our proposed approach according to three perspectives: First, we formulated the problem
statement of predicting CNN performances on edge GPUs. Then, we introduced the considered CNN features
and gave details about their impact on each performance metric. Finally, we gave an overview of the used
ML algorithms for the modeling step. In the next section, we present the evaluation step used to assess the
efectiveness of our proposed approach.

4 EVALUATION METHODOLOGY

This section details the followed evaluation methodology and the obtained results. As shown in igure 2, our
modeling process is subdivided into three main steps: 1) Benchmarking, 2) Data collection, and 3) Modeling.
These three steps are performed in a pipeline fashion. In this section, we irst detail each step of this pipeline.
Then, we give details about the experimental setup. Finally, we present and discuss our obtained results.

4.1 CNN Benchmarking

The benchmarking step mainly consists of deploying and executing the CNNs inference the target edge GPUs. The
benchmarks have been designed based on state-of-the-art CNNs for image classiication and executed on diferent
edge GPUs. Figure 9 presents a taxonomy of the CNN architectures that have been investigated in this work. As
depicted in igure 9, we have considered diferent architectures widely used in the literature to build CNN models.
From depth and width-based CNN such as ResNet and Inception to multi-path and multi-connection-based CNN
such as ShuleNet and MobileNet. Hence, our dataset covers a wide range of diferent CNN architectures. In
our work, we do not have to train the studied CNN models. Instead, we randomly set their weights values. This
is because the CNN weights values have no impact on the inference performances regarding execution time,
power consumption, and memory usage. However, they directly impact the CNN accuracy. A 32-bits loating
representation has been ixed for the weights and tensors representation. Finally, in order to expand our datasets
to characterize diferent types of correlations, we apply data augmentation techniques by varying three factors:

(1) Input Image Size: The impact of the input image size on the CNN performances is studied. For this purpose,
we test the frequently used image resolutions, from 32*32 to 2400*2400 pixels, with three channels for the
RGB representation.

(2) CNN Variants: Diferent variants of the same CNN architecture are considered. For instance, we deploy
diferent variants of the ResNet architecture [20, 21] by varying the number of layers and residual blocks.
Hence, we obtained eight (8) widely used variants of ResNet, such as ResNet18, ResNet34, ResNet50, and
ResNet101.

(3) CNN Architectures: Finally, we consider diferent CNN architectures to quantify their impact on inference
performances.

ACM Trans. Embedd. Comput. Syst.

14 • H. Bouzidi et al.

Investigated CNN
Topologies

Spatial exploitation
based CNN Depth based CNN Multi-Path based

CNN
Width based multi-

connection CNN
Feature-Map

exploitation based
CNN

Inception-v1 ResNet

Inception-v3

InceptionResNetV2

ResNet

DenseNet

MNASNet

Xception

MobileNet

ShuffleNet

ResNext

SENet

DPN

Fig. 9. Taxonomy of the investigated CNN architectures based on the classification given by [32]

Table 3. Details of the CNN benchmarks used in the experiments. The first line of the table gives the used CNN architectures. The

second line gives the number of the considered variants for each CNN architecture. The third and fourth lines report the number

of the considered input sizes and their intervals of values. In total, we have 2056, 1975, 1612 input-data for Jetson AGX, TX2, and

Nano, respectively: 70% of data have been used for training while 30% of data for test and prediction error evaluation

CNN GoogleNet
Inception

(v3)
InceptionResNet

(v2)
DPN DenseNet Xception EicientNet MNASNet

ResNet
(v1)

ResNet
(v2)

MobileNet
(v1)

MobileNet
(v2)

MobileNet
(v3)

ResNext SENet
ShuleNet

(v1)
ShuleNet

(v2)
variants 1 1 1 4 5 1 4 5 12 7 4 5 4 2 6 4 3
input

image sizes
15 20 23 25 27

Interval of

image sizes (from.. to..)

(224x224x3),
(1024x1024x3)]

(75x75x3),
(1024x1024x3)]

(32x32x3),
(1024x1024x3)]

(32x32x3),
(1600x1600x3)]

(32x32x3),
(2400x2400x3)]

Input Layer Conv Layer

Pooling Layer

BN Layer

OR

Nb_blocks

Global Average
Pooling Layer Flatten Layer

Fully Connected
Layer

Softmax
Activation Layer

NO

YES

OR

CONV Block

Classification Block

Fig. 10. CNN baseline for NCA

ML algorithm name

Hyperparameters initialization

Hyperparameters tuning using
Grid-search and K-fold cross validations

Model training

Model evaluation

CNN Performance Prediction Model

Training Phase

Evaluation Phase

Collected data

Training data

Test data

Fig. 11. Prediction model design

4.2 Data Collection

This step consists of collecting all the data needed to characterize and model the CNN performances. It involves
the extraction of four (4) sets of measurements. The irst set of data comprises the CNN features used as prediction
variables. This type of data is the easiest to extract as it does not require a further deployment of the CNN
on the edge GPU. Nevertheless, the other three sets are composed of the real measurements of the execution
performance metrics (i.e., execution time, power consumption, and memory usage). Consequently, they can
not be obtained without consistent proiling of the CNN inference execution on the target edge GPU. Figure 12

ACM Trans. Embedd. Comput. Syst.

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 15

depicts the worklow of the CNN proiling process to collect the performances measurements. Below we give
more details about the data collection step:
• CNN features extraction : We have developed a parser that takes the CNN architecture description as input
and gives its essential features in output. We give more details about the extracted features and their ranges
in table 4. From this table, we can notice that a wide range of values has been considered for each CNN
feature. Thus, the studied CNNs range from small to large models according to the reported values of
FLOPs, parameters, activations, and the number of layers in table 4. Hence, our benchmark covers diferent
types and values of CNN input features.
• Execution time proiling : CNN inference execution time measurements have been collected using the
Nvidia proiling tool Nvprof [47]. We measure the CNN execution time by summing up the execution
times of the GPU kernels that have been invoked during the CNN inference. To minimize the impact of the
proiling overhead on the measurements, we repeat each experiment 100 times on 100 randomly chosen
images. We then consider the average measured execution times over the 100 experiments according to the
recommendation given in [46]. We have also noticed that the measured execution times of the replicated
experiments are normally distributed; therefore, we consider the mean as a central tendency.
• Power consumption proiling : To measure the power consumption of the CNN inference, we use the onboard
GPU sensors of NVIDIA Jetson platforms. These sensors can be read automatically and periodically with
the tegrastats command utility [48]. When running CNN inference, We also run a background process to
periodically examine the GPU power consumption, with a sampling period set to the minimum value (i.e.,
1 ms). To ensure the reliability of the power consumption measurements, we disconnect all the peripheries
connected to the GPU board during measurements except the port for SSH communication. We repeat the
experiments 100 times for Jetson AGX Xavier as the inference times are generally short and 50 times for
Jetson Nano and TX2. We have noticed that measured power consumption over the repeated experiments
form a skewed normal distribution as power consumption tends to be relatively high in the irst runs
because of the GPU warm-up. Hence, we consider the median of the peak power consumption of the
replicated experiments as a central tendency.
• Memory Usage Proiling : NVIDIA Jeston Platforms are characterized by their uniied memory. Thus, the
GPU and the CPU share the same physical memory. In this case, the GPU memory usage is not limited, and
it can use all of the available system memory. This particularity of Nvidia Jetson platforms makes it possible
to monitor the GPU memory usage by monitoring the system memory. For this reason, we measure the
peak memory usage of the CNN with the tegrastats utility [48] by monitoring the system memory usage in
the same way as for power consumption. We deine the CNN memory usage as the peak system memory
usage during the CNN inference minus the initial memory usage before running the CNN inference.

In addition, we have adjusted the collected data for each edge GPU as follows:
• We consider only CNN models with an execution time higher than 1ms to meet the sampling interval
constraint of the edge GPU performance proiler (i.e., tegrastats).
• We excluded CNN models that don’t it in the edge GPU due to their memory requirements.

Hence, the size of the smallest CNN executed by the three edge GPUs is 0.27M (in terms of number of parameters).
However, the size of the largest CNN depend on the edge GPU’s memory capacity. We have observed that the
Jetson AGX Xavier can execute CNNs with size up to 125M, whereas Jetson TX2 and Nano can execute CNN
with sizes up to 87M and 50M, respectively.

4.3 Model Design

The resulting datasets from the benchmarking phase can be denoted asD jk = {cnni;yi jk }ni=1, for each performance
metric denoted k where k ∈ {execution time, power consumption, memory usage} and each edge GPU denoted

ACM Trans. Embedd. Comput. Syst.

16 • H. Bouzidi et al.

