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a b s t r a c t 
Optimizing energy consumption in modern mobile handled devices plays a crucial role as lowering the power 
consumption impacts battery life and system reliability. Recent mobile platforms have an increasing number of 
sensors and processing components. Added to the popularity of power-hungry applications, battery life in mobile 
devices is an important issue. However, the utilization pattern of large amount of data from the various sensors 
can be beneficial to detect the changing device context, the user needs and the running application requirements 
in terms of resources. When these information are used properly, an efficient control of power knobs can be im- 
plemented to reduce the energy consumption. This paper presents a framework for ENergy Optimization for MObile 
platform using User needS (ENOsMOUS). This framework is able to identify user contexts and to understand user 
habits, preferences and needs to improve the operating system power scheme. Machine Learning (ML) algorithms 
have been used to obtain an efficient trade-off between power consumption reduction opportunities and user sat- 
isfaction requirements. ENOrMOUS is a generic solution that manages the power knobs. When applied to the CPU 
frequency, the sound level, the screen brightness and the Wi-Fi, ENOrMOUS can lower the power consumption 
by up to 35% compared the out-of-the-box operating system power manager schemes with a negligible overhead. 

1. Introduction 
Mobile and communicating devices are drastically changing our pro- 

fessional and personal activities. The number of smartphones users in 
western Europe has been predicted to increase from 240.3 millions in 
2016 to 279.6 millions in 2019. 1 The capabilities and hardware com- 
plexity of these handled devices are in constant improvement. They in- 
clude a large number of cores, a powerful GPU, large caches and a sig- 
nificant number of embedded sensors. For instance, the Samsung Galaxy 
S7 launched in 2016 contains 10 sensors, representing 6 additional sen- 
sors in comparison to the Samsung Galaxy S marketed in 2010. The 
number of cores has also increased from 1 to 8 cores. In addition, appli- 
cations running on current and future mobile devices are very power- 
hungry and more complex. As a result, the user and applications needs 
in terms of computing, communication and storage can deplete the de- 
vice’s battery in a few hours and impact user satisfaction. Nowadays, 
battery life has become one of the biggest obstacles for mobile device 
advancements. For these reasons new power consumption management 
systems are needed to extend battery life without impacting the process- 
ing power and user’s experience. 
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1 www.statista.com/statistics/494554/smartphone-users-in-western-europe 

Most of the existing energy saving techniques take into account nei- 
ther the user individual profiles nor the changing application needs and 
user requirements. In this paper, our work is based on the user context 
information and habits. In the literature, many definitions of the context 
are given [1] . In [2] , the context is defined by any information that can 
be used to characterize the situation of an entity. An entity is a person, 
place, or object that is considered relevant to the interaction between a 
user and an application, including the user and applications themselves. 
Adapted from Dey [2] , we define the user context as a set of information 
that characterize the situation in which the mobile device is used. The 
information may be divided in 3 subsets depending on their subject: the 
user, the time and space environment, and the device. This includes the 
information that may impact the configuration of a hardware resource 
such as ambient luminosity for the screen brightness, the applications 
needs in terms of CPU and so on. ENOrMOUS exploits the large set of em- 
bedded sensors to collect, store and process the user context information 
and application requirements at run-time. The collected data are then 
exploited to generate power policies. The purpose here, is to improve 
the default power management policies of the operating system and to 
increase the battery life. In the worst case scenario, ENOrMOUS offers 
a similar energy management to the operating system. In this paper, 
we assume that a mobile system can be exploited by many users and 
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to differentiate between them, we identify each user by his/her specific 
session. Our contribution can be summarized as follows: 
1. We exploit the rich sensor hubs and the operating system’s applica- 

tion programming interfaces (APIs) to collect a large set of data rel- 
ative to the user, the launched applications, the consumed resources 
and so one to represent the user context. This data collection phase 
is performed by a software module consisted of several probes. Each 
software probe corresponds to a specific kind of information such as 
environmental information, system information, etc. These probes 
are implemented as background process. All the collected informa- 
tion are stored in unified XML way to be processed in the next phase. 

2. In the second phase, we propose a new user context classification 
based on the collected information of the previous phase. The col- 
lected information will be processed through machine learning al- 
gorithms to extract usage pattern and regularities, identify the user 
context and predict the user’s associated actions. The employed ma- 
chine learning techniques allow us to use the opportunities to de- 
crease the energy consumed by unused resources in some cases. The 
classification tends to find a trade-off between the user satisfaction, 
the running application requirements and power consumption re- 
duction opportunities. 

3. In this last phase, the designed classification techniques are used to 
implement new and efficient power policies to control the power 
knobs and to reduce the whole system power consumption. Tech- 
niques such as Dynamic Frequency Scaling (DFS), Wi-Fi manage- 
ment, screen brightness and sound level adjustments, can thus be 
efficiently implemented. 
The aim is to offer the users, with different profiles and needs, a 

customized management approach depending on their habits, require- 
ments, lifestyle and job. In ENOrMOUS, the power savings are achieved 
at run-time and are transparent to the user. The goal here, is to minimize 
the user involvement. 

