
A Memory Reliability Enhancement Technique for Multi
Bit Upsets

Alexandre Chabot1,2, Ihsen Alouani3, Réda Nouacer2, Smail Niar1

Abstract

Technological advances allow the production of increasingly complex electronic
systems. Nevertheless, technology and voltage scaling increased dramatically
the susceptibility of new devices not only to Single Bit Upsets (SBU), but also
to Multiple Bit Upsets (MBU). In safety critical applications, it is mandatory to
provide fault-tolerant systems, providing high reliability while meeting applica-
tions requirements. The problem of reliability is particularly expressed within
the memory which represents more than 80% of systems on chips.

To tackle this problem we propose a new memory reliability techniques re-
ferred to as DPSR: Double Parity Single Redundancy. DPSR is designed to
enhance computing systems resilience to SBU and MBU. Based on a thorough
fault injection experiments, DPSR shows promising results; It detects and cor-
rects more than 99.6% of encountered MBU and has an average time overhead
of less than 3%.

Keywords: Reliability, MBU, Fault Injection, Memory

1. Introduction

Thanks to manufacturing process and integration improvements, modern
mobile and embedded systems are now able to execute complex applications
with advanced functionalities, such driver assistant systems in autonomous au-
tomotive, drones etc.5

Consequently, System-on-chip (SoC) architectures are becoming increasignly
complex and the underlying hardware has a particular impact on the energy
consumption, performance and reliability. In fact, soft errors phenomenon rep-
resents a serious challenge to new computing systems. Soft errors result from
a voltage transient event induced by alpha particles from packaging material10

I

Email addresses: alexandre.chabot@cea.fr (Alexandre Chabot),
ihsen.alouani@uphf.fr (Ihsen Alouani), reda.nouacer@cea-list.fr (Réda Nouacer),
smail.niar@uphf.fr (Smail Niar)

1LAMIH, UMR CNRS, Université Polytechnique Hauts-de-France, France
2CEA-LIST, France
3IEMN, UMR CNRS, Université Polytechnique Hauts-de-France, France

Preprint submitted to Elsevier October 5, 2020

or neutron particles from cosmic rays [1]. The event is created through the
collection of charge at a p-n junction after a track of electron–hole pairs is
generated. A sufficient amount of accumulated charge in the struck node may
invert the state of a logic device, such as a latch, static random access memory
(SRAM) cell, or logic gate, thereby introducing an error into the hit circuit. In15

past technologies, this issue was considered in a limited range of applications
in which the circuits are operating under aggressive environmental conditions
like aerospace applications. Nevertheless, shrinking the transistor size and re-
ducing the supply voltage in new technologies result in a remarkable decrease
of the capacitance per transistor leading to a higher vulnerability within cir-20

cuits nodes[2]. Hence, soft errors become a serious challenge in complementary
metal–oxide–semiconductor (CMOS) circuits, especially for memories. More-
over, the Semiconductor Industry Association (SIA) roadmaps indicate that
embedded memories are exceeding 90% of the chip area [3]. Consequently, the
overall systems reliability is considerably affected by the memory immunity to25

errors. Despite of the numerous published works, memories reliability enhance-
ment is still an open problem especially for critical applications.

For this reason, next generation embedded systems have to be more resilient
to transient faults. Robustness against transient faults, is for example, a stan-
dard requirement for safety-critical applications such as autonomous driving30

systems.
Consequently, a large number of works have been devoted to study the im-

pact of transient faults caused by energy particles striking in systems running
safety critical applications. A large set of software and hardware solutions have
been proposed to detect and eventually correct the resulting faults. Space and35

time redundancy solutions, such as Triple Modular Redundancy (TMR) com-
bined with a voting system, have been widely used to support Single Event
Upset (SEU).

However, in most of the existing approaches real environmental factors are
not taken into account. Moreover, the rise of Multiple-Bit Upset (MBU) in40

nanometer technologies-based SoC, creates the need of simulation tools to ex-
plore their effect on system reliability .

In this paper, we present a memory reliability technique and provide a com-
parison with related techniques based on different metrics. In Section 2, we
expose a state of the art about fault models, fault injection techniques and mem-45

ory reliability techniques. In Section 3, we present our first contribution, which
corresponds to an improved version of the Double Parity Single Redundancy
technique. In Section 3 we present, our second contribution, a new method-
ology to inject fault during simulation. Our simulation-based fault injection
methodology is detailed in this section. Thanks to this methodology we com-50

pare different memory reliability enhancement techniques. Finally, we conclude
our work in Section 4.

2

2. State of the Art

In this section, we first give basic definitions. we then survey existing meth-
ods to model and simulate single and multiple bit upset in SoC. We also present55

existing methods to improve system reliability.

2.1. Fault Types

Embedded systems are subject to faults whose distinction is made upon their
duration. The three types are the following [4] [5]:

1. Permanent Fault. Permanent faults are caused by an undesired short60

or open circuit. When permanent faults appear, they are in place for the
rest of the system life. For this reason, they are corrected by changing the
hardware. Due to functioning or fabrication issues, permanent fault occur
mainly due to three different causes [6]:

• Manufacturing and Design Time: those faults comes from error in the65

design or in the manufacturing process of the Hardware and manifest
as stuck at one/zero and delay.

• Wearout Mechanisms: those mechanisms are influenced by the aging
of the system. Negative-Bias temperature instability, hot carrier in-
jection, time-Dependent dielectric breakdown and electro-migration70

are some of the mechanisms that produce this kind of faults. All cited
mechanisms induce at the beginning intermittent faults that become
permanent faults.

• Process Variations: The manufacturing induces a lot of process vari-
ability such as a non perfect doping for example. This randomness75

causes differences between transistors of the same chip.
2. Intermittent Fault. Intermittent faults occur sporadically. They do not

appear continuously but rather at irregular intervals. Intermittent faults
are often considered as early indicators of potential permanent faults.

3. Transient Fault. Transient faults are logical faults in circuit’s nodes that80

occur in a random manner mainly due to charged particle emissions [7].
The fault is manifested by one or more bit flips or computation error. This
change is called a single event and can cause a single or a multiple upset
Transient faults are non-permanent faults. The system is only perturbed
during a small amount of time. The time of the perturbation is reduced85

to an instruction at the application level. The metric used to evaluate the
sensitivity of the system to its environment is the soft error rate (SER)
[8]. The SER is of course influenced by the type of particle encountered
in the environment. At the ground level, there are three kinds of particles
that are able to modify the state of a system. First, alpha particle is the90

most type of encountered particles. Besides, the atmospheric neutrons are
usually separated in two categories based on their energy: atmospheric
neutrons with an energy inferior to 1 MeV and those with an energy higher
than 1 MeV. In the space environment, it exists different radiation sources

3

such as: Van Allen radiations, solar activity and cosmic radiations [9].95

Energies of those cosmic particles vary between some MeV and up to
1030.

The main focus of our study concerns transient faults. SER determines the
number of soft errors per unit time. SER unit is the Failure In Time (FIT);
which represents the number of failures expected for a device during one billion100

functioning hours.

2.1.1. Multiple Bit Upsets

To maintain the Moore law prediction with the reality [10], transistor size
has been reduced. This size shrinking has a direct impact on the sensitivity
of Hardware to soft errors with the apparition and the raise of multiple faults105

observed for newest technologies. This new phenomena is firstly highlighted in
[2] which shows that transistor miniaturization goes with the rise of single event
multiple bit upsets.

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

180 150 90 65 40

1-BU 2-BU 3-BU 4 or more BU
Technology (nm)

Normalized MBU repartition

Figure 1: Single and Multi Bit Upset (BU) percentages by technology nodes in nm for SRAMs
[2]

Figure 1 shows the growing presence of multiple bit upsets patterns. For
example, in SRAMs under 40nm, more than 40% of particle strikes result in110

multiple bit upsets [2]. Usually, single event were linked to a single upset. With
the rise of multiple upsets, Figure 1 shows that this hypothesis is valid only only
for previous technologies.

In Table 1, we present results obtained by Radaelli et al. [11] regarding the
distribution of soft errors in 150nm commercial available SRAMs. The second115

line of the table is linked to the Table 2. For example, a 1-2 configuration
corresponds to all upsets where two horizontally adjacent bits are flipped. This
table shows that for single event 2-bit upsets, it is more frequent to observe two
horizontally adjacent flips than two vertically adjacent ones. Multi-cell upset

4

Table 1: Cumulative 2-Bit Event Count Normalized to 1000 for 150nm SRAMs for Different
Particle Strikes Energy (MeV) [2]
Energy Double-bit pattern

1-2 1-4 1-5 Others
22 MeV 773 136 80 11
47 MeV 681 180 117 22
95 MeV 653 192 132 23
144 MeV 686 156 133 25

Table 2: Pattern Injection Square
1 2 3
4 5 6
7 8 9

events tend to be a concern especially for patterns that flip multiple bits in the120

same row [2].