Images
Preprocessing CNN Inference

NVIDIA
Tegrastats

NVIDIA
Profiler

Kernels
Profiling

System
Profiling

Inference
Logs

Latency
Profiling

Power
Profiling

Memory
Profiling

Execution
Time

Power
Consumption

Memory
Occupation

Online processing Offline processing

Fig. 12. CNN performances profiling workflow

edдpuj . Once the datasets D jk are obtained, we train sets of prediction models for each performance metric k
and edge GPU edдpuj on the corresponding dataset D jk . At this step, each prediction model learns the statistical
correlations between the features vectors cnni and the predicted variable yi jk , which corresponds to the measured
values of one of the performance metrics k . To perform the learning phase on the collected data D jk , we rely on
diferent Machine Learning algorithms. Our process to design the prediction models is depicted in igure 11, and
it has two main inputs:
(1) ML algorithm name, which corresponds to one of the ML algorithms described in section 3.4.
(2) Collected data, which are the datasets D jk obtained from the benchmarking and data collection steps. Table

3 gives more details about our CNN benchmarks. Table 4 provides more details about the extracted data
about the CNN architectural features from the benchmarks detailed in table 3.

The data pre-processing step includes two important points:
• Dimensionality reduction: To prevent the risk of overitting, we perform a feature selection on the prediction
variables (i.e., CNN features detailed in section 3.2). We only consider the most relevant features for each
prediction model strongly correlated with the target performance metric.
• Data transformation: We have noticed non-trivial correlations between CNN features and power consump-
tion from our correlation analysis study. As pointed by [10], power consumption has inherent limitations,
i.e., it can only take a limited set of values that are restricted to the power budget ixed by the hardware
constructor. Thus, power consumption does not increase linearly as the CNN computational complexity
and/or memory requirements increase. Consequently, to model this correlation tendency, we apply a
logarithmic transformation to the prediction input features as suggested by [10]. Hence, in this case, the
input vector cnni contains the logarithmic terms of the prediction input features instead of the real values.
We must note that this transformation is only applied for the case of power consumption.

To train, validate and test our prediction models, the collected data have been split into two sets: 70% of data
have been dedicated for training and cross-validation and 30% of data have been reserved for prediction models
test and evaluation.

After the data pre-processing step, we construct the predictions models according to the process represented in
igure 11. We irst perform the hyperparameters tuning of the prediction models. To do so, the hyperparameters’
search space is irst initialized. Afterward, The tuning is realized using the grid search and K-fold cross-validation
techniques to select hyperparameters’ best values. Second, once the optimal combination of hyperparameters is
found, we train the prediction models on the 70% data for training. Finally, we test the inal prediction models on
the 30% data for the test. We have considered several CNN conigurations and architectures for the test phase to

ACM Trans. Embedd. Comput. Syst.

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 17

evaluate the prediction error and the generalization power of the obtained prediction models towards diferent
performance metrics and edge GPUs. To this end, according to the considered conigurations of our datasets (i.e.,
CNN architectures, variants, and input size), we have categorized the test data according to their complexity into
the following three exploration spaces:

(1) Performance estimation of New Image Sizes (NIS): We evaluate the prediction models on state-of-the-art
CNNs with new input image sizes in this irst exploration space. We vary the input size from 32*32
to 2400*2400 pixels, depending on the CNN architecture as detailed in table 3. That is, for each CNN
architecture we test diferent input sizes. For instance, for GoogleNet [59], we vary the input size from
224x224x3 to 1024x1024x3, whereas for DenseNet [27], we vary the input size, for each of its ive (5) variants,
from 32x32x3 to 1024x1024x3 By varying the input size of the CNN, we obtain diferent values of FLOPs,
intermediate activations, neurons, and eventually diferent numbers of parameters. However, the number
and type of layers remain the same. Therefore, this is the simplest exploration space as we only vary the
input size of already seen CNN architectures in the training dataset.

(2) Performance estimation of New CNN Variants (NCV): We evaluate the prediction models when new CNN
variants are considered in this second exploration space. Based on state-of-the-art CNN architecture
templates, we derived new CNNs by varying scaling factors that control the CNN model’s width, depth,
input size, and operators. These factors are, for instance, the depth and width multipliers for MobileNet
[25] and EicientNet [61], the number of layers and residual blocks for ResNet [20, 21], the number of
output channels for ShuleNet [71, 71], and the depth, reduction ratio, and the number of residual blocks
for SENet [26]. If we consider ResNetV1 [20] as an example, we trained our predictors on ResNetV1-18 to
ResnetV1-101, and we predict the execution time, power consumption, and memory usage for ResNetV1-152
with new numbers of FLOPs, activations, neurons, parameters, and layers. Hence, this exploration space is
more complicated than the irst one as we vary diferent scaling factors of already seen CNN architectures
in the training dataset.

(3) Performance estimation of New CNN Architectures (NCA): We evaluate our prediction models on new
synthetic CNN architectures in this exploration space. Figure 10 represents the CNN baseline architecture
used to construct the NCA exploration space. To generate synthetic CNNs from this baseline, we randomly
vary the input size and convolutional blocks conigurations by varying numbers and types of convolutional
layers, pooling, and batch normalization layers. We also randomly vary the conigurations for each layer,
for instance, the number and size of kernels in convolutional layers, stride and kernel size in pooling
layers, and the number of units in fully-connected layers. Unlike NIS and NCV exploration spaces, the
CNN architectures for NCA are generated from scratch and are not based on existing stated-of-the-art
CNN architecture templates. This exploration space is hence the most complicated, compared to the two
irst ones, as we evaluate the capacity of the ive models to predict the performances of completely new
CNN architectures not included in the training dataset.

ACM Trans. Embedd. Comput. Syst.

18 • H. Bouzidi et al.

Table 4. Details of the CNN features

CNN feature Range

of hidden layers [10 ś 4072]
of CONV layers [4 ś 1825]

of BN layers [0 ś 265]
of FC layers [0 ś 18]

of ilters per CONV layer [3 ś 2688]
of units per FC layer [0 ś 5625x103]

Filter size [(1x1) ś (11x11)]
Input size [32 ś 2400]

of CONV layers parameters [0.27x106 ś 87.1x106]
of BN layers parameters [0 ś 0.8x106]
of FC layers parameters [0 ś 119.8x106]
Total number of FLOPs [3.1x106 ś 5.2x1012]

Sum of intermediate activations [0.1x106 - 37.6x109]

Table 5. Edge GPUs used for experiments

Hardware feature Jetson Nano Jetson TX2 Jetson AGX

CPU
4-core A57
1.43 GHz

6-core Denver + A57
2 GHz

8-core Carmel
2.26 GHz

Memory capacity
4 GB 64-bit
LPDDR4

8 GB 128-bit
LPDDR4

16 GB 256-bit
LPDDR4x

Memory bandwidth 25.6 GB/s 58.4 GB/s 137 GB/s

GPU
128-core Maxwell

1.23 GHz
256-core Pascal

1.3 GHz
512-core Volta

1.37 GHz
Power mode 5W/10W 7.5W/15W 10W/15W/30W

4.4 Experimental Setup

To characterize the CNN inference performances, we deploy several CNNs on diferent edge GPUs. We use three
Nvidia GPU platforms from the Jetson series dedicated to edge computing: Jetson Nano, Jetson TX2, and Jetson
AGX Xavier. The hardware speciications for each platform are described in table 5. We have conigured these
platforms to proiling mode (MAXN power mode). We have used the same underlying software coniguration
for the three edge GPUs. Table 5 shows that these platforms are very diferent in terms of computing/memory
capacities and CPU/GPU micro-architectures. For instance, Jetson AGX Xavier ofers excellent computation
speed and memory capacity at the cost of high power consumption. In comparison, Jetson Nano provides reduced
power consumption but lower computation speed and memory capacity. Jetson TX2 delivers good performances
between Jetson AGX Xavier and Jetson Nano.
CNNs have been implemented on the edge GPUs using the Keras 2.3.1 API with TensorFlow 1.14 as backend

[1]. This framework is running on top of Cuda version of 10.0. The host operating system in both platforms
is Linux Ubuntu 18.04.3 LTS with a kernel 4.9.149-Tegra. We focus in this paper on evaluating CNN inference
with TensorFlow on top of CuDNN API [15]. However, we believe that our prediction methodology can also
be applied when considering another high-performance Deep Learning SDK such as TensorRT [62] which is
composed of optimized DL routines built with the CuDNN API. This is justiied by the fact that our prediction
methodology relies on characterizing the CNN on model-level granularity while abstracting details of the
deployment environment, such as the used software coniguration.

5 APPROACH ANALYSIS

5.1 Results Discussion

This section provides a complete and comprehensive evaluation and analysis of our proposed prediction method-
ology. The obtained results are assessed for each performance metric: execution time, power consumption, and
required memory usage to run the CNN inference. Three edge GPUs are considered: Jetson Nano, TX2, and AGX
Xavier. We evaluate our modeling methodology from three perspectives:
• First, we evaluate the prediction error of each prediction model using the Mean Absolute Percentage Error
(MAPE) [16]. To calculate the MAPE between the predicted (ˆyi j) and measured (yi j) values of performance
metrics, we use the mathematical formula given by equation 5. As we have diferent ranges and values scales
for execution time, power consumption, and memory usage, we choose the MAPE as a scale-independent
evaluation metric to easily interpret the obtained results.

ACM Trans. Embedd. Comput. Syst.

