
Journal of Systems Architecture 97 (2019) 320–334
Contents lists available at ScienceDirect

Journal of Systems Architecture
journal homepage: www.elsevier.com/locate/sysarc

ENOrMOUS: ENergy Optimization for MObile plateform using User needS
Ismat Chaib Draa a , ∗ , Smail Niar a , Emmanuelle Grislin-Le Strugeon a , Morteza Biglari-Abhari b ,
Jamel Tayeb c
a CNRS, University Valenciennes, UMR 8201 - LAMIH, Valenciennes F-59313, France
b University of Auckland, New Zealand
c Intel Corporation, Portland, USA
a r t i c l e i n f o
Keywords:
Mobile systems
Mobile power consumption
Neural networks
Run-time analysis
Data mining algorithms

a b s t r a c t
Optimizing energy consumption in modern mobile handled devices plays a crucial role as lowering the power
consumption impacts battery life and system reliability. Recent mobile platforms have an increasing number of
sensors and processing components. Added to the popularity of power-hungry applications, battery life in mobile
devices is an important issue. However, the utilization pattern of large amount of data from the various sensors
can be beneficial to detect the changing device context, the user needs and the running application requirements
in terms of resources. When these information are used properly, an efficient control of power knobs can be im-
plemented to reduce the energy consumption. This paper presents a framework for ENergy Optimization for MObile
platform using User needS (ENOsMOUS). This framework is able to identify user contexts and to understand user
habits, preferences and needs to improve the operating system power scheme. Machine Learning (ML) algorithms
have been used to obtain an efficient trade-off between power consumption reduction opportunities and user sat-
isfaction requirements. ENOrMOUS is a generic solution that manages the power knobs. When applied to the CPU
frequency, the sound level, the screen brightness and the Wi-Fi, ENOrMOUS can lower the power consumption
by up to 35% compared the out-of-the-box operating system power manager schemes with a negligible overhead.

1. Introduction
Mobile and communicating devices are drastically changing our pro-

fessional and personal activities. The number of smartphones users in
western Europe has been predicted to increase from 240.3 millions in
2016 to 279.6 millions in 2019. 1 The capabilities and hardware com-
plexity of these handled devices are in constant improvement. They in-
clude a large number of cores, a powerful GPU, large caches and a sig-
nificant number of embedded sensors. For instance, the Samsung Galaxy
S7 launched in 2016 contains 10 sensors, representing 6 additional sen-
sors in comparison to the Samsung Galaxy S marketed in 2010. The
number of cores has also increased from 1 to 8 cores. In addition, appli-
cations running on current and future mobile devices are very power-
hungry and more complex. As a result, the user and applications needs
in terms of computing, communication and storage can deplete the de-
vice’s battery in a few hours and impact user satisfaction. Nowadays,
battery life has become one of the biggest obstacles for mobile device
advancements. For these reasons new power consumption management
systems are needed to extend battery life without impacting the process-
ing power and user’s experience.

∗ Corresponding author.
E-mail address: ismat.chaibdraa@univ-valenciennes.fr (I.C. Draa).

1 www.statista.com/statistics/494554/smartphone-users-in-western-europe

Most of the existing energy saving techniques take into account nei-
ther the user individual profiles nor the changing application needs and
user requirements. In this paper, our work is based on the user context
information and habits. In the literature, many definitions of the context
are given [1] . In [2] , the context is defined by any information that can
be used to characterize the situation of an entity. An entity is a person,
place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves.
Adapted from Dey [2] , we define the user context as a set of information
that characterize the situation in which the mobile device is used. The
information may be divided in 3 subsets depending on their subject: the
user, the time and space environment, and the device. This includes the
information that may impact the configuration of a hardware resource
such as ambient luminosity for the screen brightness, the applications
needs in terms of CPU and so on. ENOrMOUS exploits the large set of em-
bedded sensors to collect, store and process the user context information
and application requirements at run-time. The collected data are then
exploited to generate power policies. The purpose here, is to improve
the default power management policies of the operating system and to
increase the battery life. In the worst case scenario, ENOrMOUS offers
a similar energy management to the operating system. In this paper,
we assume that a mobile system can be exploited by many users and

https://doi.org/10.1016/j.sysarc.2018.10.004
Received 19 February 2018; Received in revised form 11 October 2018; Accepted 12 October 2018
Available online 13 October 2018
1383-7621/© 2018 Elsevier B.V. All rights reserved.

I.C. Draa, S. Niar and E.G.-L. Strugeon et al. Journal of Systems Architecture 97 (2019) 320–334
to differentiate between them, we identify each user by his/her specific
session. Our contribution can be summarized as follows:
1. We exploit the rich sensor hubs and the operating system’s applica-

tion programming interfaces (APIs) to collect a large set of data rel-
ative to the user, the launched applications, the consumed resources
and so one to represent the user context. This data collection phase
is performed by a software module consisted of several probes. Each
software probe corresponds to a specific kind of information such as
environmental information, system information, etc. These probes
are implemented as background process. All the collected informa-
tion are stored in unified XML way to be processed in the next phase.