2.1.2. Probabilistic Model

Even though the bit SER saturate or even decrease for latest technologies,
the system SER is exponentially growing due to the high level of integration
[12]. It is thus mandatory to consider soft errors during the development of a125

critical system. To be able to study soft errors, a probabilistic model can be
used. In our work we focused our study on soft errors impacting memory.

First, depending on the impacted memory region, the flip operation may
alter either a data value or an instruction code, but this information is not
taken into account when creating the fault appearance probabilistic model. The130

reliability law is given by Equations (1) and 2, where � is the constant failure
rate, R is the reliability distribution, MTTF is the mean time to failure and t
is the time.

R(t) = exp(�� ⇤ t) (1)

MTTF = 1/� (2)

This model is based on a prior evaluation of the system failure rate and does135

not depend on system environmental conditions. Evolution of the fault model
have been proposed in [13] and [14] who considered environmental conditions.
In [13], failure rates are defined based on temperature while in [14], authors take
power consumption into account. FIDES global electronic reliability engineer-
ing methodology guide is a generic approach to compute architectures failure140

rates [15]. Based on FIDES guide [15], physical and process impacts have to
be considered for a precise failure rate � computation. FIDES work is a sum
up of what can be found in the literature regarding all criteria impacting the
environment impact onto the failure rate. To compute the physical impact on
�, environmental conditions are modeled by providing: ambient temperature,145

5

temperature cycles, relative humidity, vibrations, saline pollution, environmen-
tal pollution, application pollution and chemical protection.

AFtemperature = exp(
Ea

Kb
(
1

T0
� 1

T
)) (3)

AFhumidity = (
H

H0
)p ⇤ exp(11604 ⇤ Ea ⇤ 1

T0 + 273
� 1

T + 273
) (4)

AFvibrations = (
GRMS

GRMS0
)p (5)

In Equations 3, 4 and 5:150

• Ea is the Activation Energy

• T0 is the reference temperature in which the base failure rate has been
computed, usually 20�C.

• T is the temperature of the environment

• Kb is the Boltzmann Constant = 8.617.10�5eV/K155

• H is the relative humidity of the environment

• H0 is the reference relative humidity in which the base failure rate has
been computed, usually 70%

• p is the power of acceleration for each factor.

• GRMS is the efficient vibration.160

• GRMS0 is the reference vibration, usually = 0.5GRMS

This model is usable in different processes to evaluate system reliability at
different stages of the system development life-cycle. In particular, we inspired
our fault model used during our fault injection to the presented state of the art.
Our fault model will be exposed in the Section 4.165

2.2. Fault Injection Techniques

Fault Injection has been studied since decades now. Up to our knowledge,
the first paper dates of 1967 [16]. Nowadays, fault injection is used at different
levels and for different applications such as Operating System, Smart Card,
Web services, etc. There are three different objectives when realising a fault170

injection campaign. First, ensuring the correct functioning of error detection
and correction mechanisms. Second, evaluating the overall robustness of the
system [5]. Finally, reducing the risk to discover unexpected scenario after the
commercialization of the product.

6

2.2.1. Definitions175

All fault injection environments are usually composed by the following com-
ponents [17], [6], [18]:

1. Fault injector that modifies the system current state.
2. Fault library that stores different fault types, fault locations, fault times,

and appropriate hardware semantics or software structures.180

3. Workload generator which generates and stores different workload with
different data input.

4. Controller and monitor, that control and track the injection target.
5. Data collector and analyzer which perform data collection, analysis and

processing.185

The components just presented vary in implementation complexity regarding the
type of fault injection technique used. Indeed, existing fault injection techniques
can be classified in four major types:

1. Hardware Fault Injection. In this technique external equipment is used
to introduce faults into the hardware. We can cite laser for the Smart190

Card testing. We can also cite the recent work made onto the use of
X-Ray in [19], which improves the injection by laser by making possible
to target a transistor precisely. This technique is only usable in middle
and late design phases as the software must run onto the chosen hardware
to be able to run experiments. This technique has the advantage to be195

extremely representative of what can happen in a real system. However,
targeting a specific component in the circuit is very complicated as the
technology evolves. For instance, in [19] on 60nm technology, means used
to target specific transistor were very complicated to set up and costly.

2. Virtual platform or Simulation-based Fault Injection: When used, this200

technique imposes the development team to dedicate time to develop a
simulation tool representative of the hardware expected [18]. Once done,
the Fault injection can be applied at different levels:from transistor up
to algorithm level. The main advantages of this solution is the early
access of the testing procedure and the possibility to test during different205

development phases or scenario. It allows to target easily time and location
of the injection. Main drawbacks are the simulation time that can be
long if the system is fully simulated and the time needed to develop the
simulator.

3. Emulation-based Fault Injection: The purpose is to rise the match be-210

tween the simulated hardware and the real one while maintaining a de-
cent testing time. This approach requires however more design time. Field
Programmable Gate Arrays (FPGA) are most of the time used in this ap-
proach to represent the future hardware and the injection is realised thanks
to software modules. The main advantage is the correlation between the215

simulation engine and the future hardware and the speed-up compared
to Virtual platform low level. The drawback is of course the time used
to develop the simulator and the time consumed by the update needed
during the development of the product.

7

4. Software Fault Injection: this technique injects fault in the running soft-220

ware either during the debugging phase or by adding source code [17].
The lack of hardware behavior consideration is the major drawback of
this technique as it is not representative of the final system. Furthermore,
we modify the software, we thus need to be careful when removing the
added code by ensuring the system remaining reliable. During certifica-225

tions processes, the final system is evaluated and issues may happen when
the code furnished is not the one tested.

2.2.2. Simulation-Based Fault Injection

In this work, we focus on virtual platform-based fault injection. This group
of fault injection technique can be split in two different approaches:230

1. Deterministic fault injection: The fault injection is directly processed
by the designer. Hence, all characteristics of injection are provided by
the designer to the fault injector. Indeed, the fault library in this case is
replaced by critical scenarios. This method is used to focus the analysis
onto a critic code part or instruction of the application. It is also used235

to replay a scenario that have been proved to exacerbate issues when the
non deterministic fault injection find the scenario.

2. Non Deterministic Fault Injection: This injection mode can be either
applied at run-time [20] or at compile-time. If applied at compile-time,
faults are injected in the target hardware or in the executed code. This240

procedure is more used to test a given scenario that have raised concerns
regarding the system reliability. The non deterministic characteristic of
this injection comes from the impossibility to know before the run of the
system the time and the location of the fault. Indeed, time, location
and type of fault are determined by a probabilistic model. At run-time,245

the fault injection type, instant and location are determined by the Fault

Library. This technique is more used to test the system as an entire entity
and to evaluate the system reliability in its environmental conditions. It
serves also to discover problematic scenario unexpected.

One of the main challenges about simulation is to select the correct level250

of abstraction [21]. Choosing the level of abstraction depends on the type of
information the designer would like to obtain and the desired speed of sim-
ulation. Different abstraction levels of simulation exists in system simulators
[22]: High level System, Transnational, Timed Transnational, Register-Transfer
(RTL), Gate, Transistor, etc.255

Simulating a SoC at a high level of abstraction allows to modelize easily a
complex system and permits important speed in running the application on the
simulated architecture. However, it does not make possible to measure execu-
tion time in the simulator nor to extract memory behaviour. At the opposite,
low level simulation, such as RTL or transistor level, allows to have accurate260

measurements at the cost of low execution rate of instruction by the simulator.
Ideally having a trade-off between measurement accuracy and simulation speed
is interesting. For this reason, the timed transaction-level modeling (or timed

8

Table 3: Comparison of Fault Injection Tools
Name Injection Level Determinism MBU
LEON3 [20] architecture random yes
FERRARI [25] software free choice possible
J-SWIFT[26] software random possible
BITFIT [27] prototype model-based possible
SASSIFI [28] control flow random no
GeFIN [29] micro-

architecture
random yes

TLM) have been chosen in this work. Timed TLM [23, 24] offers the possibility
to explore a large set of architectures in a relatively reduced period of time with265

a good level of accuracy.
Table 3 compares some of the existing fault injection method. The fault

injection tools presented are usually associated with different way to determine
the injection type, location and its plausibility. J-Swift [26] and Ferrari [25] are
example of tools that propose fault injection to evaluate system robustness How-270

ever, up to our knowledge, only one work has included multiple bit upsets into
injection fault library [20]. This work has been made onto LEON3 architecture.
The authors use random fault injection in time and in memory location.