The reminder of this paper is organized as follows. The ENOrMOUS 
functional architecture is presented in Section 2 . In Section 3 , we present 
the classifiers architecture. In Section 4 , we present the experimental 
results obtained with our approach and a comparison with the OS power 
management is given. Section 5 presents the related work and finally we 
conclude and give some prospects of the project in Section 6 . 
2. ENOrMOUS functional architecture 

Several software modules have been developed to implement the 
three phases described previously. All these modules are shown in Fig. 1 . 
Details of these software modules are as follows: 
• Data Collection Module (DCM) : this module encapsulates 3 probes. 

– User Probe (UP): this probe is linked to the launched applications 
and the user’s preferences in terms of resources used during a 
certain period of time. The UP is executed at run-time and is 
transparent to the user. The probe indicates if the application is 
running in the background or foreground and its average running 
time in a given time period, as shown in Section 2 . We assume 
that users have different behaviors in weekdays and weekends, 
and also in different periods of a given day. This probe retrieves 
also the user mobility and permits us to know when the user 
is walking, running or in a stationary state. We use a two-week 
period to collect the required information through UP. The user 
can change this information collection period. 

– Environment Probe (EP): this probe gathers information about 
the user’s environment. It indicates: ambient luminosity, ambi- 
ent noise, device stand, date and time and user position. These 
information are captured using available embedded sensors such 
as Ambient Noise Sensor (ANS), Ambient Light Sensor (ALS), Ac- 
celeromeeter, GPS and so on. 

– System Probe (SP): this probe indicates the resources consumed 
by the system. The collected information are: average utilization 

Fig. 1. ENOrMOUS abstract architecture. 

Fig. 2. Context changes depending on the foreground application. 
of the CPU in percentage, the allocated CPU frequency by the 
OS, sound level, screen luminosity, Wi-Fi status, battery level and 
GPS state. This probe can also give information about the user’s 
habits and needs in terms of system configuration preferences. 
For example, the CPU average utilization varies from a user to 
another depending on their needs. 

The user context data for using each application is stored separately 
and later all contexts information are used to obtain the resource 
usage patterns as shown in Fig. 2 . 
DCM is the first executed module in ENOrMOUS and corresponds to 

the data collection phase. These data are captured and stored during 
two consecutive weeks in order to create a knowledge base that will 
be processed by the next module. DCM runs as background process and 
is executed when the mobile device is switched on. All these informa- 
tion are captured by interfacing the aforementioned probes with the 
embedded sensors and APIs offered by the operating system. The col- 
lected information are then stored in a data base in unified XML to be 
processed by the Data Processing module (DPM). Fig. 3 shows the DCM 
structure. As shown in the experimental section, the overheads due to 
DCM utilization is low. The DCM is launched only once, except when 
the user is not satisfied by the generated power policies. In this case, 
the data collection is redone to enrich the knowledge base as it will be 
detailed in the next sections. 
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Fig. 3. DCM collecting user context. 

• Data Processing Module (DPM) : this module is at the heart of our 
framework. It uses a large number of ad-hoc classifiers based on 
neural networks and data mining algorithms to process the stored 
DCM information and generate Power Policies (PP). 

• Power Policies (PP) : the DPM’s outputs represent a set of rules for 
each user context. These rules are applied to several power knobs to 
control them. For example, for managing screen brightness, a rule is 
the range of the most suitable screen brightness levels for the speci- 
fied context. If the user is in a dark environment and the foreground 
application does not require high brightness level, the rule could be 
[0%–25%]. It means that the maximum value of screen brightness 
configuration in this context is 25%. 

• Current State Module (CSM) : this module retrieves the current usage 
of the device. It permits to not impact negatively the user experi- 
ence before applying the power policies by configuring some used 
hardware components. The retrieved information by the CSM are the 
background application and the consumed resources like the Wi-Fi 
connectivity, the screen brightness intensity, the sound volume, the 
mobility sensors and so on. Taking into account the current device 
usage will also increase the accuracy of the generated power policies. 

• Optimizer Actuator (OA) : it performs resource management and sub- 
systems configuration. The aim of ENOrMOUS is to propose a generic 
solution that will manage all the resources. In this paper, we focus 
on CPU frequency scaling, sound and brightness management and 
Wi-Fi interface configuration. These resources represent the most 
power-hungry hardware components. The Optimizer Actuator takes 
into account the current power policy and the device’s current state 
before applying the new power policy 

• User Satisfaction Checker (USC) : after adjusting the resources and 
configuring the hardware, the user’s satisfaction is checked by ana- 
lyzing his/her behavior as shown in Fig. 4 . The user satisfaction is 
checked as follows: 
– If the user disables the resources management, ENOrMOUS is 
notified to modify the power policy that is responsible for the 
user’s dissatisfaction. For example, when the CPU frequency is 
scaled, the user satisfaction checker verifies the acceptance of 
the proposed frequency by the user. If a new frequency is set by 
the user, this new value is stored and will be taken into account 
for the next run in the same context and for the same foreground 
application. 