2. In the second phase, we propose a new user context classification
based on the collected information of the previous phase. The col-
lected information will be processed through machine learning al-
gorithms to extract usage pattern and regularities, identify the user
context and predict the user’s associated actions. The employed ma-
chine learning techniques allow us to use the opportunities to de-
crease the energy consumed by unused resources in some cases. The
classification tends to find a trade-off between the user satisfaction,
the running application requirements and power consumption re-
duction opportunities.

3. In this last phase, the designed classification techniques are used to
implement new and efficient power policies to control the power
knobs and to reduce the whole system power consumption. Tech-
niques such as Dynamic Frequency Scaling (DFS), Wi-Fi manage-
ment, screen brightness and sound level adjustments, can thus be
efficiently implemented.
The aim is to offer the users, with different profiles and needs, a

customized management approach depending on their habits, require-
ments, lifestyle and job. In ENOrMOUS, the power savings are achieved
at run-time and are transparent to the user. The goal here, is to minimize
the user involvement.

The reminder of this paper is organized as follows. The ENOrMOUS
functional architecture is presented in Section 2 . In Section 3 , we present
the classifiers architecture. In Section 4 , we present the experimental
results obtained with our approach and a comparison with the OS power
management is given. Section 5 presents the related work and finally we
conclude and give some prospects of the project in Section 6 .
2. ENOrMOUS functional architecture

Several software modules have been developed to implement the
three phases described previously. All these modules are shown in Fig. 1 .
Details of these software modules are as follows:
• Data Collection Module (DCM) : this module encapsulates 3 probes.

– User Probe (UP): this probe is linked to the launched applications
and the user’s preferences in terms of resources used during a
certain period of time. The UP is executed at run-time and is
transparent to the user. The probe indicates if the application is
running in the background or foreground and its average running
time in a given time period, as shown in Section 2 . We assume
that users have different behaviors in weekdays and weekends,
and also in different periods of a given day. This probe retrieves
also the user mobility and permits us to know when the user
is walking, running or in a stationary state. We use a two-week
period to collect the required information through UP. The user
can change this information collection period.

– Environment Probe (EP): this probe gathers information about
the user’s environment. It indicates: ambient luminosity, ambi-
ent noise, device stand, date and time and user position. These
information are captured using available embedded sensors such
as Ambient Noise Sensor (ANS), Ambient Light Sensor (ALS), Ac-
celeromeeter, GPS and so on.

– System Probe (SP): this probe indicates the resources consumed
by the system. The collected information are: average utilization

Fig. 1. ENOrMOUS abstract architecture.

Fig. 2. Context changes depending on the foreground application.
of the CPU in percentage, the allocated CPU frequency by the
OS, sound level, screen luminosity, Wi-Fi status, battery level and
GPS state. This probe can also give information about the user’s
habits and needs in terms of system configuration preferences.
For example, the CPU average utilization varies from a user to
another depending on their needs.

The user context data for using each application is stored separately
and later all contexts information are used to obtain the resource
usage patterns as shown in Fig. 2 .
DCM is the first executed module in ENOrMOUS and corresponds to

the data collection phase. These data are captured and stored during
two consecutive weeks in order to create a knowledge base that will
be processed by the next module. DCM runs as background process and
is executed when the mobile device is switched on. All these informa-
tion are captured by interfacing the aforementioned probes with the
embedded sensors and APIs offered by the operating system. The col-
lected information are then stored in a data base in unified XML to be
processed by the Data Processing module (DPM). Fig. 3 shows the DCM
structure. As shown in the experimental section, the overheads due to
DCM utilization is low. The DCM is launched only once, except when
the user is not satisfied by the generated power policies. In this case,
the data collection is redone to enrich the knowledge base as it will be
detailed in the next sections.

321

I.C. Draa, S. Niar and E.G.-L. Strugeon et al. Journal of Systems Architecture 97 (2019) 320–334
Fig. 3. DCM collecting user context.

• Data Processing Module (DPM) : this module is at the heart of our
framework. It uses a large number of ad-hoc classifiers based on
neural networks and data mining algorithms to process the stored
DCM information and generate Power Policies (PP).

• Power Policies (PP) : the DPM’s outputs represent a set of rules for
each user context. These rules are applied to several power knobs to
control them. For example, for managing screen brightness, a rule is
the range of the most suitable screen brightness levels for the speci-
fied context. If the user is in a dark environment and the foreground
application does not require high brightness level, the rule could be
[0%–25%]. It means that the maximum value of screen brightness
configuration in this context is 25%.