2.3. Reliability Techniques and Means

To protect systems against MBU, reliability techniques and means are used275

at different levels of the system. Reliability techniques have different goals when
implemented which are [18]:

1. Prevention: avoiding the fault to occur on the system.
2. Tolerance: prevent failures when faults are present in the system
3. Correction: prevent failures by correct faults before propagation280

4. Forecasting: evaluate the system behavior and comparing it to faulted
behavior.

In the CLEAR project [30], authors compare cross layer reliability tech-
niques. The authors assume that the environment impact on the memory is
limited to single upsets.285

In the rest of this section, we present some of the existing memory reliability
techniques used to prevent single upsets.

1. Parity. This technique consists in adding a bit to the memory line or
column to compute the number of 1 or 0 stored in the line or the column.
Such as showed in Figure 2, during the write operation, a XOR operation290

is realized between all bits to store and the result is added to the stored
bits. This technique detects all single bit upsets but cannot determine the
position of the corrupted bit in memory. The correction of the error is
thus not possible.

9

b0 b1 b2 b3

Data to store Memory

WRITE

b0 b1 b2 b3 pw

b0 b1 b2 b3 pw

𝑝𝑤 == 𝑏0 푥𝑜𝑟 𝑏1 푥𝑜𝑟 𝑏2 푥𝑜𝑟 𝑏3

b0 b1 b2 b3
READ If
pw=pr

𝑝𝑟 == 𝑏0 푥𝑜𝑟 𝑏1 푥𝑜𝑟 𝑏2 푥𝑜𝑟 𝑏3

Figure 2: Parity Functioning

2. Double and Triple Memory Redundancy (DMR/TMR). As shown295

Figure 3 DMR/TMR techniques consist in doubling or tripling the data
that is stored. In the case of the double respectively triple redundancy,
the data is stored twice respectively three times in memory. Memory
areas where data are stored have to be separated enough to consider a
particle strike modifying only one stored version. DMR does not allow to300

correct the value perturbed as it is impossible to know the value modified.
The triple redundancy however allows to determine the line that has been
perturbed. Indeed, the value is stored three times in memory during the
write operation. During the read operation, a voter is associated to decide
the correct value between the three proposed and the majority determines305

the real value. With the hypothesis of the gap sufficiently big between
redundant memory areas, the DMR allows to detect all kinds of errors
and the TMR allows to detect and correct all kinds of errors. The main
disadvantage of this memory technique is its memory space usage.

b0 b1 b2 b3

Data to store

Memory

WRITE

b0 b1 b2 b3 @n+1

@n+2

.

.

.

.

.

.

.

.

b0 b1 b2 b3 @1

@2

Address

b0 b1 b2 b3 READ the most represented value

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.b0 b1 b2 b3 @2n+1

@2n+2

WRITE

WRITE

Data read

Figure 3: TMR Functioning

10

Other solutions have been developed to address specific need for robustness
by replicating different part of the hardware. However, these solutions go310

with a rise in cost and complexity as sometimes a single erroneous bit
makes a entire part of the memory unusable. With process variations
increase, the solution seems to reach its limits [31], [32].

3. Parity-Based Mono-Copy Cache (PmC2). In [33], authors propose
to combine the double memory redundancy and the parity to create the315

PmC2 technique. Such as shown Figure 4 In this technique, during write
operations, the parity bit is used and associated with a redundancy pro-
cedure to store the data in another memory location. During the read
operation, the parity bit of the value read is compared to the parity bit
stored, if there is a difference, the value taken is the one stored redun-320

dantly. This technique is a trade-off between single parity bit and the
TMR, it uses the power of detection of the parity bit and use the redun-
dancy to correct the fault once detected.

b0 b1 b2 b3

Data to store

Memory

WRITE

b0 b1 b2 b3 pw @1

@2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

b0 b1 b2 b3 pw @1

@2

pw= 𝑏0 𝑥𝑜𝑟 𝑏1 𝑥𝑜𝑟
𝑏2 𝑥𝑜𝑟 𝑏3

Address

b0 b1 b2 b3
READ If
pw=pr

pr= 𝑏0 𝑥𝑜𝑟 𝑏1 𝑥𝑜𝑟
𝑏2 𝑥𝑜𝑟 𝑏3

b0 b1 b2 b3 @n+1

@n+2WRITE

b0 b1 b2 b3 @n+1

@n+2READ If
pw!=pr

Figure 4: PmC2 Functioning

4. Single Error Correction Double Error Detection
(SECDED). Even if it exists optimized version of the Single Error Cor-325

rection Double Error Detection mechanisms [34] the principle stays the
same for all implementations. We base our study onto SECDED codes
based on Hamming codes. Such as showed Figure 5 the SECDED protec-
tion can be seen as an extension of the parity bit allowing to detect double
error and correct single error. Data word represented by bx bits are pro-330

tected by adding extra information represented by the px bits. Equations
6, 7, 8, 9, and 10 give an example of SECDED implementation for 8 bits
data words. During the write operations, px bits are computed and stored
together with the dx bits. A last protection bit (called p4 Equation 10)
is added that is a xor between all the other px bits but is not represented335

in Figure 5. During the read operations, the same operations are done to
ensure that the value protected have not been modified between the read

11

and the write. This solution is expensive in terms of computation time,
the main advantage of this technique is that it scales very well when the
data size to protect raises.340

p0 = d0� d1� d3� d4� d6 (6)

p1 = d0� d2� d3� d5� d6 (7)

p2 = d1� d2� d3� d6 (8)

p3 = d4� d5� d6� d7 (9)

p4 = p0� p1� p2� p3 (10)

p0 p1 d0 p2 d1 d2 d3 p3 d4 d5 d6 d7

p0

p1

p2

p3

Figure 5: SECDED example for 8 bits data word

345

5. Double Error Correction Triple Error Detection
(DECTED)
First time published in the beginning of 1980s [35], this technique is now
used in safety critical systems. Indeed, such as explained in the Section
2.1.1, the number of MBU presence is constantly rising with the reduction350

of transistor size. Thus, for systems needing a strong reliability aspect,
they evolve from a SECDED error correcting code to a DEC-TED code.
Far more complex to implement and thus more performance downgrading,
this technique sets itself as an intermediate between the existing SECDED
and the TMR. In our experiments, we implement the one detailed in [35]355

because of its widely usage. The extra data stored are separated in three
categories and we are going to give an example for 32 bits data word to
protect that induces 16 bits of protection:
(a) The first group is composed by 7 bits evenly distributed. This group

has the same power of correction and detection of SECDED (with360

more bits used).
(b) The second group is composed by 8 bits similar to the first group, but

in this case, 8 bits are used and those bits are computed differently
from the first group. Due to this feature, the system is capable to
detect triple error.365

12

(c) The final group is composed by a single bit that is the parity of the
bit in the second group. It allows to detect single error that may
happen onto check bits and thus reduce the number of false positive.

Even if the optimized number to double correct and triple detect faults is
11, this scenario in real implementations is far more realistic as it exists370

a granularity for memory and memory are most of the time composed by
power 2 data storage capacity. In the literature we may find techniques
that derive from SECDED or DECTED, such as [36]. They tend mainly
to reduce time or hardware complexity of the encoding and the decoding.

6. Physical Bit Interleaving. As multiple faults number increase, and375

the complexity of techniques used to fight against multiple faults will not
stop to rise, the physical bit interleaving is a solution less complex. The
principle of this solution is to interleave words together on the same line
and thanks to this procedure, multiple faults on the same line are reduced
to smaller multiple faults and thus less complex error correcting code are380

enough to correct errors [37]. However, during a read, the entire line is
read and a operation has to be made to obtain the desired word. A table
of corresponding position is stored in memory and two interleaved words
has to be accessed at two different time. it is also more power consuming
[38].385

As we can identify here, solutions proposed to protect the memory are either not
efficient against multiple bit upsets, or too complex and thus time and energy
consuming or hugely impacting the memory size which is critical for embedded
systems. In the next Section, we propose a new memory reliability technique
developed with awareness about multiple bit upsets and embedded systems con-390

straints. We will follow this proposition with a new metric to compare reliability
enhancement techniques.

3. Double Parity bit Single Redundancy

3.1. Presentation and Motivation

As explained in previous Sections, the MBU phenomena is becoming more395

crotical with technology scaling down along with the high performance require-
ments for time-critical applications. To address this problem, we propose a new
memory reliability enhancement technique considering MBU patterns.