– In order to check the user satisfaction in terms of CPU configura- 
tions, for each specified context, hooks have been implemented 
as ActionListners . Specified contexts are defined by the executed 
foreground applications. For each foreground application, the 

Fig. 4. User satisfaction checker. 
evolution of the user’s context is shown in Fig. 4 . Thus, we have 
the different CPU frequencies allocated by ENOrMOUS. The num- 
ber of contexts varies from one user to another depending on 
their behavior. We have on average 30 different contexts for the 
same application, knowing that we have on average 40 applica- 
tions per user, the number of these contexts reaches 1200. The 
contexts are stored in an XML file that does not exceed 4 MB per 
user. The different stored contexts are enriched and redundan- 
cies are removed in order to reduce memory storage overheads. 
The storage of these different contexts is temporary, once the 
hardware configuration satisfies the user, All the context data is 
deleted. This operation reduces the impact on the memory con- 
sumption. 
The ActionListeners identify interaction’s speed and manner be- 
tween the user and his mobile system. When the user launch- 
esÃ§o an application during a given time, the number of times 
the user touches the screen and refreshes the application is col- 
lected and stored. The implementation of ActionListerners is sim- 
ple and intuitive in the current version of ENOrMOUS. These 
ActionListerners have been implemented as Input libraries (ILs). 
The IL starts when a new foreground application is executed. If 
the user context has already been checked for user satisfaction, 
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the ActionListner is not started and vice versa. Then, an average 
is calculated and is compared to the current number of interac- 
tions. If a difference is detected between these two values, the 
CPU frequency is increased by the OA and the same process is 
repeated until no gap between these values is detected. A dif- 
ference threshold of 20% is used for the number of touches to 
detect user dissatisfaction . A decrease or an increase of 20% is 
synonymous with a too low frequency for the user. These 20 % 
was determined after an explicit questionnaire with users who 
mentioned that their dissatisfaction can be expressed by inces- 
sant tactile support or by an expectation. These 20 % can vary 
from one user to another, for this reason, as a perspective we will 
determine this value by using classification algorithms depend- 
ing on the user interaction manner. This new frequency will be 
allocated to for the next similar context, thus correcting classifier 
outputs. 
In this paper, we take into account the user’s reactions. In- 
deed, the user’s reaction to an optimization is quite indicative of 
her/his satisfaction. This process allows us to improve the clas- 
sifiers accuracy and gauge user needs deeply. 

3. User context classification for power reduction 
The user context is continuously changing at run-time. The changes 

concern several parameters such as the foreground and background ap- 
plications running, the available Wi-Fi connectivity, the mobility of the 
user, the brightness or noise of the environment, the CPU workload and 
so on. The first consequence of these variations is that the user behavior 
and applications needs in terms of resources are strongly affected. In- 
deed, depending on the context, the user and applications may require 
more or less resources than those allocated by the operating system. For 
example, when user is in a dark or dim environment and depending on 
his/her preferences in terms of luminosity, we can reduce the screen 
brightness. This reduction is not taken into account by the OS and will 
permit us to have a gain in terms of power consumption. Secondly, dif- 
ferent users may react differently to the same context changes. In a given 
context, two distinct users launching the same application may need dif- 
ferent levels of resources configuration. This behavioral difference stems 
from many factors such as job, lifestyle, activity, eyesight and so on. In 
order to take advantage of these characteristics and differences, a de- 
vice/user context classification has been designed. As mentioned before, 
the classifiers are implemented in the Data Processing Module (DPM). 
The classification purpose is to determine which is the device current 
context of use to be able to generate adaptive power policies for each 
hardware component. The predictive model issued from the ENOrMOUS 
classifiers must lead to provide to the user only the hardware resources 
that are needed for the his/her current context. This resource calibration 
has to satisfy two major requirements: 
• to provide all the possible power reduction opportunities. In the 
worst case, the proposed power scheme is similar to the OS power 
consumption; 

• to produce power policies which will not impact negatively the user’s 
satisfaction. 
The output of the classification is thus used to select the appropri- 

ate power policy for each of the controlled resources according to the 
current context, as detailed in the following. 
3.1. ENOrMOUS resources classifiers 

The aim of the classification is to create a model able to predict the 
right target values for four resources: CPU, sound volume, screen bright- 
ness and Wi-Fi, according to the user context. As mentioned before, the 
context is defined by information related to the user, the environment 
and the device: 
!"#$%&$ =  ( '(%) , *#+,)"#-%#$ , .%+,!% ) 