• Current State Module (CSM) : this module retrieves the current usage
of the device. It permits to not impact negatively the user experi-
ence before applying the power policies by configuring some used
hardware components. The retrieved information by the CSM are the
background application and the consumed resources like the Wi-Fi
connectivity, the screen brightness intensity, the sound volume, the
mobility sensors and so on. Taking into account the current device
usage will also increase the accuracy of the generated power policies.

• Optimizer Actuator (OA) : it performs resource management and sub-
systems configuration. The aim of ENOrMOUS is to propose a generic
solution that will manage all the resources. In this paper, we focus
on CPU frequency scaling, sound and brightness management and
Wi-Fi interface configuration. These resources represent the most
power-hungry hardware components. The Optimizer Actuator takes
into account the current power policy and the device’s current state
before applying the new power policy

• User Satisfaction Checker (USC) : after adjusting the resources and
configuring the hardware, the user’s satisfaction is checked by ana-
lyzing his/her behavior as shown in Fig. 4 . The user satisfaction is
checked as follows:
– If the user disables the resources management, ENOrMOUS is
notified to modify the power policy that is responsible for the
user’s dissatisfaction. For example, when the CPU frequency is
scaled, the user satisfaction checker verifies the acceptance of
the proposed frequency by the user. If a new frequency is set by
the user, this new value is stored and will be taken into account
for the next run in the same context and for the same foreground
application.

– In order to check the user satisfaction in terms of CPU configura-
tions, for each specified context, hooks have been implemented
as ActionListners . Specified contexts are defined by the executed
foreground applications. For each foreground application, the

Fig. 4. User satisfaction checker.
evolution of the user’s context is shown in Fig. 4 . Thus, we have
the different CPU frequencies allocated by ENOrMOUS. The num-
ber of contexts varies from one user to another depending on
their behavior. We have on average 30 different contexts for the
same application, knowing that we have on average 40 applica-
tions per user, the number of these contexts reaches 1200. The
contexts are stored in an XML file that does not exceed 4 MB per
user. The different stored contexts are enriched and redundan-
cies are removed in order to reduce memory storage overheads.
The storage of these different contexts is temporary, once the
hardware configuration satisfies the user, All the context data is
deleted. This operation reduces the impact on the memory con-
sumption.
The ActionListeners identify interaction’s speed and manner be-
tween the user and his mobile system. When the user launch-
esÃ§o an application during a given time, the number of times
the user touches the screen and refreshes the application is col-
lected and stored. The implementation of ActionListerners is sim-
ple and intuitive in the current version of ENOrMOUS. These
ActionListerners have been implemented as Input libraries (ILs).
The IL starts when a new foreground application is executed. If
the user context has already been checked for user satisfaction,

322

I.C. Draa, S. Niar and E.G.-L. Strugeon et al. Journal of Systems Architecture 97 (2019) 320–334
the ActionListner is not started and vice versa. Then, an average
is calculated and is compared to the current number of interac-
tions. If a difference is detected between these two values, the
CPU frequency is increased by the OA and the same process is
repeated until no gap between these values is detected. A dif-
ference threshold of 20% is used for the number of touches to
detect user dissatisfaction . A decrease or an increase of 20% is
synonymous with a too low frequency for the user. These 20 %
was determined after an explicit questionnaire with users who
mentioned that their dissatisfaction can be expressed by inces-
sant tactile support or by an expectation. These 20 % can vary
from one user to another, for this reason, as a perspective we will
determine this value by using classification algorithms depend-
ing on the user interaction manner. This new frequency will be
allocated to for the next similar context, thus correcting classifier
outputs.
In this paper, we take into account the user’s reactions. In-
deed, the user’s reaction to an optimization is quite indicative of
her/his satisfaction. This process allows us to improve the clas-
sifiers accuracy and gauge user needs deeply.

3. User context classification for power reduction
The user context is continuously changing at run-time. The changes

concern several parameters such as the foreground and background ap-
plications running, the available Wi-Fi connectivity, the mobility of the
user, the brightness or noise of the environment, the CPU workload and
so on. The first consequence of these variations is that the user behavior
and applications needs in terms of resources are strongly affected. In-
deed, depending on the context, the user and applications may require
more or less resources than those allocated by the operating system. For
example, when user is in a dark or dim environment and depending on
his/her preferences in terms of luminosity, we can reduce the screen
brightness. This reduction is not taken into account by the OS and will
permit us to have a gain in terms of power consumption. Secondly, dif-
ferent users may react differently to the same context changes. In a given
context, two distinct users launching the same application may need dif-
ferent levels of resources configuration. This behavioral difference stems
from many factors such as job, lifestyle, activity, eyesight and so on. In
order to take advantage of these characteristics and differences, a de-
vice/user context classification has been designed. As mentioned before,
the classifiers are implemented in the Data Processing Module (DPM).
The classification purpose is to determine which is the device current
context of use to be able to generate adaptive power policies for each
hardware component. The predictive model issued from the ENOrMOUS
classifiers must lead to provide to the user only the hardware resources
that are needed for the his/her current context. This resource calibration
has to satisfy two major requirements:
• to provide all the possible power reduction opportunities. In the
worst case, the proposed power scheme is similar to the OS power
consumption;