TYhe proposed solution consists of a double parity bit associated with data
redundancy. We refer to it as DPSR: Double Parity Single Redundancy. DPSR400

objective is to cope with most encountered MBU patterns in a comprehensive
manner. Contrary to state-of-the-art techniques that assume that the MBU
location is a totally random phenomenon, our technique takes into account
spatial MBU pattern probabilities. However, as shown in Section 2.1.1, this
assumption is not accurate. In fact, the particularity of multiple faults occuring405

within memory cells is the non uniformity of the spatial error distribution with
respect to proximity of flipped bits [2]. Regarding this particularity, we suggest
to use two parity bits for the detection. As showed later in Section 3.2.1, the

13

proposed technique detects more than 99.6% of encountered upsets. Adding a
third bit would rise this percentage of 0.3% but requires more hardware resources410

to be implemented Using a fourth bit is enough to correct all considered fault
patterns. However, it results in a high area overhead that is not only problematic
from a resource utilization perspective, but also increases the circuit exposure
to transient events. For this reason, we decided to stick to only two parity bits.

In terms of redundant data location, we decide to place the redundancy415

in a separate non adjacent memory location to the initial word to avoid its
corruption within the same event. This redundant storage will be useful for
data recovery in case of a detected corruption. Hence, our technique deploys 2
bits for fault detection and redundancy for error correction. It’s worth noticing
that depending on the required reliability, this technique can be adapted for420

detection only, or for detection and correction.
Figure 6 gives an illustrative overview on the proposed technique during a

write operation in memory for an 8 bits-word. When data is stored, two parity
bits are computed. Equations 11 and 12 give the formula for the even and the
odd parity bits in the case of an 8 bits-word. Once both bits are computed, the425

write operation consists of storing the initial word, the redundant word as well
as the parity bits. The redundant data, as mentioned beforehand, is not stored
in adjacent addresses but rather in different memory location.

As shown in Figure 6, bits po and p1 correspond, respectively, to even and
odd parity bits of the original data. During a read operation, as illustrated by430

Figure 7, the original data is read. Even and odd parity bits are computed for
the read value. The computed even and odd parity bits are compared to the
stored parity bits. If they match, we consider the data to be fault-free and the
read operation carries on. In the case of a mismatch, either that data value or
the parity bits has been corrupted. Therefore, the read operation returns the435

redundant data instead.
The choice of interlaced bits to compute the two parity bits comes from

the observation that it is very unlikely to find a 2 bit upsets that have a gap
between the two flipped bits. Regarding the work in [2] it represents less than
2% of 2-bit-upsets, which makes less than 0.6% of total observed patterns for440

40nm SRAM technology. Moreover, in the case of a 3-bit-upset, the only pattern
that may lead to corruption even with our solution is when three horizontally
aligned bits are flipped. The probability to observe this pattern for a 3 bits upset
is less than 0.28% that represents less than 0.028% of total observed upsets for
40nm SRAM technology. In the next parts, we compare with more details the445

proposed technique to other ones in presence of MBU.

p0 = b0� b2� b4� b6 (11)

p1 = b1� b3� b5� b7 (12)

3.2. Probabilistic comparison for DPSR

In this section we evaluate existing memory reliability techniques and our450

technique against the data provided by [2] and exposed in Section 2. The

14

b0 b1 b2 b3 b4 b5 b6 b7

Data to Write in Memory Memory

Write

b0 b1 b2 b3 b4 b5 b6 b7 @n+1

@n+2

@n+3

@n+4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

b0 b1 b2 b3 b4 b5 b6 b7 p0 p1 @1

@2

@3

@4푝0 = 𝑏0 푥표푟 𝑏2 푥표푟 𝑏4 푥표푟 𝑏6

푝1 = 𝑏1 푥표푟 𝑏3 푥표푟 𝑏5 푥표푟 𝑏7

푛 푠푢𝑓𝑓푖𝑐푖𝑒푛푡푙푦 𝑏푖𝑔 푡표 𝑐표푛푠푖𝑑𝑒푟 𝑎 푝𝑎푟푡푖𝑐푙𝑒
푠푡푟푖푘𝑒 푡표 𝑎𝑓𝑓𝑒𝑐푡 표푛푙푦 표푛 표𝑓 𝑏표푡ℎ 푚𝑒푚표푟푦

𝑎푟𝑒𝑎푠

Address

Figure 6: DPSR Write for 8 bits word

b0 b1 b2 b3 b4 b5 b6 b7

Data read in Memory Memory

READ If
Eq1=Eq2=TRUE

b0 b1 b2 b3 b4 b5 b6 b7 @n+1

@n+2

@n+3

@n+4

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

b0 b1 b2 b3 b4 b5 b6 b7 p0 p1 @1

@2

@3

@4Eq1: 푝0 == 푏0 푥표푟 푏2 푥표푟 푏4 푥표푟 푏6

Eq2: 푝1 == 푏1 푥표푟 푏3 푥표푟 푏5 푥표푟 푏7

Address

b0 b1 b2 b3 b4 b5 b6 b7

READ If
Eq1=FALSE

OR Eq2=FALSE

Figure 7: DPSR Read for 8 bits word

upset due to a single particle strike depends on the carried energy. To consider
this parameter, the study of memory reliability techniques is made for different
particle strikes energy. The choice of the implemented reliability technique
depends on orthogonal parameters. For this reason, choosing a perfect reliability455

protection is impossible. Indeed, in the case of a multi-objective problem, it is
impossible to maximize all parameters. The goal in such problems is to find
solutions that offer interesting trade-off among all solutions. The choice of a
memory reliability technique is crucial and has to be a trade-off between: error
detection and correction, memory space, and delay induced by the reliability460

technique. In this probabilistic study, we evaluate the detection probability, the
correction probability and the memory space used by the reliability technique.
We assume that, due to the different locations of initial data and redundant
data, faults occurring within the initial data do not result in bit flips in the
redundant one. The probabilistic model is based on Equation 13 and data used465

are from [2]. In Equation 13, pBU and pshape correspond to the probability to

15

Table 4: Detection probability of memory reliability techniques for 22 MeV particle strikes
Parity DMR SECDED DPSR DECTED

1BU 1 1 1 1 1
2BU 0.22 1 1 0.999 0.999
3BU 0.059 1 0.999 0.994 0.999
4BU 0.010 1 0.990 0.976 0.999
Mean 0.704 1 0.999 0.996 0.999

observe 1, 2, 3 or 4 BU and to the shape of upsets to inject, respectively. They
both depend on the memory technology and on the particle energy. Finally
pfault is the probability to observe a given fault pattern.

pfault = pBU (technology, particle energy)⇤pshape(technology, particle energy)
(13)

3.2.1. Detection470

The detection rate is the probability of a memory technique to detect a fault
in a given environment. In this section we compare the proposed technique with:
parity technique (that has the same detection rate as the PmC2 technique),
DMR, SECDED, DECTED techniques. The detection probability pdetection is
computed using Equation 14, where pdetectionfault equals to 1 if the technique475

detects the type of fault, and to 0 elsewhere. We assume a single fault affecting
only one memory area. As shown in Table 4, all techniques have the same rate
for detecting single faults. However, this rate goes down when multiple upsets
appear. The DMR is the best technique to detect multiple faults, the DPSR
that is our proposed technique is close to what SECDED and DMR achieve for480

detection rate.
pdetection =

X

fault

(pfault ⇤ pdetectionfault) (14)

3.2.2. Correction

The correction rate is the probability of a technique to detect and correct
an error in a given environment. The correction rate pcorrection is computed485

following Equations 15 and 16 where pcorrectionfault equals to 1 if the technique
corrects the type of fault and to 0 elsewhere. In this Section, we compare DPSR
correction rate with PmC2 [33], TMR and SECDED techniques. Table 5 shows
that the proposed technique outperforms SECDED. In fact, SECDED detects
up to 2 upsets but is only able to correct single fault in a line. TMR has the490

best correction rate but DPSR is close to its results.

pcorrection =
X

fault

(pfault ⇤ pdetectionfault ⇤ pcorrectionfault) (15)

pcorrection = pdetection ⇤ pcorrectionfault (16)

16

Table 5: Correction probability of memory reliability techniques for 22 MeV particle strikes
PmC2 TMR SECDED DPSR DECTED

1BU 1 1 1 1 0.9993
2BU 0.22 1 0.226 0.999 0.9993
3BU 0.059 1 0.0646 0.994 0.9992
4BU 0.010 1 0.010 0.976 0.9988
Mean 0.704 1 0.708 0.996 0.9991

Table 6: Memory space overheads (in bits) for different techniques function of the considered
data size
Data Size PmC2 TMR SECDED DPSR DECTED
8 bits 9 16 5 10 9
16 bits 17 32 6 18 11
32 bits 33 64 7 34 13
64 bits 65 128 8 66 15

