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Abstract— While Convolutional Neural Networks (CNNs)

are going mainstream and deployed in widespread domains

including safety-critical systems, the reliability issues of CNN-

hosting systems are still under-explored. In this paper, we

experimentally evaluate the inherent fault tolerance of CNNs

through fault injection experiments. Our experiments demon-

strate that quantization increases reliability. We also show the

most vulnerable bits in the IEEE754 format representation. At

the end, a study on the network architecture was performed

to locate the most vulnerable layers. This exploratory study

will make it possible to reinforce critical system reliability with

a reduced cost since only the most vulnerable parts will be

duplicated.

I. INTRODUCTION

Deep learning systems such as Convolutional Neural Net-
works (CNNs) have shown remarkable efficiency in dealing
with a variety of complex real life problems. These tech-
niques have been deployed in widespread domains going
from mainstream application to safety-critical systems. From
handwritten digit recognition, to advanced environment per-
ception for autonomous cars, deep neural networks (DNNs)
have demonstrated an effective ability to train robust feature
extractors that can be successfully exploited by a classifier.

In a context of performance-driven design requirements,
new hardware generations successively shrink transistors
dimensions, thereby increasing circuits sensitivity to external
events which can negatively affect their reliability. One of the
major sources of these errors in modern embedded systems
are soft errors such as Single Event Upset (SEU) and Single
Event Transient (SET) that are typically caused by high
energy particles striking electronic devices. These events can
lead to bit flips in sequential parts and memory cells. This
situation often leads to system level failures and violations
of safety specifications. In safety-critical systems, incorrect
values being unreliably computed represent a serious issue,
as these systems must comply with strict safety standards
[1].

Intentional attacks are an other potential source of faults.
The widespread usage of CNNs led to the development of
sophisticated attacks. Adversarial attacks are amongst these
attacks. Malicious users could intentionally tamper with
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processed data to fool the network. While these attacks are
limited to the input, they can be easily generalized to other
parameters of the system such as the CNN weights [2].

Given the trend of high performance, yet sensitive hard-
ware platforms, reliability issues of CNN-hosting systems
remain an under-explored topic. In fact, since CNNs can be
dedicated to safety critical applications, one cannot rely on
their inherent fault tolerance aspect without deep exploration.
The reliability of CNNs, especially those dedicated to safety
critical applications, should be an early design stage concern,
not an afterthought.

In this work, we consider random errors resulting from the
environment. These errors are simulated as bit-flips. Redun-
dancy is a common solution to reliability issues. However,
it was proven that a very high number of replications is
required to achieve complete fault tolerance [3].

We undertook an extensive experimental study, involving
scenarios with different levels of error injection. We showed
that:

- Our experimental results successfully characterizes the
distribution of errors in layer-wise parameters of CNNs.

- Our approach shows that the quantization has, counter-
intuitively, a positive impact on CNNs resilience to
errors.

- The paper explores the impact of weights’ bit sig-
nificance on the error resilience of CNNs. We show
that one single bit, namely the most significant bit of
the exponent, needs hardening in floating-point based
CNNs. Other bits are insignificant from a reliability
impact perspective.

- Our approach can be used to construct a set of reliability
guidelines for the deployment of CNNs in critical and
aggressive environments.

This paper also presents a fault injection engine operating
on CNN weights. The engine studies different reliability
issues of a given trained CNN. The source is made publicly
available1.

II. RELATED WORK

Two types of fault injection were presented in [4]. The
authors managed to achieve miss-classification after a series
of careful bit-flipping. They report the loss in accuracy for

1https://github.com/cypox/CNN-Fault-Injector
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the target class only. In our work, we study the impact on
the overall accuracy. Furthermore, the authors assumed the
injections are carefully selected whereas in our experimental
setup, injections are performed randomly to simulate envi-
ronment faults.

In [3], a method for estimating fault tolerance in ANNs is
proposed. This method exploits redundancy of hidden units
to increase the network’s fault tolerance. In their results, a
very high number of replications (more than 7) is needed to
achieve complete fault tolerance. Our study locates the most
vulnerable parts to reduce this overhead when redundancy
techniques are employed.

The partial fault tolerance (PFT) of ANNs during training
was discussed in [5]. The authors considered replication to
enhance the PFT of a network. In [6], It was shown that only
17 bit-flips are required to corrupt a network such as Alexnet.
Authors carefully selected the target bits to be flipped. In
this work, we focus on random error injections on different
levels: data representation, position in the representation and
position in the architecture.