• to produce power policies which will not impact negatively the user’s
satisfaction.
The output of the classification is thus used to select the appropri-

ate power policy for each of the controlled resources according to the
current context, as detailed in the following.
3.1. ENOrMOUS resources classifiers

The aim of the classification is to create a model able to predict the
right target values for four resources: CPU, sound volume, screen bright-
ness and Wi-Fi, according to the user context. As mentioned before, the
context is defined by information related to the user, the environment
and the device:
!"#$%&$ = ('(%) , *#+,)"#-%#$, .%+,!%)

Fig. 5. Resources ad-hoc classifiers.
with :
• User data include two values about the user’s preferences:
'(%) = (("/#01)%2 , 3,4ℎ$1)%2)
From the user probes (see Section 2), the sound level and the bright-
ness level are regularly recorded during one full day. Based on this
information, their average level is computed and then assumed to be
preferred by the user;

• Environment data include ambient noise and lux levels as sensed by
the device:
*#+,)"#-%#$ = (6-7,%#$8",(% , 6-7,%#$9/&)

• Device data include the CPU current frequency, the ratio of the used
CPU frequency to the maximum CPU frequency, the number of run-
ning applications, the application categories, the download and up-
load Wi-Fi rates, and the mobile use:
.%+,!% = (:1 '2)%; , 2)%;<6$," , # =>>3, , 6>>3,:6$%4"),%(,

? ,@ ,<6$%(, -"7,3,$A)
These information constitute the input of the classification. We con-

sider the four resources as independent targets for the classification. For
this reason, the context identification is achieved by 4 classifiers, one ad-
hoc classifier for each resource as shown in Fig. 5 . For each classifier, we
have selected the input context data that are relevant given the output
target resource.
3.1.1. CPU classification

The CPU classifier uses data that cover application needs and user
preferences in terms of computation:
• CPUfreq : this input is trivial and represents the CPU frequency al-
lowed by the operating system. In our experiments, we consider four
different values, 800 MHz, 1250 MHz, 1750 MHz and 2200 MHz,
which are the CPU frequencies allowed by the mobile devices we
used for the experiments.

• freqRatio : this parameter indicates the ratio of the allowed OS CPU
frequency relatively to the maximal frequency. It helps us to get an
idea about the user preferences, when this ratio is high, it means that
the user needs high computational resources and vice versa.

• # =>>3, : this input includes the number of running applications in
background and foreground. It assists in finding the correlation be-
tween the number of running applications and the appropriate CPU
frequency.

323

I.C. Draa, S. Niar and E.G.-L. Strugeon et al. Journal of Systems Architecture 97 (2019) 320–334
• appliCategories : it represents the category of the foreground appli-
cation. Indeed, we made a specific classification of the applications
into three distinct categories according to their requirements, as will
be explained in the next Section 3.1.5 . The application category is
used here to determine its requirements in terms of computation.
The output of the CPU classifier is an appropriate CPU frequency

among four classes. These classes are defined by the four frequency val-
ues we chose:
• L : context requiring a low CPU frequency (under 800 MHz).
• M : context requiring a medium CPU frequency (between 800 MHz
and 1.25 GHz).

• H : context requiring high computing resources (between 1.25 and
1.75 GHz).

• VH : context requiring very high computing resources (over
1.75 GHz).

3.1.2. Sound classification
Sound context is built according to three selected inputs:

• ambientNoise : this value indicates the noise level of the environment
and is captured by the available embedded sensor on the platform.
When the ambient noise is too high, the sound level must be in-
creased and vice versa.

• soundPref : the sound level that is assumed to be preferred by the user
(see Section 3.1). This data can be representative of the user hearing.

• appliCategories : the category of the foreground application is used
here to determine its requirements in terms of sound level. For ex-
ample the sound required by Spotify differs from the sound level
needed by Word .
In the absence of a research background related to this question,

we made the arbitrary choice of a four level scale for the sound volume,
what constitutes a first attempt that should be refined. The output of this
classifier is an appropriate sound level among four sound level classes:
• VL [0%–25%] : when the user needs a very low sound level.
• L [25%–50%]: when the need for the sound level is low.
• M [50%–75%]: when the need for the sound level is medium.
• H [75%–100%]: when the need for the sound level is high.

3.1.3. Brightness classifier
The brightness classifier uses data that cover the ambient luminosity,

the application needs and the user’s preferences: Luminosity context is
built according to three selected parameters from the probes.
• ambientLux : this input is common to the brightness management
methods. For example in the Samsung Galaxy S7, the brightness ad-
justment in only based on the ambient luminosity [3] . This value
indicates the luminosity of the environment and is captured by the
available embedded sensor of the platform. This parameter value is
very significant when the ambient luminosity is too high or when we
need a high screen brightness level, and vice versa. The parameter
values are available in the environment probe.