3.2.3. Memory Space Overhead

In this Section we compare memory techniques presented in Section 2.3 for 4495

memory word sizes. For this purpose, we compare the overhead of PmC2, TMR,
SECDED, DECTED techniques with DPSR. As shown in Table 6 and Table
7, SECDED has the lowest memory overhead when protecting wider words.
DPSR uses one more bit to protect data than PmC2 but as shown earlier, it
has better detection and correction rates. The worst is obviously the TMR500

technique because of the resource overhead.
Overall, we showed that DPSR offers high reliability with low timing over-

head. In fact, DECTED is a technique that guarantees high robustness to errors
but has a significant timing overhead mainly caused by the propagation delay
of the error correction codes circuitry. This time overhead is systematic, i.e.,505

it is consumed every single memory access regardless of the error occurring.
However, in our case, the parity circuitry is much lower in size as shown earlier.
The time overhead resulting from reading the redundant data is susceptible to
happen only in the case of a detected error in the initial word. Since these
events are rare by nature, this time overhead is practically insignificant overall.510

In the context of time-critical applications, this advantage is very valuable. The

Table 7: Relative memory space overheads for different reliability techniques function of the
considered data size. Values in this table are computed using Table 6.
Data Size PmC2 TMR SECDED DPSR DECTED
8 bits 2.125 3 1.625 2.25 2.125
16 bits 2.062 3 1.375 2.125 1.687
32 bits 2.031 3 1.2185 2.0625 1.406
64 bits 2.016 3 1.125 2.031 1.234

17

second advantage of our technique is its flexibility. In fact, in the case of low to
moderate criticality applications, the correction part of proposed technique that
is implemented through redundancy can be dropped. Changing the reliability
mode is as easy as using a single multiplexer and addressing the redundancy-515

dedicated space in the memory space.

3.3. RETG: Reliability Enhancement Technique Grade

As we can identify in previous sections, different criteria are used to evalu-
ate reliability techniques. Some criteria are antagonistic such as the correction
probability and the memory space used. Others are highly correlated to each520

other such as the complexity of the algorithm and the power consumption. In
the following, we propose a new metric to easily compare reliability techniques.
First we strongly think that we need to separate correction and detection as it
is impossible to correct without detecting but it is possible to detect without
correcting. Moreover, with cross-layer techniques, the detection is sometimes525

enough for a bunch of applications. We consider power consumption and compu-
tation overhead as correlated metrics and thus to consider only the computation
overhead to represent both. Finally the memory overhead is also a criteria linked
to the power consumption but raises also other concerns regarding embedded
systems. Consequently, we take the memory space as a third criteria. Equa-530

tions 17 and 18 are provided to understand our way to compute each of RETG
criteria, regarding detection and correction.

RETGd =
pdetection

MemOv ⇤ PerfOv
(17)

RETGc =
pcorrection

MemOv ⇤ PerfOv
(18)

In Equations 17 and 18, PerfOv and MemOv as computed thanks to Equa-
tions 19 and 20, where T imeunprotected stands for the mean execution time535

without protection and T imeprotected stands for the mean execution time with
the reliability enhancement technique use.

PerfOv =
T imeprotected
T imeunprotected

(19)

MemOv =
datasize+ techniquesize

datasize
(20)

We want now to compute all those parameters for all reliability techniques
previously presented. Such as stated in 2, we use a virtual platform to evaluate540

those techniques. In the next Section, we will explain the structure and the
functioning of our fault injection tool.

4. Structure of the Fault Injector

4.1. Overview

Our fault injection strategy is exposed in Figure 8. The main objective545

of this strategy is to answer the three main questions during a fault injection
testing campaign:

18

1. What is the corresponding fault probability?
2. Where and when fault injection takes place in the memory unit ?
3. What kind of fault do we want to inject, SBU or MBU?550

Fault Injection
Model

Environmental
Conditions

Application
Behavior

Manufacturing
Process

Fault Injection
Probability

Fault
Location

Fault
Type

Figure 8: The Fault Injection Model

Our strategy is based on FIDES standard and on MBU patterns exposed
previously in Section 2. To go further, we take also into account the locality of
memory accesses that we are going to present and justify in the next Section.

4.2. Memory Accesses impact onto Fault Injection

Indeed, during the simulation, we propose to take into account accesses.555

Depending on the technology and on operating conditions, the more a memory
zone is accessed, the more likely an error occurs or not within this zone. Hence,
the memory access frequency impacts fault injection mechanism by weighting
the value of the failure rate for each memory area. To do so, we divide the
memory into different zones and then track each access to the zone dynami-560

cally. Therefore, the probability to inject is different for each memory zone as
shown in Equation 21. In this equation, fi is the frequency of access to the
ith memory zone. ⇡i represents the fault injection probability in the considered
zone depending on fi. In the experiments InjectionLocality is implemented
using Equation 22 where ↵ is a tunable coefficient to make the fault injection565

more or less focusing onto more accessed areas. In the experiments ↵ has been
set to 1.5 for experiments.

⇡i = InjectionLocality(fi) (21)

InjectionLocality(fi) = ↵
fi
nP

i=1
fi

(22)

Authors in [39] mentioned a correlation between temperature and soft error
rate. Temperature can increase soft error rate by up to 20%. Thus, soft er-570

ror rate variation driven by temperature is valid to consider [40]. The memory
thermal profile is directly related to the power density, and thereby to the mem-
ory access frequency. In our model, we consider memory access frequency as a
parameter that directly impacts temperature and by consequence reliability.

19

4.3. Multiple Bit Upsets in the model575

As explained in Section 2.1.1, Multiple Bit Upsets is a phenomenon that, to
the best of our knowledge, is considered for the first time in simulation-based
reliability evaluation. We believe that it is important to inject both single upsets
and multiple upsets to improve representativeness of the proposed fault injection
model. To achieve accurate representation of MBU phenomenon, we identify the580

probability of MBUs patterns. As shown in [11], depending on the technology
and the number of flipped bits during a particle strike, different spatial patterns
have different likelihood to happen. Table 9 is an example of data measured for a
150nm SRAM regarding multiple bit upset [11]. An x-y-z upset means that bits
x,y and z are flipped simultaneously during the fault injection. As all memory585

cells accessible at a given address have the same probability to flip, a random
draw determines the location of cell 1 for pattern in Table 8. Finally, the total
probability is computed and indicated Table 9 in Column (1)*(2) Probability.

Table 8: Pattern Injection Square
1 2 3
4 5 6
7 8 9

Table 9: Pattern Flipping Probability for 150nm technology [11]
Fault Type (1) Type Probability
1-BU 0.6
2-BU 0.3
3-BU 0.1
Upset Patterns (2) Pattern Probability (1)*(2) Probability
1 1 0.6
1-2 0.773 0.2319
1-4 0.147 0.0441
1-5 0.08 0.024
1-4-5 0.92 0.092
2-4-7 0.062 0.0062
1-7-8 0.015 0.0015
1-4-7 0.003 0.0003

4.4. Global Algorithm

The flowchart in Figure 9 describes the proposed fault injection mechanism.590

The system failure rate is computed at the beginning of the simulation based
on data provided by the user. Then, the fault injection location is computed
thanks to the access profile. The shape of the fault is determined thanks to
MBU patterns. Finally a diagnostic is established by comparing results in the
corrupted run and golden run.595

20

System Failure Rate
Computation

Fault Type

Injection Module

Compare

Diagnostic

 Simulation
With Injection Results

Fault Location�
f(Access Pro#le)

Multiple Bit
 Upsets Pa'erns

No

Yes

Access Monitoring

Base
Hardware
Reliability

Environmental
Values

Simulation
Golden Run

No

Figure 9: Fault Injection Strategy

5. Experimental Results

5.1. Experimental Setup

For evaluating memory reliability techniques impacts on performance we
used the Mi-bench applications [41]. We focus onto 5 applications in Mi-Bench
with the large input data.600

• Qsort: Efficient sorting algorithm, still used today in a large variety of
situations

• Bitcounts: This algorithm counts the number of bits in an array of integer
in different ways. Used mainly to test the capacity of the processor to
manipulate bits.605

• Rijndael (encryption and decryption): An implementation of the well-
known Advanced Encryption Standard.

• Sha: Encryption algorithm used to cipher a given input. It is used mainly
to exchange keys and to cipher some data.

21

• Susan: image recognition and modification application depending on the610

mode selected. Two modes allow to detect edges and corners, the other
spreads the input image.

All these applications have been cross-compiled to work properly onto our
armv7 simulator. A large number of simulators [42] exists on the market and
have different characteristics. UNISIM-VP provides full system structural com-615

puter architecture simulators of electronic boards and System-on-Chip (SoC)
using a processor instruction set interpreter. The whole software stack, con-
sisting of the user programs, the operating system and its hardware drivers,
is executed directly on the simulator. UNISIM-VP is a component-based soft-
ware and is thus modular. Hardware components, written in the SystemC lan-620

guage [23], model the real target hardware components, such as CPU, memories,
Input/Output, buses and specialized hardware blocks. Hardware components
communicate with each other through SystemC TLM-2 [24] sockets that act like
the pins of the real hardware. The service components are not directly related
to pure computer architecture simulation. They allow initializing and driving625

of simulation. Services range from debuggers, loaders, monitors, host hardware
abstraction layer and of course our fault injection module.