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 19

MAPE =
1

n

n∑

i=1

�
�
�
�
�

yi j − ˆyi j
yi j

�
�
�
�
�

(5)

• Second, we compare the prediction models according to the time needed for: training, tuning, and exploring
the values of their corresponding hyperparameters and inally, for performing the prediction on the input
features vector (cnni).
• Third, we discuss the correlation coeicients between the measured and predicted performance metrics. To
this end, We use both Kendall-tau [3], and Pearson [7] rank correlation coeicients to know whether the
prediction models respect the rank of the estimations or not regarding the rank of the measured values of
performance metrics.

5.2 Execution Time Prediction

Figure 13 gives the obtained Mean Absolute Percentage Error (MAPE) and their corresponding conidence interval
of 95%. Table 6 summarizes the analysis of the ive (05) prediction models in terms of MAPE, training, tuning
costs, and prediction latency. Figure 7 reports the calculated rank correlation coeicients of all the obtained
results for CNN execution time estimations.

5.2.1 Prediction error and generalization power: From igure 13 and Table 6, we notice that the MAPE
values are ranging from ∼ 7% and ∼ 16%. We can also notice that the lowest MAPE values are generally obtained
for NIS and NCV, whereas the highest MAPE values are always obtained for NCA. This inding corroborates the
hypothesis on the complexity of NCA compared to NIS and NCV, as we have already detailed in section 4.

For the three exploration spaces (i.e., NIS, NCV, and NCA), XGBoost and Ridge Polynomial Regression outper-
form the other prediction models and ofer the lowest MAPE values. On the one hand, XGBoost is among the
most powerful ML algorithms; the Boosting technique to reduce the prediction error through many estimators
arranged sequentially makes it very accurate. On the other hand, polynomial regression ofers both lexibility
and low prediction error. It also does not require a lot of data for training. These proprieties make it widely
used for systems and performance modeling. We implement the Ridge regularization technique to penalize the
polynomial terms with lower contributions in the prediction to prevent overitting.

Table 6. Execution time prediction models analysis: prediction error, training, tuning, and latency

Prediction
Model

Test
Data

MAPE Training
Time

Tuning
Time

Prediction Latency
Nano TX2 AGX AGX TX2 Nano

Poly
NIS 10.16% 10.29% 9.55%

12.72 ms 6.32 mn 357.9 ns 528.1 ns 704.3 nsNCV 11.55% 11.06% 10.20%
NCA 11.54% 13.19% 13.04%

MLP
NIS 10.98% 12.47% 12.17%

1.13 s 11.09 hr 22.7 us 30.9 us 53.8 usNCV 12.37% 9.97% 13.80%
NCA 13.65% 15.18% 13.18%

SVR
NIS 11.83% 14.97% 14.68%

159 ms 22.6 hr 41.8 us 52.1 us 78.5 usNCV 9.29% 9.30% 7.92%
NCA 16.01% 16.86% 15.86%

RF
NIS 9.39% 10.97% 11.94%

3.5 s 4.6 hr 1.1 ms 1.5 ms 2.4 msNCV 9.14% 8.91% 10.41%
NCA 13.97% 13.79% 13.76%

XGBoost
NIS 9.12% 9.58% 8.28%

538.5 ms 13.22 mn 2.1 us 3.5 us 6.2 usNCV 7.99% 9.09% 7.45%
NCA 13.80% 13.11% 11.74%

RF depicts comparable performance to XGBoost and Polynomial regression. RF is composed of diferent
decision trees trained on random subsets of training data samples and features. This property helps to reduce the

ACM Trans. Embedd. Comput. Syst.

20 • H. Bouzidi et al.

NIS NCV NCA
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
A
P
E
(%

)
(w

it
h
95
%

C
on
fid

en
ce

In
te
rv
al
)

Nvidia Jetson AGX

MLP Poly RF SVR XGBoost

NIS NCV NCA
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
A
P
E
(%

)
(w

it
h
95
%

C
on
fid

en
ce

In
te
rv
al
)

Nvidia Jetson TX2

MLP Poly RF SVR XGBoost

NIS NCV NCA
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
A
P
E
(%

)
(w

it
h
95
%

C
on
fid

en
ce

In
te
rv
al
)

Nvidia Jetson Nano

MLP Poly RF SVR XGBoost

Fig. 13. Mean Absolute Percentage Error (MAPE) for execution time on the three edge GPUs: Nvidia AGX, TX2, and Nano,

respectively, with the corresponding 95% Confidence Interval. In this figure, we compare the five (05) prediction models for

the three exploration spaces: New Image Sizes (NIS), New CNN Variants (NCV), and New CNN Architectures (NCA).

Table 7. Rank correlation coeficients between Measured and predicted execution times for the three exploration spaces: NIS,

NCV, and NCA, on diferent NVIDIA edge GPUs: Nano, TX2, and AGX

Prediction model Test Data
Kendall coeicients Pearson coeicients
Nano TX2 AGX Nano TX2 AGX

Poly
NIS 0.949 0.935 0.93 0.998 0.998 0.997
NCV 0.938 0.935 0.93 0.984 0.998 0.997
NCA 0.961 0.935 0.93 0.995 0.998 0.997

MLP
NIS 0.937 0.936 0.932 0.998 0.994 0.996
NCV 0.935 0.936 0.932 0.982 0.994 0.996
NCA 0.955 0.936 0.932 0.992 0.994 0.996

SVR
NIS 0.932 0.924 0.93 0.995 0.989 0.994
NCV 0.94 0.924 0.93 0.982 0.989 0.994
NCA 0.949 0.924 0.93 0.993 0.989 0.994

RF
NIS 0.95 0.935 0.933 0.997 0.994 0.997
NCV 0.945 0.935 0.933 0.979 0.994 0.997
NCA 0.945 0.935 0.933 0.991 0.994 0.997

XGBoost
NIS 0.95 0.948 0.942 0.994 0.995 0.997
NCV 0.953 0.948 0.942 0.979 0.995 0.997
NCA 0.945 0.948 0.942 0.982 0.995 0.997

variance error. MLP generally has good performances with a slight loss of generalization for NIS and NCA. This
nonperformance can be due to its nature which tends to overit data. In addition, as detailed in the next section,
MLP is very sensitive to the variation of hyperparameters, making it very hard to tune. SVR is less accurate than
the models mentioned above for NIS and NCA. The variation in the MAPE values in the three exploration spaces
is relatively high, interpreted as overitting.

ACM Trans. Embedd. Comput. Syst.

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 21

If we compare the obtained results of the three edge GPUs: Jetson Nano, TX2, and AGX, we notice that the
prediction errors regarding the three (3) exploration spaces are very similar. Hence, our modeling approach is
easily portable to other platforms to obtain CNNs inference execution time predictions.

5.2.2 Training and tuning costs: Tuning and training costs difer from one model to another. However, we
have noticed that most prediction models are sensitive to hyperparameter coniguration and need time and
efort to tune them well. For instance, XGBoost shows sensitivity to hyperparameters, precisely, to the Booster
hyperparameters that need to be set carefully to achieve the best performances. Nevertheless, the training and
tuning times are relatively short for XGBoost, achieving the best compromise between prediction error and
modeling cost.
Prediction approaches based on ensemble learning, such as RF and XGBoost, need to be trained on diferent

data scales to identify an efective mapping between input features and inference execution times. According
to our experiments, the prediction error converges by increasing the number or depth of the decision trees in
Random Forest. These two (2) factors increase the complexity of the training and the prediction latency in RF.
For this reason, when a short interval of time for tuning and training is desired, XGBoost will be more eicient
than RF.

Ridge Polynomial regression (Poly) has two hyperparameters to tune: The polynomial degree and the regular-
ization factor, and the two of them considerably impact the prediction error. The optimal value of the polynomial
degree depends on the scales of execution times which vary from one edge GPU to another. MLP is very sensitive
to the variation of the hyperparameters, making it very hard to tune. In fact, the size of the MLP has an important
impact on the prediction error. We have noticed that large MLP networks are prone to overitting compared to
small ones. SVR is sensitive to the type of kernels and the cost (C) (see section 3.4.2). According to our results,
linear kernels perform the best for execution time modeling, whereas the small C values, lower than 1, lead to a
considerable loss of generalization. From table 6, we notice that SVR has a drawback of presenting a considerable
tuning time. Diferent kernels have been tested. Polynomial and RBF kernels take the longest time for training,
increasing the tuning time of SVR.

5.2.3 Rank-preserving: We analyze the rank correlation between the measured and predicted inference
execution times to determine whether the prediction models are rank-preserving or not. Preserving the ranking
of CNN architectures regarding their predicted performances on the diferent edge GPUs is very important during
the design space exploration. For this purpose, we used both Kendall-tau and Pearson correlation coeicients.
These correlation coeicients evaluate the nature and the degree of similarity between the two (2) sets of data:
the set of measured and predicted inference execution times. Figure 7 gives the details about the obtained rank
correlation coeicients.

From igure 7, we observe that all of the prediction models highly preserve the rank as their Kendall coeicients
range from 0.94 to 0.97 and their Pearson coeicients range from 0.98 to 0.99. We can, therefore, conclude that
our prediction methodology can be used to rank the CNN according to their estimated execution times. Hence,
The obtained ranking can be used to select the best CNN to be deployed on the edge GPU.