Fig. 5. Resources ad-hoc classifiers. 
with : 
• User data include two values about the user’s preferences: 
'(%) =  ( ("/#01 )%2 , 3,4ℎ$1 )%2 ) 
From the user probes (see Section 2 ), the sound level and the bright- 
ness level are regularly recorded during one full day. Based on this 
information, their average level is computed and then assumed to be 
preferred by the user; 

• Environment data include ambient noise and lux levels as sensed by 
the device: 
*#+,)"#-%#$ =  ( 6-7,%#$8",(% , 6-7,%#$9/& ) 

• Device data include the CPU current frequency, the ratio of the used 
CPU frequency to the maximum CPU frequency, the number of run- 
ning applications, the application categories, the download and up- 
load Wi-Fi rates, and the mobile use: 
.%+,!% =  ( :1 '2)%; , 2)%;<6$," , # =>>3, , 6>>3,:6$%4"),%( , 

? ,@ ,<6$%( , -"7,3,$A ) 
These information constitute the input of the classification. We con- 

sider the four resources as independent targets for the classification. For 
this reason, the context identification is achieved by 4 classifiers, one ad- 
hoc classifier for each resource as shown in Fig. 5 . For each classifier, we 
have selected the input context data that are relevant given the output 
target resource. 
3.1.1. CPU classification 

The CPU classifier uses data that cover application needs and user 
preferences in terms of computation: 
• CPUfreq : this input is trivial and represents the CPU frequency al- 
lowed by the operating system. In our experiments, we consider four 
different values, 800 MHz, 1250 MHz, 1750 MHz and 2200 MHz, 
which are the CPU frequencies allowed by the mobile devices we 
used for the experiments. 

• freqRatio : this parameter indicates the ratio of the allowed OS CPU 
frequency relatively to the maximal frequency. It helps us to get an 
idea about the user preferences, when this ratio is high, it means that 
the user needs high computational resources and vice versa. 

• # =>>3, : this input includes the number of running applications in 
background and foreground. It assists in finding the correlation be- 
tween the number of running applications and the appropriate CPU 
frequency. 
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• appliCategories : it represents the category of the foreground appli- 
cation. Indeed, we made a specific classification of the applications 
into three distinct categories according to their requirements, as will 
be explained in the next Section 3.1.5 . The application category is 
used here to determine its requirements in terms of computation. 
The output of the CPU classifier is an appropriate CPU frequency 

among four classes. These classes are defined by the four frequency val- 
ues we chose: 
• L : context requiring a low CPU frequency (under 800 MHz). 
• M : context requiring a medium CPU frequency (between 800 MHz 
and 1.25 GHz). 

• H : context requiring high computing resources (between 1.25 and 
1.75 GHz). 

• VH : context requiring very high computing resources (over 
1.75 GHz). 

3.1.2. Sound classification 
Sound context is built according to three selected inputs: 

• ambientNoise : this value indicates the noise level of the environment 
and is captured by the available embedded sensor on the platform. 
When the ambient noise is too high, the sound level must be in- 
creased and vice versa. 

• soundPref : the sound level that is assumed to be preferred by the user 
(see Section 3.1 ). This data can be representative of the user hearing. 

• appliCategories : the category of the foreground application is used 
here to determine its requirements in terms of sound level. For ex- 
ample the sound required by Spotify differs from the sound level 
needed by Word . 
In the absence of a research background related to this question, 

we made the arbitrary choice of a four level scale for the sound volume, 
what constitutes a first attempt that should be refined. The output of this 
classifier is an appropriate sound level among four sound level classes: 
• VL [0%–25%] : when the user needs a very low sound level. 
• L [25%–50%]: when the need for the sound level is low. 
• M [50%–75%]: when the need for the sound level is medium. 
• H [75%–100%]: when the need for the sound level is high. 

3.1.3. Brightness classifier 
The brightness classifier uses data that cover the ambient luminosity, 

the application needs and the user’s preferences: Luminosity context is 
built according to three selected parameters from the probes. 
• ambientLux : this input is common to the brightness management 
methods. For example in the Samsung Galaxy S7, the brightness ad- 
justment in only based on the ambient luminosity [3] . This value 
indicates the luminosity of the environment and is captured by the 
available embedded sensor of the platform. This parameter value is 
very significant when the ambient luminosity is too high or when we 
need a high screen brightness level, and vice versa. The parameter 
values are available in the environment probe. 

• lightPref : the screen brightness level that is assumed to be preferred 
by the user (see Section 3.1 ). These data may give information about 
the user’s eyesight. 