We use UNISIM-VP as our virtual platform because of it’s transactional
model that enable to build representative and efficient simulators. Moreover,
its modular architecture enable re-usability and portability of our work to other630

simulation platforms.

5.2. Evaluation of our Injection Tool

Experimental results are presented in regard of different criteria and metrics:
1. The efficiency: our approach is able to raise reliability issues and cover

the system testability (Section 5.2.1).635

2. The representativeness: Ensuring the fault injection representativeness of
the environment and proving its added value to take into account not only
single upsets but also multiple upsets (Section 5.2.2).

3. The simulation speed (Section 5.2.3).

5.2.1. Efficiency640

Figure 10 shows obtained results for 11000 runs with four different injection
experiments on Susan benchmark. Similar results have been obtained for other
benchmarks. For all cases, we inject faults during writes in memory and we di-
vided the global memory in 262144 areas. In the SBU experiments only single
bit flips are injected while in the MBU experiments, multiple bit flips using the645

probabilistic model given in Table 9. In the SBUA and MBUA experiments,
fault are injected taking into account memory area access frequency. The first
conclusion that can be made is that by introducing memory access monitoring
in the fault injection (SBUA and MBUA), more result and behavioral corrup-
tions occur. Indeed, for the same number of injections, Figure 10 shows that,650

SBUA (respectively MBUA) increase the behavioral corruptions by 8.26% (re-
spectively 7.7%) compared to SBU (respectively MBU). By consequence, rising

22

8495 8402 8288 8202

2505 2598 2712 2798

2000

3000

4000

5000

6000

7000

8000

9000

SBU MBU SBUA MBUA

Silent Corruption Behavioral and Result Corruption

Runs with Fault Injection

Figure 10: Type of observed corruption with different injection procedures on Susan smooth
bench with 11000 runs for each procedure

the probability to inject into the most frequently accessed areas, widely used
variables are effected by the fault injection.

The second conclusion is that by considering multiple bit upsets in the fault655

injection (MBU and MBUA), more result and behavioral corruptions occur com-
pared to procedure where only single bit upset are considered (SBU and SBUA).
For the same number of injections, Figure 10 shows that MBU and MBUA in-
crease the number of non-silent corruptions by 3.2% in average.

Our procedure considering MBU and access frequency has been proved to660

increase the number of non-silent corruptions by 11.7% for the same number
of injections compared to SBU. Comparing these results to a pure random dis-
tribution of fault injection inside the memory would be inappropriate. Indeed,
among the 262144 different areas, only few of them (less than 100) are accessed
by the application and thus the difference would have been enormous. We thus665

comparing our results to state of the art technique that is SBU. We remind
the reader that during SBU injections, only accessed parts are modified by the
injection.

Figures 11 and 12 give the number of accesses and of injected faults for each
memory area for Susan application with two different modes: the corner and670

the smooth mode. In the experiments, among the 262144 zones, less than 100
are significant. The 10 most accessed zones are ranked and presented in these
two figures (Figure 11 and 12) representing results obtained for Susan Corner
(respectively Smooth). For these 2 benchmarks, 2000 runs (respectively 4000)
have been done. For Susan Corner Figure 11 (respectively Susan Smooth 12),675

our UNISIM fault module injected 1500 faults (respectively 4000). As we can
see in Figures 11 and 12, the most accessed area is highly prioritized during
the choice of the injection location. As expected there is also a correlation

23

between the memory accesses and the number of injected faults per area. Only
a small deviation is observed for the fourth and the third areas that are swapped680

together in Figure 11, but it is not observable in Figure 12. This is due to the
statistical model that is associated to our algorithm and as more runs have been
made on the smooth mode exotic result does not appear. Even if not presented
in given figures, we can also notice that almost all areas will be perturbed
during a fault injection campaign. By consequence the injection model matches685

with the statistical testing mind spirit and also solves the concern to miss some
memory areas.

1 2 4 3 5 6 7 8 9 10
1

10

100

1000

10000

100000

Memory Accesses Injected Faults

Most Accessed
Memory Areas

Figure 11: Number of memory access compared to number of injection in most accessed
memory areas for Susan Corner Mode Application. Values are given for the 10 (x-axis) most
accessed memory zones.

5.2.2. Representativeness

Figure 13 shows two distributions of fault patterns. The first is the patterns
distribution given Table 9. The second distribution is the result of 443 injections690

made on different MiBench applications using the MBUA procedure. Figure 13
indicates a correlation between both distributions, however the correlation is not
perfect. By digging into details we can see that there is an augmentation of 11%

24

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

Memory Accesses Injected Faults

Most Accessed
Memory Areas

Figure 12: Number of memory access compared to number of injection in most accessed
memory areas for Susan Smooth Mode Application. Values are given for the 10 (x-axis) most
accessed memory zones.

of single bit injections and a decrease of around 11.5% of multiple bit injections.
This imperfection is due to boundary conditions for the virtual platform global695

memory representation. As the memory is represented by an array of 64 bits line,
multiple bit injections located on boundary conditions are impossible to realize.
For example if the cell where the pattern injection square (Table 8) is located
on the extreme right bit of a line, then it’s not possible to inject a 1-2 MBU.
In a case like that, we decide to still inject a fault but to reduce the number700

of bits flipped until the pattern is able to fit into the memory at the desired
memory cell. In the case of our example we thus reduce the 1-2MBU injection
to a SBU injection. This decision has been made to avoid losing simulations
runs and explains the difference between both distributions presented Figure
13. Furthermore, Figure 13 helps also to understand the difference observed705

between SBU(A) and MBU(A) in Section 5.2.1. As we base our MBU on a
realistic model exposed Table 9, the difference is not as sensitive as if we would
have considered only MBU in MBU and MBUA injections procedures.

Figure 14 shows the normalized distribution of corruptions regarding the sin-
gle bit upset (top graphic) and the 2 bits upset (bottom graphic). Results have710

been obtained running the MBUA injection procedure based on MBU patterns
exposed in Table 9. First, all type of injections have in majority resulted to an

25

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Using Table 9

By our model

1 1-2 1-4 1-5 1-4-5 2-4-5

Figure 13: Distribution of injected upsets patterns given by [11] in Table 9 and those injected
by our model in the simulator

0% 20% 40% 60% 80% 100%

1-BU

2BU

Silent Corruption Result Corruption Behavioral Corruption

Figure 14: Single and 2-BU corruptions distribution

unwanted behavior. In 68.10% of cases for single bit upset and in 83.10% of
cases for 2-bit upset, the result of the application is not conform to the golden
run. these results are explained by the absence of robustness mechanisms in715

our tested applications. Second, it is showed that a 2-Bit upsets injection has a
higher chance to make the final result different from the golden one. Indeed, 2-
Bit injections have leaded to 15.0% more of non-silent data corruption compared
to single bit injection. This recrudescence is due to the fact that the memory
is more modified with a 2-bit injection than with a single bit injection and thus720

new scenarios leading to reliability decrease are discovered. As explained in
Section 2, multiple bit upset represents 40% of observed phenomena in 40nm
technology and it’s going to increase with the transistor miniaturization. It is
thus mandatory to include MBU injection in new injection procedures.

26

5.2.3. Simulation Overhead725

Figure 15 shows the time increase after implementing our fault injection
module as a service for the UNISIM armv7 virtual platform. We compared
simulation time of two runs. The first run made without the injection service
and the second made with a single fault injection following the MBUA procedure
(access monitoring is stopped after injection). Runs ended with a behavioral730

corruption have been removed from results as they are not representative of our
injection module performance.

Indeed, a behavioral corruption may lead to an infinite loop or to an execu-
tion issue and thus to a crash of the simulation that is not meaningful for our
time performance purpose. We have compared simulation times for Susan cor-735

ner, edges and smooth modes with a large input, Rijndael encrypt and decrypt
mode for large and small inputs, Sha with large and small inputs, Basicmath
for small inputs, Bitcounts for large and small inputs, and QuickSort for large
and small inputs. these applications represent a mix of instructions and com-
putation intensive applications. First, Figure 15 shows that the addition of our740

injection module has impacted the simulation time under 5.0% in the worst case
and by less than 3.0% in mean. Second, the input size does not impact the same
way the simulation time. Indeed, for the QuickSort application, the simulation
time augmentation is smaller for a larger than for a smaller input. However the
Sha application exacerbates the opposite behavior. We attribute this simulation745

augmentation to the dynamic monitoring of memory accesses prior to injection.
Third, the Simulation time is not modified by the number of memory areas
wanted by the user as the memory division is base on a base-2 division, this
allows to slim drastically the sorting of access regarding the address accessed.