5.3 Power Consumption Prediction

Figure 14 gives the obtainedMAPE values with their corresponding conidence interval of 95%. Table 8 summarizes
the analysis of the ive (05) prediction models for CNN power consumption in terms of MAPE, training, tuning
costs, and prediction latency. Figure 9 reports the calculated rank correlation coeicients of all the obtained
results for CNN power consumption estimations.

5.3.1 Prediction error and generalization: Similar to the case of inference execution time, we have two
main observations: First, the lowest prediction errors are obtained for NIS and NCV, while the highest error is

ACM Trans. Embedd. Comput. Syst.

22 • H. Bouzidi et al.

Table 8. Power consumption prediction models analysis: prediction error, training, tuning, and latency

Prediction
Model

Test
Data

MAPE Training
Time

Tuning
Time

Prediction Latency
Nano TX2 AGX AGX TX2 Nano

Poly
NIS 6.18% 7.02% 5.85%

11.29 ms 6.09 mn 401.1 ns 713.9 ns 900.6 nsNCV 6.51% 6.97% 5.66%
NCA 7.10% 7.05% 5.71%

MLP
NIS 5.66% 6.72% 5.72%

1.9 s 15.33 hr 23.2 us 27.4 us 39.0 usNCV 7.96% 7.41% 6.43%
NCA 7.22% 7.19% 6.03%

SVR
NIS 4.51% 5.14% 3.94%

771.3 ms 25.1 hr 201.3 us 511.2 us 803.5 usNCV 5.39% 6.50% 5.33%
NCA 8.29% 8.57% 7.81%

RF
NIS 4.96% 5.82% 5.88%

3.31 s 4.6 hr 908.5 us 1.2 ms 1.7 msNCV 6.94% 5.84% 4.13%
NCA 5.18% 6.75% 5.81%

XGBoost
NIS 3.56% 5.24% 4.51%

488.5 ms 10.12 mn 4.7 us 6.0 us 8.9 usNCV 4.91% 5.20% 5.69%
NCA 4.62% 6.04% 5.31%

NIS NCV NCA
0

2

4

6

8

10

12

M
A
P
E
(%

)
(w

it
h
95
%

C
on
fi
d
en
ce

In
te
rv
al
)

Nvidia Jetson AGX

MLP Poly RF SVR XGBoost

NIS NCV NCA
0

2

4

6

8

10

12

M
A
P
E
(%

)
(w

it
h
95
%

C
on
fi
d
en
ce

In
te
rv
al
)

Nvidia Jetson TX2

MLP Poly RF SVR XGBoost

NIS NCV NCA
0

2

4

6

8

10

12

M
A
P
E
(%

)
(w

it
h
95
%

C
on
fi
d
en
ce

In
te
rv
al
)

Nvidia Jetson Nano

MLP Poly RF SVR XGBoost

Fig. 14. Mean Absolute Percentage Error (MAPE) for power consumption on the three NVIDIA edge GPUs: AGX, TX2, and

Nano, respectively, with the corresponding 95% Confidence Interval. In this figure, we compare the five (05) prediction models

for the three exploration spaces: New Image Sizes (NIS), New CNN Variants (NCV), and New CNN Architectures (NCA).

obtained for NCA. This is due to the complexity of the exploration spaces, as we have explained in sub-section
5.2.1. Second, both XGBoost and Ridge polynomial regression provide the lowest prediction error for power
consumption estimation on the three edge GPUs. These two models also achieve a good generalization between
the three exploration spaces. From igure 14 and table 8, we can also notice that the MAPE values are generally
between ∼ 3% and ∼ 8%, which indicates both reduced bias and variance errors. This igure also shows that the
obtained MAPE for power consumption is smaller than the obtained MAPE for execution time. The main reason

ACM Trans. Embedd. Comput. Syst.

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 23

is that edge GPU hardware architectures are simple, and their power consumption does not vary considerably
during the inference.
RF and MLP depict similar performances in terms of prediction error and generalization. SVR provides low

prediction error for NIS and NCV but a quiet loss of generalization for NCA. This same tendency was observed
for execution time prediction. These observations indicate that SVR tends to overit data, performing well for
known CNN architectures and variants but losing generalization for unseen CNN architectures (NCA).

Table 9. Rank correlation coeficients between Measured and predicted values of power consumption for the three

exploration spaces: NIS, NCV and NCA, on diferent NVIDIA edge GPUs: Nano, TX2 and AGX

Prediction model Test data
Kendall coeicients Pearson coeicients
Nano TX2 AGX Nano TX2 AGX

Poly
NIS 0.769 0.926 0.94 0.952 0.987 0.995
NCV 0.911 0.926 0.94 0.985 0.987 0.995
NCA 0.657 0.926 0.94 0.935 0.987 0.995

MLP
NIS 0.758 0.942 0.931 0.977 0.994 0.994
NCV 0.88 0.942 0.931 0.976 0.994 0.994
NCA 0.74 0.942 0.931 0.966 0.994 0.994

SVR
NIS 0.765 0.952 0.957 0.974 0.996 0.996
NCV 0.899 0.952 0.957 0.983 0.996 0.996
NCA 0.542 0.952 0.957 0.896 0.996 0.996

RF
NIS 0.836 0.935 0.934 0.976 0.992 0.992
NCV 0.9 0.935 0.934 0.98 0.992 0.992
NCA 0.743 0.935 0.934 0.97 0.992 0.992

XGBoost
NIS 0.905 0.945 0.947 0.979 0.995 0.996
NCV 0.934 0.945 0.947 0.991 0.995 0.996
NCA 0.737 0.945 0.947 0.975 0.995 0.996

As observed for execution time prediction, the three edge GPUs’ prediction error and generalization tendency
are quite similar. However, the reported MAPE values for the Jetson Nano are relatively smaller than for other
platforms. On the one hand, this is due to the available power budget of the Jetson Nano, which is limited to
5 Watts in our case. On the other hand, Most of the studied CNNs are computationally and memory intensive,
which results in the highest possible power consumption for most cases. Thus, obtained power consumption
values for these CNNs are quite similar.

5.3.2 Training and tuning costs: From table 8, we can observe that the training and tuning costs of the
prediction models for power consumption have similar tendencies as the execution time. This can be explained by
the fact that we are using the same modeling methodology and data for each combination of performance metric
and edge GPU. Nonetheless, we have also noticed some diferences in the obtained optimal hyperparameters of
each prediction model compared to execution time modeling. We highlight in the following the main observed
diferences:
• MLP presents huge overitting when increasing the size of the network in the case of execution time. How-
ever, small MLP networks are not enough to achieve good prediction of power consumption. Instead, they
result in considerable underitting. Consequently, we consider large MLP networks for power consumption
modeling on the three edge GPUs.
• Linear kernels for SVR performwell for execution time modeling. However, they provide poor performances
for power consumption modeling. Nevertheless, we have noticed that RBF kernels provide lower prediction
error. Indeed, this can be explained by the observed non-linear correlation between input features and
power consumption, for instance, between the number of FLOPs and power consumption (igure 6).

5.3.3 Rank-persevering: Figure 9 shows the calculated coeicients of correlation between measured and
predicted values of power consumption. We can see that XGBoost, RF, and MLP provide the highest Kendall and

ACM Trans. Embedd. Comput. Syst.

24 • H. Bouzidi et al.

Pearson correlation coeicients in all the considered cases. These coeicients range from 0.7 to 0.9 for Kendall and
from 0.8 to 0.9 for Pearson. On the other hand, SVR and Ridge Polynomial regression results are less correlated
than the other results, especially for the Jetson Nano. The reason behind the low Kendall-tau values for Jetson
Nano comes from the limited range of power consumption values. Generally, we have observed that obtained
power consumption values are less distributed and tend to have very similar values than the execution time
case where values have a higher degree of diversity. It is also worth noting that the overitting problem of SVR
appears clearly in the obtained correlation coeicient values for NCA. This observation is also proven by the
obtained MAPE results reported in table 8, which indicate a considerable loss of generalization for NCA.

5.4 Memory Usage Prediction

Figure 15 gives the obtainedMAPE values and their corresponding conidence interval of 95%. Table 10 summarizes
the analysis of the ive (05) prediction models in terms of MAPE, training, tuning costs, and prediction latency.
Figure 11 reports the calculated rank correlation coeicients of all the obtained results for CNN memory usage
estimations.