The inherent fault tolerance of networks has also been
studied in [7]. However, the authors focused on relatively
small CNNs. Their methodology is based on stuck-at faults.
Stuck-ats in feed-forward neural nets was also discussed in
[8]. Replication was proposed as a solution to achieve fault
tolerance.

The reliability of object detection networks on GPUs
have been studied in [9]. Their study was based on fault
injection and exploited the error leaking potential between
GPU threads. Our study is platform independent and the
result could be projected to other embedded systems.

To the best of our knowledge, this is the first study that
explores random fault injections in CNNs considering the
different quantization parameters, the different representa-
tions, the bit position and the layer position.

III. EXPERIMENTAL METHODOLOGY

In this section we present our setup and methodology to
evaluate the reliability. We use the same methodology from
[10] with different experimental setup. When compared to
the previous paper, we evaluate more variables and confirm
the obtained results on other networks.

A. Methodology
Without considering physical damage, soft errors compro-

mises system functionality by causing bit-flips in memory
or in computational elements. Since memory errors are
more critical and durable, we only focus on bit-flips in
memory. In most machine learning accelerator designs, two
memories are present: 1) the weights memory (Mw) which
stores trained network parameters and 2) intermediate output
memory (Mi) which stores the output of hidden layers.

Mi receives new values for each input. A bit-flip in this
memory will only affects the current run, and, only if it
occurs before the subsequent layer starts processing. This is
similar to errors in computational parts which we will not
study. On the other hand, a bit-flip in Mw will remain active

until a new network is deployed. We focus on this kind of
errors.

To reproduce this behaviour, we simulate a soft error in
Mw by a number of bit-flips in a random weight once
the network is trained. Multiple studies are conducted based
on this simulation hypothesis. In each study we evaluate a
robustness variable of a CNN based system. The position of
the flip is decided by the study and the evaluated variable.

1) Networks: CNNs can perform a variety of tasks.
Whether it is for images, voice, text or other input types,
classification is the most common task performed by CNNs.
Other tasks, such as detection, uses a classification sub-
network. In the experimental setup we propose, we only
consider classification networks. Consequently, the study can
be projected to other variants.

2) Dataset: Measuring a CNN’s accuracy requires a la-
beled testset. Since testsets are usually not labeled, we use
the validation set of ImageNet as used in the challenge. The
set contains 50000 image with the correspondent class of
each image. The set contained 1000 classes.

3) Data Representation: We consider two data represen-
tations:

• IEEE-754’s 32-bit float: This is the standard representa-
tion format for floating point format. It is the dominant
representation in CPU and GPU architectures. Many
GPUs are optimized to deal with floating point multi-
plications. For simplicity we refer to this representation
as F in the rest of the paper.

• X-bit fixed point: We used the format from [11].
Trading accuracy for high performance by using low
bit-widths is a common practice in CNN acceleration.
This representation uses two parameters: bit-width and
fractional length. Negative fractional lengths can be
used to represent powers of two. This representation
is referred to as Q (for quantized) in the rest of the
paper.

4) Injection Algorithm: Based on the fault-injection
model in [10], we create a fault-injection engine. The engine
takes a trained network, a dataset and a test type. The test
type dictates the execution flow and the parameters to vary
during the test. Multiple test types are developed, more
details are provided later this section. Depending on the
selected test type, a series of bit-flips are performed in the
network’s weights. After each test, the engine reports the
measured accuracy on the dataset after the injection.

We consider three test types: full-network, index-wise and
layer-wise tests.

• Full-network injection: the engine generates a list of
errors that are identified by their layer and the position
in the layer. The engine incrementally injects errors
in the network. After each injection, we measure the
accuracy on the whole dataset. As a result, we aim
to compare the two data representations in terms of
inherent resilience. This comparison is useful to decide
which data representation is more suitable when faults
are present.

• Indexed injection: in this test, the generated errors are
injected in a fixed bit significance. The engine then
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loops over every possible position from the least to
the most significant bit2. The result of this test type
extends on the result of the full test. After comparing
the two representation, we use this study to explain the
difference, if any. Furthermore, this helps localizing the
most vulnerable bits to protect.

• Layer-wise injection: in this test, errors are generated
in the same layer with different positions. This test is
repeated for each layer whilst reporting the accuracy
after each run. The number of errors injected is propor-
tional to the number of parameters of each layer. This
is similar to the real world where the soft-error rate is
proportional to the surface of the chip. This study allows
us to understand the inherent tolerance of CNNs layers.
Finding the most vulnerable layers will assist in creating
comprehensive reliability enhancement strategies.