% increase in execution time

Figure 15: Simulation time increase after implementing fault injection module

This simulator is accompanied with a fault injection module presented in [43].750

This fault injection module is configurable with environmental conditions as well

27

0.88%

8.13%

5.08%
4.27%

0.58%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

Qsort Bitcounts Rijndael E Rijndael D Sha

Time Overhead(%)

Figure 16: Simulation overhead due to read and write monitoring without memory protection

as the probability to observe different MBU patterns. Moreover, the injection
module takes into account the behavior of the application by monitoring memory
accesses and influencing the injection to be in highly accessed memory areas to
be as efficient as possible. The choice of memory areas influence the time and755

the location of the fault injection.
In [43] authors suggest fault injections to be only made during write opera-

tions. This limitation has been over-passed in the used version of the simulator
because we improved the injector to be enable to inject both during read and
write operations without considerable impact on the simulation performance.760

As exposed in Figure 16, the worst case is an increase of 8.13% simulation
time for one run with monitoring and injection compared to a free run without
accesses monitoring and without fault injection. This result is acceptable for
a highly linked application to the memory as in [43], the simulation overhead
on large benches was in the worst case of 5% when only write operation were765

subject to fault injection.
Moreover, as shown in Figure 17, three outcomes are possible for a sys-

tem under a fault injection: the system crashes (STOP FUNCTIONING), or
the system ends but with a result different from the golden result (RESULT
CORRUPTION) or the system ends with the same result as with a fault free770

simulation (NO IMPACT). Figure 17 shows that 95% of simulation runs made
on a not protected system with different applications are useful when injecting
onto read operations. This is more precise than [43] where more than 20% of
simulation fault injection runs on unprotected systems resulted in no corruption.

5.3. RETG computation775

5.3.1. Memory Reliability Techniques impact on performance

Figure 18 shows simulation time on different applications when different
reliability techniques are applied. Data are collected among 5 benchmarks pre-
sented Section 5.1. For all reliability techniques implemented and for each ap-
plication 25 runs were done to compute the mean simulation time. The mean780

28

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Stop Functionning

Result Corruption

Silent Corruption

Figure 17: Distribution of simulation results after read fault injection on unprotected system
for different application on 19000 runs

Table 10: Performance Overhead due to memory reliability techniques
PmC2 TMR SECDED DPSR DECTED
1.015 1.020 1.09 1.025 1.138

simulation time is of course made on simulations that have terminated correctly.
The "Reference Simulation" time corresponds to the simulation time for differ-
ent benchmarks when no fault injection is realized and no monitoring is realised.
The "No Technique" times correspond to Simulation time when injections are
realized but no reliability techniques are used to protect against fault injection.785

The difference between Reference Simulation times and No Technique corre-
sponds to the overhead due to fault injection algorithm and is the same for all
runs comparing reliability techniques. This figure exacerbates two important
points. First, all benchmarks present less than 15% of simulation time overhead
for all techniques. More accurately we can point out two groups. The first one790

is composed by Parity, DMR, PmC2, TMR, parity and redundancy combined
techniques and DPSR. These techniques have relatively similar simulation over-
heads. The second group is composed with SECDED, DPSR and DECTED. In
this second group, we see a slight overhead increase, especially for computing
intensive applications where the number of memory accesses is important such795

as QSort. DPSR shows an overhead similar to SECDED and DECTED due to
the decomposition of the value stored in bits to be able to compute different
parity bits. However, DPSR technique is part of the less performance impacting
reliability techniques.

29

 Reference Simula.on No Protec.on Parity DMR PmC² TMR PmC²+DMR SECDED DPSR
0

5

10

15

20

25

30

35

40

45

50

41,02
41,59

42,55 42,45 42,55 42,52 42,67

46,40

42,75

31,39

32,94
33,65 33,78 33,67 33,69 33,74 33,93

33,33

qsort_large bitcnts rijndael rijndael sha

Simulation
Time (s)

Figure 18: Simulation time with fault injection for different reliability techniques

5.3.2. Memory Reliability Techniques Comparison800

In this section we summarize all results obtained so far and give a global
view to the reader about the rank of our reliability technique in the existing
spectrum of memory reliability techniques. Table 11 is a sum up of all data
found during our work for an 8-bits word size. We can clearly see that DPSR
comes in a good place and is an intermediate between a soft protection repre-805

sented by the DECTED technique where the goal is more onto the memory size
and the scalability and the TMR where the goal is set onto the reliability at
the cost of the memory space. The closest concurrent of DPSR is DECTED,
Regardless the main advantage of DECTED to be extremely scalable, DPSR
overpasses DECTED from the performance and easiness to implement points810

of view. Another concurrent of DPSR is SECDED but has been over-passed
in all criteria expect from the memory size usage point of view. In a context
of critical systems and in technology improvement our solution will be better
and better as more and more multiple bits upsets would be induced by a single
particle strike. DPSR is an intermediate choice between an extreme protection815

using a lot of memory space and a poor correction rate. DPSR ranks itself to
be a decent trade-off between protection, memory space and performance.

30

Table 11: Memory Reliability Techniques Comparison for an 8-bits word size
PmC2 TMR SECDED DECTED DPSR

Detection 0.6824 1 1 1 0.9867
Correction 0.6824 1 0.8633 0.999 0.9867
Memory
Space

9 16 5 9 10

Simulation
Overhead

2.826% 2.623% 6.473% 13.8% 2.50%

Table 12: RETG detection of memory reliability techniques function of data size
Data Size PmC2 TMR SECDED DPSR DECTED
8 bits 0.229 0.249 0.259 0.304 0.306
16 bits 0.234 0.249 0.285 0.316 0.354
32 bits 0.237 0.249 0.305 0.323 0.393
64 bits 0.238 0.249 0.318 0.326 0.421

5.3.3. RETG estimation

RETG allows to compare the different techniques. Table 12 gives all RETG
detection values computed for different memory word size and different memory820

reliability techniques. We see that our technique shows promising results and
is comparable to DECTED technique. In our opinion the choice between both
techniques has to be made on the need of protection and memory overhead
compared to the time overhead, along with the need for flexibility. In a averagely
critical application our DPSR technique appears to be a good choice. However,825

to garantee the highest level of reliability, TMR has to be selected. Finally, for a
embedded critical system without execution time barriers, the DECTED seems
to remain the good trade-off. Table 12 shows also the scaling of techniques
compared to memory size word to protect. While DPSR uses the redundancy,
it offers the flexibility of using different reliability levels: detection with/without830

correction.

6. Conclusion

In this work, we present a new memory reliability enhancement techniques
called DPSR. This technique has the advantage to be easily implementable. It
provides an interesting trade-off between correction and detection probability,835

memory and time overhead and implementation complexity. Moreover, we pro-
pose a fault injection tool and methodology to evaluate reliability of the system.
This methodology has the advantage to be tuned by the user while maintain-
ing a small performance overhead. The fault injection tool has been used to
precisely measure the usage of different memory fault protections. In future840

work, we plan to extend the work by taking into account power consumption
as a different metric to evaluate memory reliability techniques. Moreover, we

31

would like to extend our memory fault injection tool to all of the processor
components.

References845

[1] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin,
M. Nicewicz, C. A. Russell, W. Y. Wang, L. B. Freeman, P. Hosier, L. E.
LaFave, J. L. Walsh, J. M. Orro, G. J. Unger, J. M. Ross, T. J. O’Gorman,
B. Messina, T. D. Sullivan, A. J. Sykes, H. Yourke, T. A. Enger, V. Tolat,
T. S. Scott, A. H. Taber, R. J. Sussman, W. A. Klein, C. W. Wahaus, Ibm850

experiments in soft fails in computer electronics (1978–1994), IBM Journal
of Research and Development 40 (1) (1996) 3–18.

[2] A. Dixit, A. Wood, Impact of new technology on soft error rates, Reliability
Physics Symposim (IRPS) (2011) 486–492.

[3] Semiconductor industry association, international technology roadmap for855

semiconductors, http://www.itrs.net.

[4] S. Rehman, M. Shafique, J. Henkel, Reliable software for unreliable hard-
ware: A cross layer perspective, 2016. doi:10.1007/978-3-319-25772-3.

[5] L. Pintard, From safety analysis to experimental validation by fault injec-
tion - case of automotive embedded systems, Ph.D. thesis, University of860

Toulouse, France (2015).

[6] A. Avizienis, J. C. Laprie, B. Randell, C. Landwehr, Basic concepts and
taxonomy of dependable and secure computing, IEEE Transactions on De-
pendable and Secure Computing 1 (1) (2004) 11–33.

[7] M.-C. Hsueh, T. K. Tsai, R. K. Iyer, Fault injection techniques and tools,865

Computer 30 (4) (1997) 75–82.