Table 10. Memory usage prediction models analysis: prediction error, training, tuning, and latency

Prediction
Model

Test
Data

MAPE Training
Time

Tuning
Time

Prediction Latency
Nano TX2 AGX AGX TX2 Nano

Poly
NIS 9.73% 4.91% 4.38%

5.13 ms 6.09 mn 89.3 ns 140.5 ns 270.2 nsNCV 9.15% 5.01% 4.78%
NCA 6.43% 6.87% 5.47%

MLP
NIS 11.03 4.98% 5.85%

341.6 ms 13.8 hr 14.7 us 24.0 us 34.7 usNCV 14.83% 5.60% 4.92%
NCA 11.59% 9.04% 7.62%

SVR
NIS 7.89% 6.65% 3.62%

101.2 ms 20.7 hr 96.6 us 121.3 us 249.6 usNCV 8.90% 5.12% 3.64%
NCA 7.82% 8.57% 6.78%

RF
NIS 7.25% 6.22% 4.58%

1.62 s 3.1 hr 261.6 us 397.0 us 508.2 usNCV 8.15% 4.96% 6.83%
NCA 10.46% 9.18% 7.63%

XGBoost
NIS 9.03% 6.46% 4.10%

338.5 ms 7.2 mn 708.2 ns 933.8 ns 1.1 usNCV 10.14% 5.41% 5.72%
NCA 7.60% 8.73% 7.40%

5.4.1 Prediction error and generalization power: In contrast with the two previous performance metrics,
where XGBoost and Ridge Polynomial regression provides similar results, Ridge polynomial regression outper-
forms XGBoost and the other models for memory usage. Indeed, training datasets for memory usage are diferent
from those for execution time and power consumption. In fact, we have performed two reduction techniques on
the training datasets for memory usage:
(1) Considering only the smallest and the largest input size for each CNN: From our experiments, we have

noticed that the CNN memory usage does not vary signiicantly for two relative input sizes. Thus, we only
consider the smallest and the largest image input sizes for each CNN, depending on the reported values in
table 3.

(2) Selecting only the prediction CNN input features that impact memory usage.
These two data reduction techniques result in thoroughly diferent training datasets compared to the cases of

execution time and power consumption.
From 15 and table 10, MLP, SVR, and RF provide similar performances in terms of MAPE values. As for the

execution time and power consumption cases, reported prediction errors for the three edge GPUs are very close.
This conirms the portability of our modeling methodology for new edge GPUs.

ACM Trans. Embedd. Comput. Syst.

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 25

NIS NCV NCA
0

2

4

6

8

10

12

M
A
P
E
(%

)
(w

it
h
95
%

C
on
fi
d
en
ce

In
te
rv
al
)

Nvidia Jetson AGX

MLP Poly RF SVR XGBoost

NIS NCV NCA
0

2

4

6

8

10

12

M
A
P
E
(%

)
(w

it
h
95
%

C
on
fi
d
en
ce

In
te
rv
al
)

Nvidia Jetson TX2

MLP Poly RF SVR XGBoost

NIS NCV NCA
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
A
P
E
(%

)
(w

it
h
95
%

C
on
fi
d
en
ce

In
te
rv
al
)

Nvidia Jetson Nano

MLP Poly RF SVR XGBoost

Fig. 15. Mean Absolute Percentage Error (MAPE) for memory usage on the three edge GPUs: Nvidia AGX, TX2, and Nano,

respectively, with the corresponding 95% Confidence Interval. In this figure, we compare the five (05) prediction models for

the three exploration spaces: New Image Sizes (NIS), New CNN Variants (NCV), and New CNN Architectures (NCA).

Table 11. Rank correlation coeficients between measured and predicted memory usage values for the three exploration

spaces: NIS, NCV, and NCA, on diferent NVIDIA edge GPUs: Nano, TX2 and AGX.

Prediction model Test data
Kendall coeicients Pearson coeicients
Nano TX2 AGX Nano TX2 AGX

Poly
NIS 0.833 0.909 0.92 0.994 0.994 0.993
NCV 0.871 0.909 0.92 0.995 0.994 0.993
NCA 0.818 0.909 0.92 0.942 0.994 0.993

MLP
NIS 0.858 0.912 0.905 0.994 0.992 0.988
NCV 0.865 0.912 0.905 0.996 0.992 0.988
NCA 0.784 0.912 0.905 0.912 0.992 0.988

SVR
NIS 0.824 0.875 0.923 0.991 0.987 0.993
NCV 0.86 0.875 0.923 0.995 0.987 0.993
NCA 0.79 0.875 0.923 0.908 0.987 0.993

RF
NIS 0.828 0.9 0.917 0.991 0.992 0.993
NCV 0.848 0.9 0.917 0.991 0.992 0.993
NCA 0.794 0.9 0.917 0.924 0.992 0.993

XGBoost
NIS 0.82 0.885 0.907 0.991 0.991 0.993
NCV 0.829 0.885 0.907 0.991 0.991 0.993
NCA 0.783 0.885 0.907 0.926 0.991 0.993

5.4.2 Training and tuning costs: Training and tuning costs for memory usage models are smaller than the
execution time and power consumption models. These costs are correlated with the size and dimensionality of
the training dataset. The larger the dataset is, the more time it takes to tune and train the prediction model. As
we previously mentioned, the training dataset for memory usage is reduced, resulting in less efort and time to
train the prediction models.

ACM Trans. Embedd. Comput. Syst.

26 • H. Bouzidi et al.

Nonetheless, the tuning and training costs follow the same tendency as execution time and power consumption.
In contrast to power consumption modeling, smaller MLP networks perform better than larger networks. This is
obvious given the dimensionality of the training dataset. Besides, for SVR, we have also noticed that RBF and
Poly kernels deliver the best performances compared to the linear ones. Thus, SVR, MLP, and RF are the most
challenging models to tune for the three performance metrics and the three edge GPUs.

5.4.3 Rank-persevering: From the reported values in igure 11, we can note that the rank is highly respected
between the measured and predicted CNN memory usage values by the prediction models. Kendall and Pearson
correlation coeicients range from 0.8 to 0.9 and from 0.95 to 0.98, respectively, which indicates a strong positive
correlation between the two sets of data (i.e., measured and predicted memory usage). We must also note that the
prediction models follow the same tendency for Kendall and Pearson correlation coeicients in all cases (i.e.,
exploration spaces and edge GPUs).

6 APPROACH ANALYSIS: ADVANTAGES AND LIMITATIONS

In this section, we discuss the main advantages and limitations of our work in terms of hardware and software
adaptability.

6.1 Advantages of our approach:

Using a set of benchmarks that we built, we were able to evaluate and estimate CNN performances. Experimental
results showed that:
• Our Machine Learning-based modeling methodology to characterize CNNs performances for edge GPUs
gives predictions for latency, power consumption, and memory usage with good accuracy.
• Our resulting prediction models have been evaluated on a large set of CNN architectures and three (03)
edge GPUs with diferent hardware resources.

Furthermore, Our benchmarks are composed of small and large, simple and complex, old and modern state-of-
the-art CNNs and variants. In tables 12, 13, and 14, we present a comparison of our work with relevant prior
studies on CNN performances modeling. We use the MAPE to assess the prediction error. For execution time, the
prediction error of our models is the lowest for GPUs compared to related works. In addition, We have obtained
the smallest MAPE for power consumption and memory usage compared to other related works.

Table 12. Execution time prediction: comparison between our proposed methodology and state-of-the-art works. We

compare the prediction error according to the MAPE values

Ref. CNNs System MAPE

[41]
NIN, VGG19M TK1 CPU ś Cafe 4.71%

TK1 GPU ś Cafe 23.70%

NIN, VGG19M, SqueezeNet, MobileNet TX1 CPU ś Cafe 39.91%
TX1 GPU ś Cafe 31.51%

[10]
VGG16, AlexNet, NIN, Overfeat, CIFAR10-6conv Titan X GPU ś TensorFlow 7.96%

GTX1070 GPU ś TensorFlow 12.32%
AlexNet, NIN GTX1070 GPU ś Cafe 16.17%

[64]
AlexNet, All-CNN-C, MobileNet, ResNet-18,
SimpleNet, SqueezeNet, Tiny YOLO

RPi3 CPU ś Cafe 5.02%
RPi3 CPU ś OpenCV 7.92%
XU4 CPU ś Cafe 3.25%

Our work
ResNets, MobileNets, EicientNets, ShuleNets,
SENets, DenseNets, GoogleNet, Inception,
SqueezeNets, MnasNets, DPN, Xception

Jetson Nano GPU ś TensorFlow 8.55%
Jetson TX2 GPU ś TensorFlow 9.33%
Jetson AGX GPU ś TensorFlow 7.86%

ACM Trans. Embedd. Comput. Syst.