• appliCategories : the category of the foreground application is used 
here to determine its requirements in terms of screen brightness. For 
example, Facebook brightness needs differs from Spotify needs. 
As for the sound, we used an arbitrary four level scale for the bright- 

ness. The output of this classifier is an appropriate brightness level 
among these four classes: 
• VL [0%–25%] : when the user needs a very low screen brightness. 
• L [25%–50%]: when the need for the screen brightness is low. 
• M [50%–75%]: when the need for the screen brightness is medium 
• H [75%–100%]: when the need for the screen brightness is high. 

Table 1 
Resource requirement categories for a selection of appli- 
cations. 
Applications CPU Wi-Fi Watching Listening 
Youtube M 1 H H 
Word L 0 H L 
Skype L 1 M H 
Facebook H 1 H L 
Messenger M 1 H L 
Spotify L 1/0 L H 
Adobe Reader L 0 H L 
2048 M 0 H L 
Chrome M 1 H M 
VLC M 0 H H 
OneNote L 0 H L 
Sudoku L 0 H L 

3.1.4. Wi-Fi classification 
For this classifier, we select 4 input data which are: 

• WiFiRates : the rates of downloaded and uploaded data in kb/s. 
• appliCategories : the category of the foreground application is used 
here to determine its requirements in terms of Wi-Fi. 

• mobility : mobile use of the device, provided by an API that permits to 
know when the user is stationary, walking or running. It is calculated 
by using the acceleromeeter data combined with the compass. It will 
help us define whether the user is close to a Wi-Fi hotspot or not. 
The output of this class is an appropriate Wi-Fi state among these 

three states: 
• 1 : when the user needs to be connected. 
• 1/0 : the Wi-Fi interface is on but disconnected. 
• 0 : the Wi-Fi interface is disabled. 
All these input data values are captured at the same time and stored 

into a database. The time-period of a collection is adjustable depending 
on the foreground application change. 
3.1.5. Application categories 

Each of the four classifiers includes in its input dataset the applica- 
tion category regarding the targeted resource. This parameter has been 
introduced to improve the classifiers accuracy. The application cate- 
gories have been subjectively evaluated based on their functionality and 
our own usage, according to the CPU, Wi-Fi, watching and listening 
needs. This is illustrated in Table 1 . 
• For CPU, we use three categories, L for low need, M for medium need 
and H for high need in terms of computation. 

• For Wi-Fi, we also use three categories, 1 for applications that require 
internet connectivity and 0 for applications that do not. We have also 
1/0 for the applications that can run in offline mode like Spotify or 
Google Maps . 

• For brightness and sound needs, we have respectively evaluated 
screen watching and listening parameters with three values L for 
low need, M for medium and H for high needs. 
The application categories are used by the four classifiers previously 

described. These classifiers are at first trained to build a predictive 
model using supervised machine learning, that means we use a set of 
instances for which we have the desired outputs (targets). The resulting 
model is then used to determine the proper power adjustments accord- 
ing to the input data that identify new situations. 

In the following, we present how we create the predictive models. 
3.2. Creation of the predictive models 

The aim is to create four models dedicated to predict the power re- 
source requirements according to the context. These four models corre- 
spond to the four classifiers presented previously. This is a classification 
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problem since we know the target classes of the models. Among the 
numerous classification methods [4] , we chose Artificial Neural Net- 
works (ANN) because of our type of data and the uncertain aspect of 
user behavior [5] . Indeed, neural networks can be used to detect pat- 
terns and trends that are too complex to be noticed using statistics tech- 
niques. For example, in our case, the uncertain aspect of user behavior 
is linked mainly to his/her interaction manner following his context. 
These data may strongly impact the energy consumption of the mobile 
system and consequently the results of our proposed solution. In addi- 
tion, we have various data that cover several axes to describe the user 
context as shown in Section 3 . 

A neural network is made of input nodes, output nodes and hidden 
nodes that link the input to the output nodes. The hidden nodes are 
organized in one or more layers, what forms the architecture of the net- 
work. 
• The inputs units receive information to be processed. In our case, it 
is the collected user context. 

• The outputs units receive the results of the processing. In our case, 
they are four context classes for each CPU, sound and brightness. For 
The Wi-Fi, we have three outputs units corresponding to each state. 

• The hidden units connect the input units to the output units. Their 
activity is determined by the activities of the input units and the 
weights on the connections between the input and the output units. 
Many studies discussed the use of several ANN architectures and 

training algorithms for classification. In ENOrMOUS, since it is based 
on a set of known-correct outputs for each context, the backpropaga- 
tion (BP) models are appropriate. The BP algorithm adapts the network 
according to the input-output associations that are expected. 