These tests are repeated 60 times. In each run, the engine
generates a new set of errors and the injection of the
generated errors is performed each run. We then present the
mean of the 60 runs as well as the maximum, minimum and
the standard deviation of the test.

A single soft error can cause multiple bit-flips. Further-
more, memory errors are cumulative. We fix the number of
errors to be injected when varying the index of the bit-flip to
50. For layers, we inject errors proportional to the number
of parameters with at least 1 injected error3. An extensive
study, with variable number of errors, is possible, however,
the same tendency reappears.

B. Experimental Setup

The engine was developed on python. For CNN inference,
we used the framework Caffe. The code is made publicly
available4. As part of our study, we perform injections on
quantized (low-precision) CNNs. The weights were obtained
using Ristretto.

The experiments were performed on an Nvidia Quadro
P5000 GPU with an Intel(R) Xeon(R) W-2123 CPU with
3.60GHz frequency.

1) CNNs: We used four network architectures:
GoogleNet, Alexnet, VGG16 and SqueezeNet. These
networks were selected for their wide usage, diversity,
various sizes and high accuracy. Their convolutional layers
are widely reproduced as feature extractor in other models.
This facilitates generalizing the obtained results to other
networks.

For the 32-bit floating point represented weights, we used
trained instances from Caffe’s Model Zoo5. We used Ristretto
to quantize and fine-tune the four networks into 8-bit fixed
point networks without huge loss in accuracy.

2In the case of a trained network represented as 32-bit floating point, the
engine loops over the 32 bit positions.

3Scales with the size of the target layer.
4https://github.com/cypox/CNN-Fault-Injector
5Publicly available on: https://github.com/BVLC/caffe/

wiki/Model-Zoo

IV. EXPERIMENTAL RESULTS

The results we collected from the engine are presented in
this section. For each test type (full, layer and index) we
show the obtained results separately.

A. Impact of Data Representation and Quantization

The results were obtained on weights represented as 32-
bit floating point. We present a comparison between the
impact of different data representations on the accuracy of
the different networks.

Figure 1 illustrates the result of comparing the two rep-
resentations. The Q representation is clearly more resilient
than it’s counterpart. This tendency is present for the four
networks with different rates.

Network Alexnet VGG16 Googlenet Squeezenet
Weights (⇥106) 60.97 138.36 7 1.25

TABLE I

The decrease in accuracy in VGG16 and Alexnet is not
as fast as the decrease for the same number of errors
in Googlenet and Squeezenet. The main reason for this
phenomenon is the number of weights as shown in Table
I. The same number of errors have less impact if the number
of weights is important.

B. Significance of Bits

To further explore this decrease in accuracy, we investigate
the individual impact of the bit position. The injections are
performed at the same position on the four networks each
run. The only difference being the index of the bit-flip on
the binary representation of the weight. We performed this
study only on the F representation. The Q representation in
invulnerable to bit-flips as shown in the previous results in
Figure 1.

In Figure 2, the four networks have the same tendency.
Unless bits are injected in the exponent’s most significant
bit, almost no impact on the accuracy is perceived.

C. Layer Tolerance

The impact of injected faults may depend on its location
within the network architecture. This section explores the
layers tolerance aspect. Similar to Section IV-B, we isolate
the target layer in the fault injection process. This isolation
allows to track the individual impact of the chosen layer on
the overall accuracy.

Googlenet and Squeezenet have a special architecture.
They are built on top of two modules, inception for the
former and fire modules for the latter. These modules regroup
a set of convolutional layers working in parallel on the same
input. The output of the module is obtained by concatenating
the outputs of each execution branch. For clarity, we reduced
the individual layers into the corresponding modules. For
each module, we take the average accuracy of its individual
layers.
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Fig. 1: Comparison between the 8-bit fixed point representation (Q) of weights and the 32-bit IEEE-754 representation (F).
The results of different runs are presented as the mean and the standard deviation of the top-1 accuracy.
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Fig. 2: Position of bit-flips in the value representation and its
impact on the accuracy. In the X-axis, red labels represent
the mantissa, blue labels represent the exponent and the sign
bit is in green. Position 32 is the most significant bit in the
representation (sign bit).