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 27

Table 13. Power consumption prediction: comparison between our proposed methodology and state-of-the-art works. We

compare the prediction error according to the MAPE values

Ref. CNNs System MAPE

[41] NIN, VGG19M, SqueezeNet, MobileNet TX1 CPU ś Cafe 39.08%
TX1 GPU ś Cafe 15.30%

[10]
VGG16, AlexNet, NIN, Overfeat, CIFAR10-6conv Titan X GPU ś TensorFlow 2.25%

GTX1070 GPU ś TensorFlow 8.40%
AlexNet, NIN GTX1070 GPU ś Cafe 21.99%

[64]
AlexNet, All-CNN-C, MobileNet, ResNet-18,
SimpleNet, SqueezeNet, Tiny YOLO

RPi3 CPU ś Cafe 8.52%
RPi3 CPU ś OpenCV 7.24%
XU4 CPU ś Cafe 10.46%

Our work
ResNets, MobileNets, EicientNets, ShuleNets,
SENets, DenseNets, GoogleNet, Inception,
SqueezeNets, MnasNets, DPN, Xception

Jetson Nano GPUś TensorFlow 4.23%
Jetson TX2 GPU ś TensorFlow 5.22%
Jetson AGX GPU ś TensorFlow 5.10%

Table 14. Memory usage prediction: comparison between our proposed methodology and state-of-the-art works. We

compare the prediction error according to the MAPE values

Ref. CNNs System MAPE

[41] NIN, VGG19M

TK1 CPU ś Cafe 39.89%
TK1 GPU ś Cafe 34.33%
TX1 CPU ś Cafe 49.92%
TX1 GPU ś Cafe 40.94%

Our work
ResNets, MobileNets, EicientNets, ShuleNets,
SENets, DenseNets, GoogleNet, Inception,
SqueezeNets, MnasNets, DPN, Xception

Jetson Nano GPU ś TensorFlow 9.72%
Jetson TX2 GPU ś TensorFlow 5.93%
Jetson AGX GPU ś TensorFlow 4.91%

6.2 Limitations of our approach

We have shown that our modeling methodology can be ported to any edge GPU to predict the performance of
computer vision CNN. Furthermore, by using our proposed benchmarks and modeling methodology, the designer
can quickly build prediction models by following our proposed modeling steps on new edge platforms, new use
cases, or new metrics. Nevertheless, the ability to predict the performance of a set of CNNs on an entirely new
edge GPU without training the performance prediction model on the new HW is not achievable because of the
following reasons:
• In our work, we propose a modeling approach based on ML for predicting edge GPU’s performances.
However, as these embedded hardware platforms have been recently proposed in the market, the number
of their hardware conigurations is limited. The generalization for a new unknown HW without additional
training or benchmarking is diicult.
• Modeling edge GPU platforms is complicated due to their complex integrated nature, where both the GPU
and CPU share the same memory, and the diferences in their micro-architectures.
• Building accurate analytical models for these edge GPUs requires modeling the holistic and hierarchical
levels of the CNN execution stack. This stack comprises the CNN structure, the deep learning SDK, the
compiler, and inally the hardware micro-architecture. As some of the details concerning the HW and SW
are kept conidential by the GPU manufacturers (e.g. the NVIDIA CUDA compiler), this approach is very
challenging.

We are also aware of the limitations of the proposed prediction models for non-computer vision CNN. The
current prediction models are speciic to computer vision applications as they were trained on CNN benchmarks
for this purpose. However, we believe that the overall proposed modeling methodology, from data collection and
feature extraction to ML-based modeling (igures 2 and 11) , can be applied to other CNN-based applications.

ACM Trans. Embedd. Comput. Syst.

28 • H. Bouzidi et al.

7 CONCLUSION AND FUTURE WORK

CNNs have achieved remarkable performances in vision-based applications at the cost of huge computational
and memory complexities. Recently, tremendous efort has been made to design eicient hardware platforms to
satisfy the computation and memory needs of CNNs. Edge GPUs are promising hardware platforms combining
both acceleration capability and energy eiciency.
However, given the complexity and diversity of both CNN and edge GPU architectures, determining the

appropriate matching between CNNs and edge platforms under real-time constraints is time-consuming and
challenging. In this context, a priori prediction of CNN performances on edge GPU is a promising solution to
determine the best CNN-edge hardware combination quickly.
In this work, we proposed a modeling methodology for CNN performance on edge GPUs. Our approach

includes two main parts: First, we characterized the CNN architectures at a model-level granularity to extract the
most impacting features. Second, we implemented and compared ive of the most eicient Machine Learning
algorithms to build our performance prediction models. The resulting prediction models can be used to predict
execution time, memory usage, and power consumption of any new CNNs on the studied 3 edge GPUs without
retraining the prediction models.
Our modeling methodology has been easily generalized over the three exploration spaces: NIS, NCV, and

NCA, on the three diferent NVIDIA edge GPUs: Jetson Nano, TX2, and AGX. To evaluate our approach, we
analyzed the performance of the prediction models using three metrics: 1) Prediction error and rank-preserving,
2) Prediction latency, 3) Training and tuning costs of the models and inally. We have demonstrated that XGBoost,
Random Forest, and Ridge Polynomial regression estimate execution time with an average error of 10%. Ridge
Polynomial regression and XGBoost give similar performances for power consumption with an average error of
6%. Finally, for memory usage, we have demonstrated that Ridge polynomial regression outperforms the rest of the
prediction models with an average error of 8%. Experimental results demonstrated that MLP, SVR, and RF depicted
the smallest overheads in tuning, training and prediction latency. On the opposite, both XGBoost and Ridge
polynomial regression provided an acceptable trade-of between prediction performance and tuning/training
time. They give also the lowest prediction latency, whereas RF has the highest prediction latency. Given that,
the obtained prediction models can easily be integrated into a multi-objective optimization approach for design
space exploration of CNN on edge GPUs.
We plan to extend our work by exploring diferent Deep Learning applications, hardware architectures, and

high-performance deep learning SDK (e.g. TensorRT) to increase the lexibility and generalizability of our proposed
approach. We also consider integrating the hardware as input into our prediction models for reconigurable
hardware platforms such as FPGA. Our prediction models can also be enhanced by characterizing the connections
and dependencies between CNN layers, such skip and dense connections in ResNet and DenseNet or parallelism
of inception blocks.

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jefrey Dean, Matthieu Devin, Sanjay Ghemawat, Geofrey
Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine
Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX Association, Savannah, GA,
265ś283. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[2] Mohamed S. Abdelfattah, Łukasz Dudziak, Thomas Chau, Royson Lee, Hyeji Kim, and Nicholas D. Lane. 2020. Best of Both Worlds:
AutoML Codesign of a CNN and its Hardware Accelerator. In 2020 57th ACM/IEEE Design Automation Conference (DAC). 1ś6. https:
//doi.org/10.1109/DAC18072.2020.9218596

[3] Hervé Abdi. 2007. The Kendall rank correlation coeicient. Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CA (2007),
508ś510.

ACM Trans. Embedd. Comput. Syst.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1109/DAC18072.2020.9218596
https://doi.org/10.1109/DAC18072.2020.9218596

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 29

[4] Marcos Amarís, Raphael Y. de Camargo, Mohamed Dyab, Alfredo Goldman, and Denis Trystram. 2016. A comparison of GPU execution
time prediction using machine learning and analytical modeling. In 2016 IEEE 15th International Symposium on Network Computing and

Applications (NCA). 326ś333. https://doi.org/10.1109/NCA.2016.7778637
[5] Yehia Arafa, Abdel-Hameed Badawy, Gopinath Chennupati, Atanu Barai, Nandakishore Santhi, and Stephan Eidenbenz. 2020. Fast,

Accurate, and Scalable Memory Modeling of GPGPUs Using Reuse Proiles. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3392717.3392761

[6] Mariette Awad and Rahul Khanna. 2015. Support vector regression. In Eicient learning machines. Springer, 67ś80.
[7] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson Correlation Coeicient. Springer Berlin Heidelberg, Berlin,

Heidelberg, 1ś4. https://doi.org/10.1007/978-3-642-00296-0_5
[8] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Martin Wistuba, and NaigangWang. 2021. A Comprehensive

Survey on Hardware-Aware Neural Architecture Search. arXiv:2101.09336 [cs.LG]
[9] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano. 2018. Benchmark Analysis of Representative Deep Neural Network

Architectures. IEEE Access 6 (2018), 64270ś64277. https://doi.org/10.1109/ACCESS.2018.2877890
[10] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. 2017. NeuralPower : Predict and Deploy Energy-Eicient

Convolutional Neural Networks. In Proceedings of the Ninth Asian Conference on Machine Learning (Proceedings of Machine Learning

Research, Vol. 77), Min-Ling Zhang and Yung-Kyun Noh (Eds.). PMLR, Yonsei University, Seoul, Republic of Korea, 622ś637. https:
//proceedings.mlr.press/v77/cai17a.html

[11] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. 2020. TinyTL: Reduce Memory, Not Parameters for Eicient On-Device Learning. In
Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran
Associates, Inc., 11285ś11297. https://proceedings.neurips.cc/paper/2020/ile/81f7acabd411274fcf65ce2070ed568a-Paper.pdf

[12] Jiasi Chen and Xukan Ran. 2019. Deep Learning With Edge Computing: A Review. Proc. IEEE 107, 8 (2019), 1655ś1674. https:
//doi.org/10.1109/JPROC.2019.2921977

[13] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System (KDD ’16). Association for Computing Machinery,
New York, NY, USA, 785ś794. https://doi.org/10.1145/2939672.2939785

[14] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, and Jiashi Feng. 2017. Dual Path Networks. In Advances in Neural

Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30.
Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/ile/f7e0b956540676a129760a3eae309294-Paper.pdf

[15] Sharan Chetlur, Clif Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn:
Eicient primitives for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[16] Arnaud de Myttenaere, Boris Golden, Bénédicte Le Grand, and Fabrice Rossi. 2016. Mean Absolute Percentage Error for regression
models. Neurocomputing 192 (2016), 38ś48. https://doi.org/10.1016/j.neucom.2015.12.114 Advances in artiicial neural networks,
machine learning and computational intelligence.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In 2009