• lightPref : the screen brightness level that is assumed to be preferred
by the user (see Section 3.1). These data may give information about
the user’s eyesight.

• appliCategories : the category of the foreground application is used
here to determine its requirements in terms of screen brightness. For
example, Facebook brightness needs differs from Spotify needs.
As for the sound, we used an arbitrary four level scale for the bright-

ness. The output of this classifier is an appropriate brightness level
among these four classes:
• VL [0%–25%] : when the user needs a very low screen brightness.
• L [25%–50%]: when the need for the screen brightness is low.
• M [50%–75%]: when the need for the screen brightness is medium
• H [75%–100%]: when the need for the screen brightness is high.

Table 1
Resource requirement categories for a selection of appli-
cations.
Applications CPU Wi-Fi Watching Listening
Youtube M 1 H H
Word L 0 H L
Skype L 1 M H
Facebook H 1 H L
Messenger M 1 H L
Spotify L 1/0 L H
Adobe Reader L 0 H L
2048 M 0 H L
Chrome M 1 H M
VLC M 0 H H
OneNote L 0 H L
Sudoku L 0 H L

3.1.4. Wi-Fi classification
For this classifier, we select 4 input data which are:

• WiFiRates : the rates of downloaded and uploaded data in kb/s.
• appliCategories : the category of the foreground application is used
here to determine its requirements in terms of Wi-Fi.

• mobility : mobile use of the device, provided by an API that permits to
know when the user is stationary, walking or running. It is calculated
by using the acceleromeeter data combined with the compass. It will
help us define whether the user is close to a Wi-Fi hotspot or not.
The output of this class is an appropriate Wi-Fi state among these

three states:
• 1 : when the user needs to be connected.
• 1/0 : the Wi-Fi interface is on but disconnected.
• 0 : the Wi-Fi interface is disabled.
All these input data values are captured at the same time and stored

into a database. The time-period of a collection is adjustable depending
on the foreground application change.
3.1.5. Application categories

Each of the four classifiers includes in its input dataset the applica-
tion category regarding the targeted resource. This parameter has been
introduced to improve the classifiers accuracy. The application cate-
gories have been subjectively evaluated based on their functionality and
our own usage, according to the CPU, Wi-Fi, watching and listening
needs. This is illustrated in Table 1 .
• For CPU, we use three categories, L for low need, M for medium need
and H for high need in terms of computation.

• For Wi-Fi, we also use three categories, 1 for applications that require
internet connectivity and 0 for applications that do not. We have also
1/0 for the applications that can run in offline mode like Spotify or
Google Maps .

• For brightness and sound needs, we have respectively evaluated
screen watching and listening parameters with three values L for
low need, M for medium and H for high needs.
The application categories are used by the four classifiers previously

described. These classifiers are at first trained to build a predictive
model using supervised machine learning, that means we use a set of
instances for which we have the desired outputs (targets). The resulting
model is then used to determine the proper power adjustments accord-
ing to the input data that identify new situations.

In the following, we present how we create the predictive models.
3.2. Creation of the predictive models

The aim is to create four models dedicated to predict the power re-
source requirements according to the context. These four models corre-
spond to the four classifiers presented previously. This is a classification

324

I.C. Draa, S. Niar and E.G.-L. Strugeon et al. Journal of Systems Architecture 97 (2019) 320–334
problem since we know the target classes of the models. Among the
numerous classification methods [4] , we chose Artificial Neural Net-
works (ANN) because of our type of data and the uncertain aspect of
user behavior [5] . Indeed, neural networks can be used to detect pat-
terns and trends that are too complex to be noticed using statistics tech-
niques. For example, in our case, the uncertain aspect of user behavior
is linked mainly to his/her interaction manner following his context.
These data may strongly impact the energy consumption of the mobile
system and consequently the results of our proposed solution. In addi-
tion, we have various data that cover several axes to describe the user
context as shown in Section 3 .

A neural network is made of input nodes, output nodes and hidden
nodes that link the input to the output nodes. The hidden nodes are
organized in one or more layers, what forms the architecture of the net-
work.
• The inputs units receive information to be processed. In our case, it
is the collected user context.

• The outputs units receive the results of the processing. In our case,
they are four context classes for each CPU, sound and brightness. For
The Wi-Fi, we have three outputs units corresponding to each state.

• The hidden units connect the input units to the output units. Their
activity is determined by the activities of the input units and the
weights on the connections between the input and the output units.
Many studies discussed the use of several ANN architectures and

training algorithms for classification. In ENOrMOUS, since it is based
on a set of known-correct outputs for each context, the backpropaga-
tion (BP) models are appropriate. The BP algorithm adapts the network
according to the input-output associations that are expected.