[8] P. Hazucha, C. Svensson, Impact of cmos technology scaling on the atmo-
spheric neutron soft error rate, Nuclear Science, IEEE Transactions on 47
(2001) 2586 – 2594. doi:10.1109/23.903813.

[9] R. Velazco, P. Fouillat, R. Reis, Radiation Effects on Embedded Systems,870

Springer-Verlag, Berlin, Heidelberg, 2007.

[10] G. E. Moore, Creaming more components onto integrated circuits, Elec-
tronics 38 (8).

[11] D. Radaelli, H. Puchner, S. Wong, S. Daniel, Investigation of multi-bit
upsets in a 150 nm technology sram device, IEEE Transactions on Nuclear875

Science 52 (6) (2005) 2433–2437.

[12] S. Borkar, Designing reliable systems from unreliable components: the chal-
lenges of transistor variability and degradation, IEEE Micro 25 (6) (2005)
10–16. doi:10.1109/MM.2005.110.

32

[13] A. S. Hartman, D. E. Thomas, B. H. Meyer, A case for lifetime-aware task880

mapping in embedded chip multiprocessors, in: 2010 IEEE/ACM/IFIP In-
ternational Conference on Hardware/Software Codesign and System Syn-
thesis (CODES+ISSS), 2010, pp. 145–154.

[14] D. Zhu, H. Aydin, Reliability-aware energy management for periodic real-
time tasks, IEEE Transactions on Computers 58 (10) (2009) 1382–1397.885

[15] FIDES-Group, Reliability Methodology for Electronic Systems, 2010.

[16] F. H. Hardie, R. J. Suhocki, Design and use of fault simulation for saturn
computer design, IEEE Transactions on Electronic Computers EC-16 (4)
(1967) 412–429. doi:10.1109/PGEC.1967.264644.

[17] M. Kooli, A. Bosio, P. Benoit, L. Torres, Software testing and software fault890

injection, in: 2015 10th International Conference on Design Technology of
Integrated Systems in Nanoscale Era (DTIS), 2015, pp. 1–6.

[18] M. Kooli, G. D. Natale, A survey on simulation-based fault injection tools
for complex systems, in: 2014 9th IEEE International Conference on Design
Technology of Integrated Systems in Nanoscale Era (DTIS), 2014, pp. 1–6.895

[19] S. Anceau, P. Bleuet, J. Clédière, L. Maingault, J. luc Rainard, R. Tu-
coulou, Nanofocused x-ray beam to reprogram secure circuits, in: Cryp-
tographic Hardware and Embedded Systems – CHES 2017, Vol. 10529 of
Lecture Notes in Computer Science, Springer, 2017, pp. 175–188. doi:

10.1007/978-3-319-66787-4_9.900

[20] H. Abbasitabar, H. R. Zarandi, R. Salamat, Susceptibility analysis of leon3
embedded processor against multiple event transients and upsets, in: 2012
IEEE 15th International Conference on Computational Science and Engi-
neering, 2012, pp. 548–553. doi:10.1109/ICCSE.2012.81.

[21] P. Benjamin, M. Erraguntla, D. Delen, R. Mayer, Simulation modeling905

at multiple levels of abstraction, in: 1998 Winter Simulation Conference.
Proceedings (Cat. No.98CH36274), Vol. 1, 1998, pp. 391–398 vol.1. doi:

10.1109/WSC.1998.745013.

[22] D. D. Gajski, R. H. Kuhn, New vlsi tools, Computer 16 (12) (1983) 11–14.
doi:10.1109/MC.1983.1654264.910

URL http://dx.doi.org/10.1109/MC.1983.1654264

[23] Accellera, Systemc standard download page (2011).
URL http://www.accellera.org/downloads/standards/systemc

[24] J. Aynsley.

[25] G. A. Kanawati, N. A. Kanawati, J. A. Abraham, Ferrari: a flexible915

software-based fault and error injection system, IEEE Transactions on
Computers 44 (2) (1995) 248–260.

33

[26] B. P. Sanches, T. Basso, R. Moraes, J-swfit: A java software fault injection
tool, in: 2011 5th Latin-American Symposium on Dependable Computing,
2011, pp. 106–115.920

[27] D. Li, J. S. Vetter, W. Yu, Classifying soft error vulnerabilities in extreme-
scale scientific applications using a binary instrumentation tool, in: SC
’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2012, pp. 1–11. doi:

10.1109/SC.2012.29.925

[28] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, J. Emer, Sas-
sifi: An architecture-level fault injection tool for gpu application re-
silience evaluation, in: 2017 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), 2017, pp. 249–258.
doi:10.1109/ISPASS.2017.7975296.930

[29] M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, N. Foutris, D. Gizopoulos,
Differential fault injection on microarchitectural simulators, in: Workload
Characterization (IISWC), 2015 IEEE International Symposium on, 2015.

[30] E. Cheng, S. Mirkhani, L. G. Szafaryn, C. Cher, H. Cho, K. Skadron,
M. R. Stan, K. Lilja, J. A. Abraham, P. Bose, S. Mitra, CLEAR: cross-layer935

exploration for architecting resilience - combining hardware and software
techniques to tolerate soft errors in processor cores, CoRR abs/1604.03062.
arXiv:1604.03062.
URL http://arxiv.org/abs/1604.03062

[31] S. Ozdemir, D. Sinha, G. Memik, J. Adams, H. Zhou, Yield-aware cache940

architectures, in: 2006 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’06), 2006, pp. 15–25. doi:10.1109/MICRO.
2006.52.

[32] Nhon Quach, High availability and reliability in the itanium processor,
IEEE Micro 20 (5) (2000) 61–69. doi:10.1109/40.877951.945

[33] I. Alouani, S. Niar, F. Kurdahi, M. Abid, Parity-based mono-copy cache for
low power consumption and high reliability, in: 2012 23rd IEEE Interna-
tional Symposium on Rapid System Prototyping (RSP), 2012, pp. 44–48.
doi:10.1109/RSP.2012.6380689.

[34] M. K. Qureshi, Z. Chishti, Operating secded-based caches at ultra-low950

voltage with flair, in: 2013 43rd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), 2013, pp. 1–11.
doi:10.1109/DSN.2013.6575314.

[35] C. L. Chen, M. Y. Hsiao, Error-correcting codes for semiconductor memory
applications: A state-of-the-art review, IBM J. Res. Dev. 28 (2) (1984) 124–955

134. doi:10.1147/rd.282.0124.
URL http://dx.doi.org/10.1147/rd.282.0124

34

[36] L. Saiz-Adalid, P. Reviriego, P. Gil, S. Pontarelli, J. A. Maestro, Mcu
tolerance in srams through low-redundancy triple adjacent error correction,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 23 (10)960

(2015) 2332–2336.

[37] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, J. Hoe, Multi-bit error tolerant
caches using two-dimensional error coding, in: 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007), 2007, pp.
197–209.965

[38] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, J. Hoe, Multi-bit error tolerant
caches using two-dimensional error coding, in: 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007), 2007, pp.
197–209. doi:10.1109/MICRO.2007.19.

[39] M. Bagatin, S. Gerardin, A. Paccagnella, C. Andreani, G. Gorini, C. Frost,970

Temperature dependence of neutron-induced soft errors in srams, Micro-
electronics Reliability 52 (1) (2012) 289 – 293.

[40] Y. Kagiyama, S. Okumura, K. Yanagida, S. Yoshimoto, Y. Nakata,
S. Izumi, H. Kawaguchi, M. Yoshimoto, Bit error rate estimation in sram
considering temperature fluctuation, in: Thirteenth International Sympo-975

sium on Quality Electronic Design (ISQED), 2012, pp. 516–519.

[41] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R. B.
Brown, Mibench: A free, commercially representative embedded bench-
mark suite (2001) 3–14.

[42] T. E. Carlson, W. Heirman, L. Eeckhout, Sniper: Exploring the level of980

abstraction for scalable and accurate parallel multi-core simulations, in:
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2011, pp. 52:1–52:12.

[43] A. Chabot, I. Alouani, S. Niar, R. Nouacer, A comprehensive fault injection
strategy for embedded systems reliability assessment, in: 2018 International985

Symposium on Rapid System Prototyping (RSP), 2018, pp. 22–28. doi:

10.1109/RSP.2018.8631986.

[44] A. Chabot, I. Alouani, S. Niar, R. Nouacer, A new memory reliability
technique for multiple bit upsets mitigation, in: Proceedings of the 16th
ACM International Conference on Computing Frontiers, CF ’19, ACM,990

New York, NY, USA, 2019, pp. 145–152. doi:10.1145/3310273.3321564.
URL http://doi.acm.org/10.1145/3310273.3321564

35