IEEE Conference on Computer Vision and Pattern Recognition. 248ś255. https://doi.org/10.1109/CVPR.2009.5206848
[18] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. 2020. Model Compression and Hardware Acceleration for Neural Networks: A

Comprehensive Survey. Proc. IEEE 108, 4 (2020), 485ś532. https://doi.org/10.1109/JPROC.2020.2976475
[19] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai, Xiangyu Yue, Peter Jin, Sicheng Zhao, and Kurt Keutzer. 2018. Squeezenext:

Hardware-aware neural network design. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.
1638ś1647.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 770ś778.
[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity mappings in deep residual networks. In European conference on

computer vision. Springer, 630ś645.
[22] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. 1998. Support vector machines. IEEE Intelligent Systems and their

Applications 13, 4 (1998), 18ś28. https://doi.org/10.1109/5254.708428
[23] Arthur E. Hoerl and Robert W. Kennard. 1970. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 12, 1

(1970), 55ś67. https://doi.org/10.1080/00401706.1970.10488634
[24] Morteza Hosseini, Mohammad Ebrahimabadi, Arnab Neelim Mazumder, Houman Homayoun, and Tinoosh Mohsenin. 2021. A fast

method to ine-tune neural networks for the least energy consumption on fpgas. UMBC Student Collection (2021).
[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig

Adam. 2017. Mobilenets: Eicient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).
[26] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and

pattern recognition. 7132ś7141.
[27] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2017. Densely connected convolutional networks. In

Proceedings of the IEEE conference on computer vision and pattern recognition. 4700ś4708.

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1109/NCA.2016.7778637
https://doi.org/10.1145/3392717.3392761
https://doi.org/10.1007/978-3-642-00296-0_5
https://arxiv.org/abs/2101.09336
https://doi.org/10.1109/ACCESS.2018.2877890
https://proceedings.mlr.press/v77/cai17a.html
https://proceedings.mlr.press/v77/cai17a.html
https://proceedings.neurips.cc/paper/2020/file/81f7acabd411274fcf65ce2070ed568a-Paper.pdf
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1145/2939672.2939785
https://proceedings.neurips.cc/paper/2017/file/f7e0b956540676a129760a3eae309294-Paper.pdf
https://doi.org/10.1016/j.neucom.2015.12.114
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1109/5254.708428
https://doi.org/10.1080/00401706.1970.10488634

30 • H. Bouzidi et al.

[28] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley, and Luc Van Gool. 2018. Ai benchmark: Running deep
neural networks on android smartphones. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops. 0ś0.

[29] Joel Janai, Fatma Güney, Aseem Behl, Andreas Geiger, et al. 2020. Computer vision for autonomous vehicles: Problems, datasets and
state of the art. Foundations and Trends® in Computer Graphics and Vision 12, 1ś3 (2020), 1ś308.

[30] Jongmin Jo, Sucheol Jeong, and Pilsung Kang. 2020. Benchmarking GPU-Accelerated Edge Devices. In 2020 IEEE International Conference

on Big Data and Smart Computing (BigComp). 117ś120. https://doi.org/10.1109/BigComp48618.2020.00-89
[31] Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough. 2018. Predicting the Computational Cost of Deep

Learning Models. In 2018 IEEE International Conference on Big Data (Big Data). 3873ś3882. https://doi.org/10.1109/BigData.2018.8622396
[32] Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. 2020. A survey of the recent architectures of deep convolutional

neural networks. Artiicial Intelligence Review 53, 8 (2020), 5455ś5516.
[33] Mohsen Kiani and Amir Rajabzadeh. 2021. SDAM: a combined stack distance-analytical modeling approach to estimate memory

performance in GPUs. The Journal of Supercomputing 77, 5 (2021), 5120ś5147.
[34] Alex Krizhevsky, Ilya Sutskever, and Geofrey E Hinton. 2012. ImageNet Classiication with Deep Convolutional Neural Networks. In

Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Eds.), Vol. 25. Curran
Associates, Inc.

[35] Yen-Lin Lee, Pei-Kuei Tsung, and MaxWu. 2018. Techology trend of edge AI. In 2018 International Symposium on VLSI Design, Automation

and Test (VLSI-DAT). 1ś2. https://doi.org/10.1109/VLSI-DAT.2018.8373244
[36] Cheng Li, Abdul Dakkak, Jinjun Xiong, Wei Wei, Lingjie Xu, and Wen-mei Hwu. 2020. XSP: Across-Stack Proiling and Analysis

of Machine Learning Models on GPUs. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 326ś327.
https://doi.org/10.1109/IPDPS47924.2020.00042

[37] Andy Liaw, Matthew Wiener, et al. 2002. Classiication and regression by randomForest. R news 2, 3 (2002), 18ś22.
[38] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling Shao. 2020. Hrank: Filter pruning

using high-rank feature map. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1529ś1538.
[39] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian Wu, and Yonghong Tian. 2020. Channel pruning via automatic

structure search. arXiv preprint arXiv:2001.08565 (2020).
[40] Peiye Liu, Bo Wu, Huadong Ma, and Mingoo Seok. 2019. MemNet: memory-eiciency guided neural architecture search with augment-

trim learning. arXiv preprint arXiv:1907.09569 (2019).
[41] Zongqing Lu, Swati Rallapalli, Kevin Chan, and Thomas La Porta. 2017. Modeling the Resource Requirements of Convolutional Neural

Networks on Mobile Devices. In Proceedings of the 25th ACM International Conference on Multimedia (Mountain View, California, USA)
(MM ’17). Association for Computing Machinery, New York, NY, USA, 1663ś1671. https://doi.org/10.1145/3123266.3123389

[42] Yufei Ma, Yu Cao, Sarma Vrudhula, and Jae-Sun Seo. 2020. Performance Modeling for CNN Inference Accelerators on FPGA. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 4 (2020), 843ś856. https://doi.org/10.1109/TCAD.2019.
2897634

[43] Susmita Dey Manasi and Sachin S. Sapatnekar. 2021. DeepOpt: Optimized Scheduling of CNN Workloads for ASIC-Based Systolic Deep
Learning Accelerators. In Proceedings of the 26th Asia and South Paciic Design Automation Conference (Tokyo, Japan) (ASPDAC ’21).
Association for Computing Machinery, New York, NY, USA, 235ś241. https://doi.org/10.1145/3394885.3431539

[44] Jiandong Mu, Wei Zhang, Hao Liang, and Sharad Sinha. 2020. Optimizing OpenCL-Based CNN Design on FPGA with Comprehensive
Design Space Exploration and Collaborative Performance Modeling. 13, 3, Article 13 (jun 2020), 28 pages. https://doi.org/10.1145/3397514

[45] Fionn Murtagh. 1991. Multilayer perceptrons for classiication and regression. Neurocomputing 2, 5 (1991), 183ś197. https://doi.org/10.
1016/0925-2312(91)90023-5

[46] Paulo Eduardo Nogueira, Rivalino Matias, and Elder Vicente. 2014. An Experimental Study on Execution Time Variation in Computer
Experiments. In Proceedings of the 29th Annual ACM Symposium on Applied Computing (Gyeongju, Republic of Korea) (SAC ’14).
Association for Computing Machinery, New York, NY, USA, 1529ś1534. https://doi.org/10.1145/2554850.2555022

[47] Nvidia. 2007. Nvidia Proiler (Nvprof). Retrieved June 30, 2020 from https://docs.nvidia.com/cuda/proiler-users-guide/index.html#nvprof-
overview

[48] Nvidia. 2019. Tegrastats utility. Retrieved December 01, 2020 from https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra
[49] Eva Ostertagová. 2012. Modelling using Polynomial Regression. Procedia Engineering 48 (2012), 500ś506. https://doi.org/10.1016/j.

proeng.2012.09.545 Modelling of Mechanical and Mechatronics Systems.
[50] Hang Qi, Evan R. Sparks, and Ameet Talwalkar. 2017. PALEO: A PERFORMANCE MODEL FOR DEEP NEURAL NETWORKS. In ICLR.
[51] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song, and Nicu Sebe. 2020. Binary neural networks: A survey. Pattern

Recognition 105 (2020), 107281. https://doi.org/10.1016/j.patcog.2020.107281
[52] Crefeda Faviola Rodrigues, Graham Riley, and Mikel Luján. 2017. Fine-grained energy proiling for deep convolutional neural networks

on the Jetson TX1. In 2017 IEEE International Symposium on Workload Characterization (IISWC). 114ś115. https://doi.org/10.1109/IISWC.
2017.8167764

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1109/BigComp48618.2020.00-89
https://doi.org/10.1109/BigData.2018.8622396
https://doi.org/10.1109/VLSI-DAT.2018.8373244
https://doi.org/10.1109/IPDPS47924.2020.00042
https://doi.org/10.1145/3123266.3123389
https://doi.org/10.1109/TCAD.2019.2897634
https://doi.org/10.1109/TCAD.2019.2897634
https://doi.org/10.1145/3394885.3431539
https://doi.org/10.1145/3397514
https://doi.org/10.1016/0925-2312(91)90023-5
https://doi.org/10.1016/0925-2312(91)90023-5
https://doi.org/10.1145/2554850.2555022
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/j.proeng.2012.09.545
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1109/IISWC.2017.8167764
https://doi.org/10.1109/IISWC.2017.8167764