Figure 3 presents the results of this study. The four
networks tend to lose more accuracy when injections occur
in advanced layers. This is correlated to our previous results
in [10]. While CNNs have a sequential structure, error
propagation is not problematic in CNNs. Errors in early
layers have, in general, less impact on the accuracy. This
shows the implicit characteristic of CNNs to maintain a
sane behaviour when incorrect values are forwarded. This
is explained by the implicit redundancy in CNN weights.
After training, many weight clusters are repeated. A small
number of errors if it occurs in the first layers. Techniques
such as pruning can greatly affects this study. Pruning

explores weight redundancy to reduce computations. While it
achieves high throughput with acceptable accuracy, reliability
can be greatly compromised [12]. This trade-off should
be considered to evaluate CNN acceleration in aggressive
environments.

It is worth to mention that, although the mean value is
at a comfortable accuracy, the minimum accuracy reported
is almost always ⇡ 0%6. This means that in some runs, the
injected errors were able to fully compromise the network.
As rare as it could be, anticipating these cases by studying
the network should precede any deployment. Also, the fact
that a few number of errors can damage a network this far
is an other motivation to deeply study the impact of faults.

V. DISCUSSION

A. Floating Point and Fixed Point
In contradiction to common belief, the F representation is

more vulnerable to injections even though it has more bits.
The individual impact of a bit in a short representation (8-bit
fixed point) is greater than its counter part in the F repre-
sentation. However, the divergence from the correct value is
greater in the later due to the nature of the representation. The
exponent is not represented in the fixed point representation.
A bit-flip in any position is similar to adding or subtracting
a power of 2. Since all weights range from �1 to +1 [2], the
value added or subtracted is minuscule. Hence, it’s impact
can be logically masked.

6The worst case is 0.001 which is equal to randomly guessing the class
over the 1000 possibilities.
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Fig. 3: Impact of faults layer-wise for the four networks. Each series is represented as the mean top-1 accuracy (black dots),
the standard deviation (red error-bars) and the minimum/maximum (gray fill).

B. Bit Position
In the F representation, not all the bits in the exponent are

important. The impact of bits is not linear to the bit position
but constant except for the most-significant bit as could be
seen in Figure 2. This is partly due to the distribution of
CNN weights. Weights range from �1 to +1. High values
in the exponent are always accompanied with a negative
exponent sign. Having a bit-flip will decrease the value even
more, making it close to 0, which is not a big difference
considering the range of weights. The only important change
is the most-significant bit of the exponent. If changed from 0
to 1, the new value will be orders of magnitude higher than
the others. Combined with the maximum pooling, this leads
to catastrophic results in the subsequent layers.

C. Layer Index
Although the general tendency shows that the last layers

are more vulnerable, no conclusions could be drawn. In other
words, vulnerable layers of a new CNN can not be located
without a simulation. A fault injection engine such as the
one we presented in this paper should be used to evaluate
the individual layer vulnerability. This is an extension to
Netscope 7, a neural network visualizer and analyzer. We
introduced the resilience parameter which is computed from
the accuracy reported by the fault-injection engine. The
modified version allows to extract the most vulnerable layers
visually. An example output of the analyzer is available with
the engine source code8.

7https://github.com/ethereon/netscope
8https://www.github.com/cypox/CNN-Fault-Injector

D. Suggestions and Guidelines

The first study shows a bit difference between the storage
formats. Floating point representation should be used with
caution in critical systems. The fixed point representation
would result in less memory and computation9 overhead
with higher reliability. System designers should consider this
aspect when dealing with aggressive environments.

It was shown that the most significant bit in the exponent is
the vulnerable part of the floating point representation. Using
this conclusion, the overhead of redundancy techniques could
be reduced. Techniques such as TMR will Replicate the
whole number three times. This will triple the memory
requirements of Googlenet for instance, whose number of
weights is 6, 996, 452, thereby adding 427 megabytes of
required storage. If applied exclusively to the vulnerable
bits, only 13 megabytes would be necessary. This result
can also be extended to the layer test with variable degrees
of protection depending on the resilience of each layer as
outputted by the injection engine.

VI. CONCLUSION

An extensive analysis of fault tolerance in convolutional
neural networks was proposed. It was shown that quanti-
zation have a positive impact on reliability. The issue with
non-quantized networks is the data representation. For the
IEEE-754 format, the most significant bit of the exponent
is crucial to reliability for CNNs. A layer-wise analysis is
then performed. For complex networks, the reliability of the

9Fixed point representation is usually coupled with low precision arith-
metic. This allows for better efficiency with comparable accuracy.
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overall network should be studied based on the architecture.
The framework we developed to analyse reliability is made
publicly available. This study solves the overhead of reliabil-
ity techniques by reducing the number of replicated elements.
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