The method used to create this training dataset is described in the 
following section. 
3.2.1. Training dataset 

The set of instances for which we have the desired outputs consti- 
tute the training dataset, which is based on the user’s actions. Examples 
of appropriate brightness and sound level are inserted in the training 
dataset through the application of the change blindness mechanism [6] . 
Indeed, we exploit the change blindness concept by decreasing screen 
brightness and sound level gradually until it is no longer acceptable by 
the the user. When the screen brightness and the sound volume lev- 
els are gradually lowered and the user does not change these values 
manually, we conclude that the user is satisfied with these new screen 
brightness and sound volume values. Then, we store these appropriate 
brightness/sound values as targets for the specified context. However, 
when our automatic adjustment is not tolerated and is modified manu- 
ally by the user, the target value for the screen brightness and the sound 
volume are the last values that have not been modified manually. 

A similar method is used to detect relevant CPU frequency: we de- 
crease the frequency until a manual readjustment by the user is detected. 
Then, we store the last frequency that satisfied the user. In order to 
define the Wi-Fi targets, for each input sample we try to determine a 
corresponding connectivity configuration by experimentation. The user 
feedback is taken into account to correct the classification. 

This process represents the only phase where the user changes re- 
sources configuration manually. This is necessary for the construction 
of the learning dataset. This is done just once before the start of the clas- 
sification. All remaining phases are automatic and do not require any 
user action. The differences in the users’ needs and preferences explain 
why the classifiers are trained specifically for each user. 

Fig. 6 shows the target classifiers selecting process. 
3.2.2. Network architecture 

The back-propagation learning algorithm (BPLA) is one of the most 
studied and used algorithms for neural networks learning. It is a widely 
used method for ANN learning in many applications [7] . We used the 
sigmoid function to calculate the output of the neurons. The shape or 

architecture of the network is another parameter that must be decided 
upon to design an ANN. The architecture depends on the way the neuron 
layers are connected to each other, the number of hidden layers and the 
number of neurons per layer. Unfortunately, there is no generic method 
to determine the optimum values for these parameters. 

About the connections between the layers, two architectures were 
tested: a simple Feed-forward BP architecture and a Cascade BP archi- 
tecture [5] . Both of them are among the most popular multilayer ANN. 
Their network architectures differ by the number of connections be- 
tween the neurons: in the feed-forward BP architecture, each hidden 
layer (n) node is connected to the previous layer (n-1) nodes, whereas 
in the cascade BP architecture, each hidden layer (n) node is connected 
to every previous layer (input layer −  0, 1,..., n-1). We simulate and com- 
pare the results obtained by each type of architecture in order to choose 
the right model and the suitable configuration for each classifier and 
each user. The most accurate architecture will be chosen to be embed- 
ded on the device. 

We perform tests with ANNs containing two intermediate layers and 
with variations from 1 to 10 neurons in each hidden layer. Weights and 
biases were randomly initialized. We select 200 inputs samples for each 
resource and each user to test and choose which of the feed-forward or 
the cascade BP architecture were the most appropriate. Our networks 
were trained during 100 training cycles (or epochs). These 200 samples 
were divided 80% for training, and 20 % for validation. The evaluation 
of our ANNs has been done by experimentations in order to select differ- 
ent architectures (hidden layers size) and comparing obtained results. 

We noticed that: 
• In our case, changing the intermediate layers and neurons number 
did not affect the accuracy result. On the contrary, increasing the 
ANN size was counter-productive and causes latency with power 
overheads. 

• We also notice that changing the number of input samples affect 
the accuracy of the ANN. By selecting less than 200 samples, the 
accuracy was decreased. 

• Increasing the number of input samples can lead to a problem of 
over-learning. In the literature, there is no method to determine the 
ideal number of samples. The most recommended method is exper- 
imentation and comparison of different results. For ENorMOUS the 
number of selected samples is sufficient to demonstrate the feasibil- 
ity of our solution. 
Table 2 presents the neural networks architecture comparison for 

our four classifiers. This table represents results for one user in order to 
show how the ANN architecture choice is done. The table presents the 
mean square error, the number of iterations (Epochs) performed for the 
validation performance to reach a minimum and the regression results. 
• The mean squared error (MSE) for each ANN with the number of 
epochs is shown. The MSE indicates the accuracy of our algorithm, 
which should be at an acceptable level. 

• Regression results show the relationship between the outputs of the 
network and the targets during the two phases: Training and val- 
idation. If the training were perfect, the network outputs and the 
targets would be exactly equal, but the relationship is rarely perfect 
in practice. The regression plot will confirm our choice concerning 
the right architecture and algorithm. 
Training and validation represent the linear equation which shows 

the relationship between the targets and the obtained outputs for our 
two neural networks and for one user. The MSE and the regression re- 
sults analysis provide the following information for the specific user: 
• Cascade FBP provides better results than the simple Feed FBP for 
CPU and sound classifiers. 

• Simple Feed FBP provides better results compared to the Cascade 
FBP for Brightness and Wi-Fi classifiers. 

• The accuracy of our different neural networks by referring to the 
mean square error indicates that the number of samples is sufficient. 
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Fig. 6. Target classifiers selecting process. 