Performances Modeling of Computer Vision-based CNN on Edge GPUs • 31

[53] Crefeda Faviola Rodrigues, Graham Riley, and Mikel Luján. 2017. Fine-grained energy proiling for deep convolutional neural networks
on the Jetson TX1. In 2017 IEEE International Symposium on Workload Characterization (IISWC). 114ś115. https://doi.org/10.1109/IISWC.
2017.8167764

[54] Juan D. Rodriguez, Aritz Perez, and Jose A. Lozano. 2010. Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 3 (2010), 569ś575. https://doi.org/10.1109/TPAMI.2009.187

[55] Shaohuai Shi, QiangWang, and Xiaowen Chu. 2018. Performance Modeling and Evaluation of Distributed Deep Learning Frameworks on
GPUs. In 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing,

4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech).
949ś957. https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.000-4

[56] Kevin Siu, Dylan Malone Stuart, Mostafa Mahmoud, and Andreas Moshovos. 2018. Memory Requirements for Convolutional Neural
Network Hardware Accelerators. In 2018 IEEE International Symposium on Workload Characterization (IISWC). 111ś121. https:
//doi.org/10.1109/IISWC.2018.8573527

[57] Dimitrios Stamoulis, Ermao Cai, Da-Cheng Juan, and Diana Marculescu. 2018. HyperPower: Power- and memory-constrained hyper-
parameter optimization for neural networks. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE). 19ś24. https:
//doi.org/10.23919/DATE.2018.8341973

[58] Qi Sun, Tinghuan Chen, Jin Miao, and Bei Yu. 2019. Power-Driven DNN Datalow Optimization on FPGA. In 2019 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD). 1ś7. https://doi.org/10.1109/ICCAD45719.2019.8942085
[59] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and

Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern

recognition. 1ś9.
[60] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, AndrewHoward, and Quoc V Le. 2019. Mnasnet: Platform-aware

neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2820ś2828.
[61] Mingxing Tan and Quoc V Le. 2019. Eicientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint

arXiv:1905.11946 (2019).
[62] Han Vanholder. 2016. Eicient inference with tensorrt. Retrieved June 30, 2020 from https://developer.nvidia.com/tensorrt
[63] Delia Velasco-Montero, Jorge Fernández-Berni, Ricardo Carmona-Galán, and Ángel Rodríguez-Vázquez. 2018. Optimum Selection of

DNN Model and Framework for Edge Inference. IEEE Access 6 (2018), 51680ś51692. https://doi.org/10.1109/ACCESS.2018.2869929
[64] Delia Velasco-Montero, Jorge Fernández-Berni, Ricardo Carmona-Galán, and Ángel Rodríguez-Vázquez. 2020. PreVIous: A Methodology

for Prediction of Visual Inference Performance on IoT Devices. IEEE Internet of Things Journal 7, 10 (2020), 9227ś9240. https:
//doi.org/10.1109/JIOT.2020.2981684

[65] Mengdi Wang, Chen Meng, Guoping Long, Chuan Wu, Jun Yang, Wei Lin, and Yangqing Jia. 2019. Characterizing Deep Learning
Training Workloads on Alibaba-PAI. In 2019 IEEE International Symposium on Workload Characterization (IISWC). 189ś202. https:
//doi.org/10.1109/IISWC47752.2019.9042047

[66] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. 2019. Benchmarking tpu, gpu, and cpu platforms for deep learning. arXiv preprint
arXiv:1907.10701 (2019).

[67] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt
Keutzer. 2019. Fbnet: Hardware-aware eicient convnet design via diferentiable neural architecture search. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10734ś10742.
[68] Bichen Wu, Forrest Iandola, Peter H Jin, and Kurt Keutzer. 2017. Squeezedet: Uniied, small, low power fully convolutional neural

networks for real-time object detection for autonomous driving. In Proceedings of the IEEE conference on computer vision and pattern

recognition workshops. 129ś137.
[69] Huaizheng Zhang, Yizheng Huang, Yonggang Wen, Jianxiong Yin, and Kyle Guan. 2020. InferBench: Understanding Deep Learning

Inference Serving with an Automatic Benchmarking System. arXiv preprint arXiv:2011.02327 (2020).
[70] Xiaofan Zhang, Hanchen Ye, Junsong Wang, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu, and Deming Chen. 2020. DNNExplorer: A

Framework for Modeling and Exploring a Novel Paradigm of FPGA-Based DNN Accelerator (ICCAD ’20). Association for Computing
Machinery, New York, NY, USA, Article 61, 9 pages. https://doi.org/10.1145/3400302.3415609

[71] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shulenet: An extremely eicient convolutional neural network for
mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition. 6848ś6856.

[72] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, 8697ś8710.

[73] Junhua Zou, Ting Rui, You Zhou, Chengsong Yang, and Sai Zhang. 2018. Convolutional neural network simpliication via feature map
pruning. Computers & Electrical Engineering 70 (2018), 950ś958. https://doi.org/10.1016/j.compeleceng.2018.01.036

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1109/IISWC.2017.8167764
https://doi.org/10.1109/IISWC.2017.8167764
https://doi.org/10.1109/TPAMI.2009.187
https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.000-4
https://doi.org/10.1109/IISWC.2018.8573527
https://doi.org/10.1109/IISWC.2018.8573527
https://doi.org/10.23919/DATE.2018.8341973
https://doi.org/10.23919/DATE.2018.8341973
https://doi.org/10.1109/ICCAD45719.2019.8942085
https://developer.nvidia.com/tensorrt
https://doi.org/10.1109/ACCESS.2018.2869929
https://doi.org/10.1109/JIOT.2020.2981684
https://doi.org/10.1109/JIOT.2020.2981684
https://doi.org/10.1109/IISWC47752.2019.9042047
https://doi.org/10.1109/IISWC47752.2019.9042047
https://doi.org/10.1145/3400302.3415609
https://doi.org/10.1016/j.compeleceng.2018.01.036

32 • H. Bouzidi et al.

A APPENDIX: HYPERPARAMETERS TUNING OF THE PREDICTION MODELS

Designing accurate prediction models requires choosing optimal hyperparameters conigurations for each ML
algorithm before the training. To this end, we run an exhaustive grid search on the hyperparameters’ search space.
During this process, we evaluate the goodness of the explored hyperparameters via the K-fold cross-validation
[54] to identify the optimal hyperparameter values and combinations. Afterward, the ML models with the optimal
found hyperparameters are trained on their internal parameters using the training dataset. We give more details
about the hyperparameters search space for each ML prediction algorithm in table 15.

Table 15. Hyperparameters of the prediction models and the default values before the tuning

Prediction model Hyperparameters Range Default value

Poly Degree [2- 20] 2
Lambda [1e-8- 1.0] 1

SVR

Cost (C) [0.5- 5000] 1
Epsilon [0.01- 5] 0.1
Gamma [0.01- 10] scale
Kernel [linear- rbf- poly] rbf
Degree [2- 20] 3

MLP

Hidden dim [4- 72] 100
Num. Layers [1- 5] 1
Activation [identity- logistic- tanh- relu] relu
Optimizer [sgd- adam] adam
Init. learning rate [1e-4- 1e-1] 0.001
Schedule. learning rate [constant- adaptive] constant
Alpha [1e-6- 1e-1] 0.0001
Max. iterations [100- 3000] 200
Early Stopping [False- True] False

Random Forest

Num. estimators [10- 500] 100
Max. depth [10- 300] None
Min. samples split. [1- 10] 2
Min. samples leaf [1- 10] 1
Max. features [auto- sqrt- log2- None] auto
Bootstrap [True- False] True

XGBoost

Early Stopping [True- False] False
Rounds [100- 3000] 100
Max. depth [5- 20] 15
Min. child weight [5- 15] 5
Sub.sample [0.1- 1.0] 1
Col. sample bytree [0.1- 1.0] 1
Gamma [0.01- 10] 0.1
Learning rate [0.01- 0.9] 0.3

ACM Trans. Embedd. Comput. Syst.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Handcrafted CNN
	2.2 Benchmarking and performances analysis
	2.3 Performances modeling

	3 Proposed Approach
	3.1 Problem formulation
	3.2 CNN characterization
	3.3 Input features selection
	3.4 Prediction algorithms

	4 Evaluation Methodology
	4.1 CNN Benchmarking
	4.2 Data Collection
	4.3 Model Design
	4.4 Experimental Setup

	5 Approach Analysis
	5.1 Results Discussion
	5.2 Execution Time Prediction
	5.3 Power Consumption Prediction
	5.4 Memory Usage Prediction

	6 Approach Analysis: Advantages and Limitations
	6.1 Advantages of our approach:
	6.2 Limitations of our approach

	7 Conclusion and Future Work
	References
	A Appendix: Hyperparameters tuning of the prediction models