The method used to create this training dataset is described in the
following section.
3.2.1. Training dataset

The set of instances for which we have the desired outputs consti-
tute the training dataset, which is based on the user’s actions. Examples
of appropriate brightness and sound level are inserted in the training
dataset through the application of the change blindness mechanism [6] .
Indeed, we exploit the change blindness concept by decreasing screen
brightness and sound level gradually until it is no longer acceptable by
the the user. When the screen brightness and the sound volume lev-
els are gradually lowered and the user does not change these values
manually, we conclude that the user is satisfied with these new screen
brightness and sound volume values. Then, we store these appropriate
brightness/sound values as targets for the specified context. However,
when our automatic adjustment is not tolerated and is modified manu-
ally by the user, the target value for the screen brightness and the sound
volume are the last values that have not been modified manually.

A similar method is used to detect relevant CPU frequency: we de-
crease the frequency until a manual readjustment by the user is detected.
Then, we store the last frequency that satisfied the user. In order to
define the Wi-Fi targets, for each input sample we try to determine a
corresponding connectivity configuration by experimentation. The user
feedback is taken into account to correct the classification.

This process represents the only phase where the user changes re-
sources configuration manually. This is necessary for the construction
of the learning dataset. This is done just once before the start of the clas-
sification. All remaining phases are automatic and do not require any
user action. The differences in the users’ needs and preferences explain
why the classifiers are trained specifically for each user.

Fig. 6 shows the target classifiers selecting process.
3.2.2. Network architecture

The back-propagation learning algorithm (BPLA) is one of the most
studied and used algorithms for neural networks learning. It is a widely
used method for ANN learning in many applications [7] . We used the
sigmoid function to calculate the output of the neurons. The shape or

architecture of the network is another parameter that must be decided
upon to design an ANN. The architecture depends on the way the neuron
layers are connected to each other, the number of hidden layers and the
number of neurons per layer. Unfortunately, there is no generic method
to determine the optimum values for these parameters.

About the connections between the layers, two architectures were
tested: a simple Feed-forward BP architecture and a Cascade BP archi-
tecture [5] . Both of them are among the most popular multilayer ANN.
Their network architectures differ by the number of connections be-
tween the neurons: in the feed-forward BP architecture, each hidden
layer (n) node is connected to the previous layer (n-1) nodes, whereas
in the cascade BP architecture, each hidden layer (n) node is connected
to every previous layer (input layer − 0, 1,..., n-1). We simulate and com-
pare the results obtained by each type of architecture in order to choose
the right model and the suitable configuration for each classifier and
each user. The most accurate architecture will be chosen to be embed-
ded on the device.

We perform tests with ANNs containing two intermediate layers and
with variations from 1 to 10 neurons in each hidden layer. Weights and
biases were randomly initialized. We select 200 inputs samples for each
resource and each user to test and choose which of the feed-forward or
the cascade BP architecture were the most appropriate. Our networks
were trained during 100 training cycles (or epochs). These 200 samples
were divided 80% for training, and 20 % for validation. The evaluation
of our ANNs has been done by experimentations in order to select differ-
ent architectures (hidden layers size) and comparing obtained results.

We noticed that:
• In our case, changing the intermediate layers and neurons number
did not affect the accuracy result. On the contrary, increasing the
ANN size was counter-productive and causes latency with power
overheads.

• We also notice that changing the number of input samples affect
the accuracy of the ANN. By selecting less than 200 samples, the
accuracy was decreased.

• Increasing the number of input samples can lead to a problem of
over-learning. In the literature, there is no method to determine the
ideal number of samples. The most recommended method is exper-
imentation and comparison of different results. For ENorMOUS the
number of selected samples is sufficient to demonstrate the feasibil-
ity of our solution.
Table 2 presents the neural networks architecture comparison for

our four classifiers. This table represents results for one user in order to
show how the ANN architecture choice is done. The table presents the
mean square error, the number of iterations (Epochs) performed for the
validation performance to reach a minimum and the regression results.
• The mean squared error (MSE) for each ANN with the number of
epochs is shown. The MSE indicates the accuracy of our algorithm,
which should be at an acceptable level.

• Regression results show the relationship between the outputs of the
network and the targets during the two phases: Training and val-
idation. If the training were perfect, the network outputs and the
targets would be exactly equal, but the relationship is rarely perfect
in practice. The regression plot will confirm our choice concerning
the right architecture and algorithm.
Training and validation represent the linear equation which shows

the relationship between the targets and the obtained outputs for our
two neural networks and for one user. The MSE and the regression re-
sults analysis provide the following information for the specific user:
• Cascade FBP provides better results than the simple Feed FBP for
CPU and sound classifiers.

• Simple Feed FBP provides better results compared to the Cascade
FBP for Brightness and Wi-Fi classifiers.