Table 2 
Neural network accuracy for one user. 
Resource ANN MSE Epochs Training Validation 
CPU Feed FBP 0.21 4 0.49 ∗ Tar +  0.073 0.51 ∗ Tar +  0.17 

Cascade FBP 0.062 12 0.71 ∗ Tar +  0.077 0.69 ∗ Tar +  0.012 
Wi-Fi Feed FBP 0.02 14 0.84 ∗ Tar +  0.058 0.84 ∗ Tar +  0.044 

Cascade FBP 0.11 10 0.61 ∗ Tar +  0.11 0.56 ∗ Tar +  0.15 
Sound Feed FBP 0.049 16 0.92 ∗ Tar +  0.002 0.87 ∗ Tar +  0.039 

Cascade FBP 0.044 3 0.69 ∗ Tar +  0.085 0.75 ∗ Tar +  0.07 
Brightness Feed FBP 4 e −  08 19 0.89 ∗ Tar +  0.006 0.89 ∗ Tar +  0.096 

Cascade FBP 0.073 3 0.7 ∗ Tar +  0.11 0.7 ∗ Tar +  0.13 
Increasing this number may eventually improve accuracy, but this 
requires further data collection. 
The ANN architecture selection and accuracy can also be different for 

each user because of the interaction manner, resources requirements, 
running application and so on. This difference indicates the need for 
separate experiments to determine the most suitable architecture for 
each user. 
4. Experimental results 

This section presents the experimental results of our proposed solu- 
tion. The purpose of these experiences is to validate our framework’s 
architecture, evaluate the obtained energy consumption reduction and 
the cost of our solution. The presented evaluation is considered as pre- 
liminary results in an academic context. The section is divided in four 
parts. We first present the tools used in the implementation phase and in 
the experiments. In the second part, we present the obtained experimen- 
tal results in terms of power consumption. The third part presents ad- 
ditional results regarding the power consumption results obtained with 
ENOrMOUS. We finally present the cost of our solution regarding the 
resource usage. 
4.1. Tools and experimental environments 

This section presents the experimental environment, the tools and 
their usage. 
4.1.1. Measure and control tool 

The Intel Energy Checker SDKit (IecSDK) [8] has been used to im- 
plement our solution. The SDK has been designed to measure and op- 
timize applications energy efficiency. Two components of the SDK are 
leveraged in this work: the main driver (ESRV - Energy Server) and the 

Modeler. The Modeler provides the services required to implement data 
collection process and energy saving heuristics. Several data collection 
extension modules, a.k.a. Inputs Libraries (ILs), as well as Actuators Li- 
braries (ALs) have been developed. The Modeler is composed of three 
components: the Front-End (FE), the Input Bus (IB), and the Back-End 
(BE). 
• The Front-End(FE) collects the data through the Inputs Libraries (ILs) : 
CPU Utilization, display brightness, battery level, front end applica- 
tions, etc. If necessary, new data can be collected by developing new 
ILs. 

• Once collected by the ILs, data are made visible on the Input Bus . 
Any module connected to the bus has direct access to the metrics. 
The IB is the main interface between the FE and the BE. 

• The Back-end (BE) provides core services e.g. a logger or a power- 
to-inputs automatic correlation, a watchdog as well as an interrupts 
and communications manager. The BE can be expanded via Actuators 
Libraries (ALs) . ALs are designed to perform specific actions such 
as dynamic OS configuration and dynamic platform configuration. 
Usually ALs are used to implement various optimization heuristics 
that are driven in real-time by the inputs provided by the FE. 
Fig. 7 depicts the architecture we used to implement our approach. 

ENOrMOUS has been implemented as: 
• For the data collection module (DCM), we have three ILs correspond- 
ing to our three probes. 

• For the data processing module (DPM), we have four ALs correspond- 
ing to each resources classifier. 

• The current state module (CSM) has been implemented as an IL. 
• Finally, we have four actuator libraries, one actuator library for each 
resource. 
The developed Inputs Libraries and Actuator libraries are generic and 

cross platform. They can run under Linux/Android and iOS. They can a 
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Fig. 7. ENOrMOUS architecture based on IecSDK. 
Table 3 
Intel 2in1 Ultrabook features. 
Analyzed plateform 2in1 intel Ultrabook 
Average battery life (Hours) 8 H 
Maximal power consumption (W) 23 W 
Minimal power consumption (W) 11.5 W 
Average power consumption (W) 16 W 
Number of cores 2 
Number of threads 4 
Processor base frequency 2.00 GHz 
Max turbo frequency 3.20 GHz 
Cache 4 MB SmartCache 
RAM 4 GB 

priori be embedded on any mobile devices thanks to their low cost in 
terms of power consumption, memory and CPU usage. 
4.1.2. Development of the neural networks 

For the neural networks setup for preliminary experiments as shown 
in Section 3.2.1 , Matlab neural Networks toolbox functions are used to 
simulate and compare our networks, adjusting neurons weights to have 
the most appropriate configuration. After the simulation on Matlab, we 
have implemented the neural network functions as Actuator Library us- 
ing a C Wrapper. 
4.1.3. Mobile device and OS 

The experiments have been carried out on an Ultrabook running Win- 
dows 8.1 with a 2.50 GHz Intel dual-core i7-u3667U processor and 4GB 
of RAM.The Ultrabook is an Intel reference design 2 in 1 which can be 
used as tablet or laptop. Power measurement has been done using the 
Yokogawa WT210 power analyzer. Table 3 below presents our mobile 
device hardware features. 

The ENOrMOUS principle is usable in almost all mobile systems but 
will require some adjustments and modifications depending on the plat- 
form. The main reason why the Ultrabook has been chosen to demon- 
strate the feasibility of our approach is because of the simplicity to con- 
nect it to our measurement device, the Yokogawa WT210 [9] . Other 
works like [10] propose a time energy model (TEM), which is a regres- 
sion model to estimate the application energy consumption on real mo- 
bile devices. For more accuracy, in our work, we are using the Intel 
Energy Checker SDK and the Yokogawa WT 210 to measure the energy 
consumption of the whole process. This mobile device also contains a 
port for GSM Cards as well as a touch screen. In addition to these hard- 
ware features, with the Windows store, we have access to many metro 
style applications [11] such as Facebook, Viber, Shazam, Instagram and so 
on. These applications will be used as an entire application and will not 
be used thur a web browser. In addition, these applications are widely 

used both on smartphones and tablets. These characteristics makes our 
solution useful for other mobiles devices. 
4.1.4. Users population in the experiments 

For our experiments mentioned in Section 4.2 , we selected six real 
users with the several aforementioned probes and we collected the re- 
quired information over two weeks. These six users correspond to six 
Master students with different profiles and habits. We also simulate six 
synthetic users to give more details about our power management solu- 
tion. In total we have a population of 12 users. 
4.2. ENOrMOUS power management results 

In this section, we measure the gain obtained in power consumption 
with the use of our solution. To demonstrate our solution efficiency, we 
made tests in different scenarios with different real user contexts. Recall 
that the classification output is an appropriate frequency for the CPU, a 
range of values for the sound and the brightness and one state among 
three for the Wi-Fi. 

The optimizer actuator decreases screen brightness and sound level 
gradually by delta units every lambda seconds to the smallest value that 
satisfies the user. Delta and lambda have been fixed experimentally to 
3% and 4 seconds respectively to not impact the user satisfaction and to 
converge as quickly as possible to the optimal value. 

For the CPU frequency, the Optimizer Actuator decreases the fre- 
quency through the Windows API. Finally for the Wi-Fi, the interface is 
directly configured to the appropriate state (on, disconnected or off). 

Table 4 presents a users contexts snapshot. This table gives an instan- 
taneous user context information for our six users, we have four sets of 
information, we recall that each set corresponds to one of the four neu- 
ral networks. We also give the foreground application name in addition 
to its needs in terms of the four resources. These information represent a 
sample for one specified context, when the foreground application will 
change, the context will be different and obviously the results presented 
in Table 5 will also change. For each resource, Table 5 gives the corre- 
sponding classification results. 

We notice from the two tables above that: 
• The CPU frequency allowed by ENOrMOUS is always lower or equal 
to the CPU frequency set by the OS. 

• The Wi-Fi classification is highly correlated with the foreground ap- 
plication connectivity need and the user mobility. For example user 
2 is running Facebook , however the classification’s result is Wi-Fi 
disconnected which is due to the user mobility. 

• We can have a similar classification results for a different user con- 
texts for example, user 4 and user 5 have the same classification re- 
sults for sound [25%–50%] but their context information are differ- 
ent. The same information is noticed for the brightness classification 
regarding user 2 and user 5. 
ENOrMOUS may determine a different configuration to the one we 

have in Table 4 . If the user mobility changes for example, the Wi-Fi 
configuration will be different than what is presented in Table 5 . Recall 
that the outputs of the classifiers indicate the power policies. The Op- 
timizer Actuator retrieves these outputs and consult the Current State 
Module. Then, it applies the corresponding power policy on the appro- 
priate power knob. Figs. 8–10 represent respectively the results from the 
OS vs. the ENOrMOUS configurations for CPU, sound and brightness. 

Table 6 represents the ENOrMOUS Wi-Fi management in comparison 
with the default OS Wi-Fi management for the specified user context 4 . 
These results correspond to the classification results of the specified user 
context in the tables above. 

Fig. 11 shows the whole system power consumption gains obtained 
with ENOrMOUS for the specified user context 4 . The measurement tests 
have been done 10 times, then the average has been calculated. 

By analyzing the results, we notice: 
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