• The accuracy of our different neural networks by referring to the
mean square error indicates that the number of samples is sufficient.

325

I.C. Draa, S. Niar and E.G.-L. Strugeon et al. Journal of Systems Architecture 97 (2019) 320–334
Fig. 6. Target classifiers selecting process.

Table 2
Neural network accuracy for one user.
Resource ANN MSE Epochs Training Validation
CPU Feed FBP 0.21 4 0.49 ∗ Tar + 0.073 0.51 ∗ Tar + 0.17

Cascade FBP 0.062 12 0.71 ∗ Tar + 0.077 0.69 ∗ Tar + 0.012
Wi-Fi Feed FBP 0.02 14 0.84 ∗ Tar + 0.058 0.84 ∗ Tar + 0.044

Cascade FBP 0.11 10 0.61 ∗ Tar + 0.11 0.56 ∗ Tar + 0.15
Sound Feed FBP 0.049 16 0.92 ∗ Tar + 0.002 0.87 ∗ Tar + 0.039

Cascade FBP 0.044 3 0.69 ∗ Tar + 0.085 0.75 ∗ Tar + 0.07
Brightness Feed FBP 4 e − 08 19 0.89 ∗ Tar + 0.006 0.89 ∗ Tar + 0.096

Cascade FBP 0.073 3 0.7 ∗ Tar + 0.11 0.7 ∗ Tar + 0.13
Increasing this number may eventually improve accuracy, but this
requires further data collection.
The ANN architecture selection and accuracy can also be different for

each user because of the interaction manner, resources requirements,
running application and so on. This difference indicates the need for
separate experiments to determine the most suitable architecture for
each user.
4. Experimental results

This section presents the experimental results of our proposed solu-
tion. The purpose of these experiences is to validate our framework’s
architecture, evaluate the obtained energy consumption reduction and
the cost of our solution. The presented evaluation is considered as pre-
liminary results in an academic context. The section is divided in four
parts. We first present the tools used in the implementation phase and in
the experiments. In the second part, we present the obtained experimen-
tal results in terms of power consumption. The third part presents ad-
ditional results regarding the power consumption results obtained with
ENOrMOUS. We finally present the cost of our solution regarding the
resource usage.
4.1. Tools and experimental environments

This section presents the experimental environment, the tools and
their usage.
4.1.1. Measure and control tool

The Intel Energy Checker SDKit (IecSDK) [8] has been used to im-
plement our solution. The SDK has been designed to measure and op-
timize applications energy efficiency. Two components of the SDK are
leveraged in this work: the main driver (ESRV - Energy Server) and the

Modeler. The Modeler provides the services required to implement data
collection process and energy saving heuristics. Several data collection
extension modules, a.k.a. Inputs Libraries (ILs), as well as Actuators Li-
braries (ALs) have been developed. The Modeler is composed of three
components: the Front-End (FE), the Input Bus (IB), and the Back-End
(BE).
• The Front-End(FE) collects the data through the Inputs Libraries (ILs) :
CPU Utilization, display brightness, battery level, front end applica-
tions, etc. If necessary, new data can be collected by developing new
ILs.

• Once collected by the ILs, data are made visible on the Input Bus .
Any module connected to the bus has direct access to the metrics.
The IB is the main interface between the FE and the BE.

• The Back-end (BE) provides core services e.g. a logger or a power-
to-inputs automatic correlation, a watchdog as well as an interrupts
and communications manager. The BE can be expanded via Actuators
Libraries (ALs) . ALs are designed to perform specific actions such
as dynamic OS configuration and dynamic platform configuration.
Usually ALs are used to implement various optimization heuristics
that are driven in real-time by the inputs provided by the FE.
Fig. 7 depicts the architecture we used to implement our approach.

ENOrMOUS has been implemented as:
• For the data collection module (DCM), we have three ILs correspond-
ing to our three probes.

• For the data processing module (DPM), we have four ALs correspond-
ing to each resources classifier.

• The current state module (CSM) has been implemented as an IL.
• Finally, we have four actuator libraries, one actuator library for each
resource.
The developed Inputs Libraries and Actuator libraries are generic and

cross platform. They can run under Linux/Android and iOS. They can a
326

I.C. Draa, S. Niar and E.G.-L. Strugeon et al. Journal of Systems Architecture 97 (2019) 320–334

Fig. 7. ENOrMOUS architecture based on IecSDK.
Table 3
Intel 2in1 Ultrabook features.
Analyzed plateform 2in1 intel Ultrabook
Average battery life (Hours) 8 H
Maximal power consumption (W) 23 W
Minimal power consumption (W) 11.5 W
Average power consumption (W) 16 W
Number of cores 2
Number of threads 4
Processor base frequency 2.00 GHz
Max turbo frequency 3.20 GHz
Cache 4 MB SmartCache
RAM 4 GB

priori be embedded on any mobile devices thanks to their low cost in
terms of power consumption, memory and CPU usage.
4.1.2. Development of the neural networks

For the neural networks setup for preliminary experiments as shown
in Section 3.2.1 , Matlab neural Networks toolbox functions are used to
simulate and compare our networks, adjusting neurons weights to have
the most appropriate configuration. After the simulation on Matlab, we
have implemented the neural network functions as Actuator Library us-
ing a C Wrapper.
4.1.3. Mobile device and OS

The experiments have been carried out on an Ultrabook running Win-
dows 8.1 with a 2.50 GHz Intel dual-core i7-u3667U processor and 4GB
of RAM.The Ultrabook is an Intel reference design 2 in 1 which can be
used as tablet or laptop. Power measurement has been done using the
Yokogawa WT210 power analyzer. Table 3 below presents our mobile
device hardware features.

The ENOrMOUS principle is usable in almost all mobile systems but
will require some adjustments and modifications depending on the plat-
form. The main reason why the Ultrabook has been chosen to demon-
strate the feasibility of our approach is because of the simplicity to con-
nect it to our measurement device, the Yokogawa WT210 [9] . Other
works like [10] propose a time energy model (TEM), which is a regres-
sion model to estimate the application energy consumption on real mo-
bile devices. For more accuracy, in our work, we are using the Intel
Energy Checker SDK and the Yokogawa WT 210 to measure the energy
consumption of the whole process. This mobile device also contains a
port for GSM Cards as well as a touch screen. In addition to these hard-
ware features, with the Windows store, we have access to many metro
style applications [11] such as Facebook, Viber, Shazam, Instagram and so
on. These applications will be used as an entire application and will not
be used thur a web browser. In addition, these applications are widely

used both on smartphones and tablets. These characteristics makes our
solution useful for other mobiles devices.
4.1.4. Users population in the experiments

For our experiments mentioned in Section 4.2 , we selected six real
users with the several aforementioned probes and we collected the re-
quired information over two weeks. These six users correspond to six
Master students with different profiles and habits. We also simulate six
synthetic users to give more details about our power management solu-
tion. In total we have a population of 12 users.
4.2. ENOrMOUS power management results

In this section, we measure the gain obtained in power consumption
with the use of our solution. To demonstrate our solution efficiency, we
made tests in different scenarios with different real user contexts. Recall
that the classification output is an appropriate frequency for the CPU, a
range of values for the sound and the brightness and one state among
three for the Wi-Fi.

The optimizer actuator decreases screen brightness and sound level
gradually by delta units every lambda seconds to the smallest value that
satisfies the user. Delta and lambda have been fixed experimentally to
3% and 4 seconds respectively to not impact the user satisfaction and to
converge as quickly as possible to the optimal value.

For the CPU frequency, the Optimizer Actuator decreases the fre-
quency through the Windows API. Finally for the Wi-Fi, the interface is
directly configured to the appropriate state (on, disconnected or off).

Table 4 presents a users contexts snapshot. This table gives an instan-
taneous user context information for our six users, we have four sets of
information, we recall that each set corresponds to one of the four neu-
ral networks. We also give the foreground application name in addition
to its needs in terms of the four resources. These information represent a
sample for one specified context, when the foreground application will
change, the context will be different and obviously the results presented
in Table 5 will also change. For each resource, Table 5 gives the corre-
sponding classification results.

We notice from the two tables above that:
• The CPU frequency allowed by ENOrMOUS is always lower or equal
to the CPU frequency set by the OS.

• The Wi-Fi classification is highly correlated with the foreground ap-
plication connectivity need and the user mobility. For example user
2 is running Facebook , however the classification’s result is Wi-Fi
disconnected which is due to the user mobility.

• We can have a similar classification results for a different user con-
texts for example, user 4 and user 5 have the same classification re-
sults for sound [25%–50%] but their context information are differ-
ent. The same information is noticed for the brightness classification
regarding user 2 and user 5.
ENOrMOUS may determine a different configuration to the one we

have in Table 4 . If the user mobility changes for example, the Wi-Fi
configuration will be different than what is presented in Table 5 . Recall
that the outputs of the classifiers indicate the power policies. The Op-
timizer Actuator retrieves these outputs and consult the Current State
Module. Then, it applies the corresponding power policy on the appro-
priate power knob. Figs. 8–10 represent respectively the results from the
OS vs. the ENOrMOUS configurations for CPU, sound and brightness.

Table 6 represents the ENOrMOUS Wi-Fi management in comparison
with the default OS Wi-Fi management for the specified user context 4 .
These results correspond to the classification results of the specified user
context in the tables above.

Fig. 11 shows the whole system power consumption gains obtained
with ENOrMOUS for the specified user context 4 . The measurement tests
have been done 10 times, then the average has been calculated.

By analyzing the results, we notice:
327

