
23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 1 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE1…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

Contents lists available at ScienceDirect

Microprocessors and Microsystems

j o u r n a l

 h o m e p a g e :

 w w w . e l s e v i e r . c o m / l o c a t e / m i c p r o

HAPE: A high-level area-power estimation framework for FPGA-based

accelerators

Mariem Makni
⁎,a , Smail Niara, Mouna Baklouti b , Mohamed Abidb

a LAMIH, University

 of Valenciennes, France
b National Engineering School of

 Sfax, Tunisia

A R T I C L E

 I N F O

Keywords:

HLS

SoC

Hardware accelerator

RTL

FPGA

DSE

A B S T R A C T

Recent embedded applications are widely used in several industrial domains such as automotive and multimedia

systems. These applications are critical and complex, involving more computing resources and therefore in-

creasing the power consumption of the system. Although performance still remains an important design metric,

power consumption has become a critical factor for several systems, particularly after the increasing complexity

of recent System-on-Chip (SoC) designs. Consequently, the whole computing domain is being forced to switch

from a focus

 on high performance computation to energy-e cient computation. In addition to the time-to-ffi

market challenge, designers need to estimate, rapidly and accurately, both area occupation and power con-

sumption of complex and diverse applications. High-Level Synthesis (HLS) has been emerged as an attractive

solution for designers to address this challenge in order to explore a large number of design points at a high-level

of abstraction. In this paper, we target FPGA-based accelerators. We propose HAPE, a high-level framework

based on analytic

 models for area and power estimation without

 requiring register-transfer level (RTL) im-

plementations. This technique allows to estimate the required FPGA resources and the power consumption at the

source code level. The proposed models also enable a fast design space exploration (DSE) with di erent trade-ff

o s through HLS optimization pragmas, including loop unrolling, pipelining, array partitioning, etc. The ac-ff

curacy of our

 proposed models is evaluated by using a variety of synthetic benchmarks. Estimated power results

are compared to real board measurements. The area and power estimation results are less than 5% of error

compared to RTL implementations.

1. Introduction

Embedded System-on-Chips (SoCs) have often con icting

 con-fl

straints such as time and energy which considerably harden the design

of those systems. In addition, complex embedded applications have to

cope with an increasing demand of functionalities, which require in-

creasing processing capabilities .[1,2]

With the introduction of heterogeneous computing systems such as

the Xilinx Zynq UltraScale+ multiprocessor system-on-chip (MPSoC)

[3], d ifferent processing units can be embedded in the SoC to meet the

growing requirements of the applications (performance/power con-

straints). Complex applications include di erent computing-intensiveff

functions with multiple

 nested loops. This leads to signi cantly in-fi

creased power consumption as well as higher processing requirements

to ensure the respect of constraints

 expected in such

 systems. Conse-

quently, designers need to estimate the various design metrics

(execution time, area, power) of the embedded system at the earliest

step in the design ow.fl

High-Level Synthesis (HLS) tools have been developed in the[4,5]

recent years to address this challenge. These tools are used

 to auto-

matically generate circuit speci cations in hardware description lan-fi

guage from high-level languages (e.g., C/C++) without the need for

time-consuming manual register-transfer level (RTL) generation .[6]

The utilization of these tools signi cantly saves time and programmingfi

e ort.ff

In addition, HLS tools provide various optimization pragmas such as

loop unrolling, pipelining, array partitioning, etc. . This enables[7,8]

designer to

 explore the large number of potential

 design points for an

application with these pragmas while optimizing for performance and/

or area constraints. Unfortunately, the large

 design space resulting from

the di erent pragma combinations makes exhaustive design space ex-ff

ploration (DSE) a time-consuming task. Consequently, the runtime of

https://doi.org/10.1016/j.micpro.2018.08.004

Received 15 December 2017; Received in

 revised form 26 July 2018; Accepted 9 August 2018

⁎

Corresponding author.

E-mail addresses: mariem.makni@etu.univ-valenciennes.fr smail.niar@univ-valenciennes.fr mouna.baklouti@enis.rnu.tn(M.

 Makni), (S. Niar), (M. Baklouti),

mohamed.abid@enis.rnu.tn (M. Abid).

Microprocessors and Microsystems 63 (2018) 11–27

Available online 10 August 2018
0141-9331/ © 2018 Elsevier B.V. All rights reserved.

T

T

T

T

T

T

T

T

T

23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 2 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE1…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

the HLS tools is prohibitively long to exclude the possibility of ex-

haustive design space, especially

 for complex designs.

Analytic models have been

 proposed to address these challenges by

enabling a rapid design space exploration

 for Field-Programmable Gate

Array (FPGA) based accelerators

 at a high-level of abstraction.

 By de-

signing at a higher level of abstraction, the designer can work more

productively and achieve faster time-to-market than using manual RTL

designs.

In addition to performance estimation, it is critical for designers to

evaluate whether their implementation meets the area requirements on

an FPGA platform. Hence, there is a clear need for an area analytic

model that allows to quantitatively estimate the FPGA resources (LUTs,

BRAMs, etc.) required to map a given application.

In this paper, we target FPGA-based accelerators. These circuits

have recently gained popularity for systems that demand the pro-

grammability and customization o ered by the recon gurable

 FPGAff fi

fabric. They are considered as a promising alternative due to the energy

e ciency compared to other architectures, such as NVIDIA Tegraffi [9]

and Kalray MPPA . In this work,

 we have selected the Xilinx ZC702[10]

(ZYNQ) , which is an FPGA-based Processor/Accelerator system.[11]

FPGAs have the bene ts of being high speed and adaptable to the ap-fi

plication constraints at a reduced performance per watt if compared to

the General Purpose Processors

 (GPP). Since FPGA will be in charge of

executing a large portion of the system power consumption, an accurate

power

 estimation model for FPGA circuits is

 necessary.

This work has three-fold contributions:

•

•

•

•

•

•

•• Modeling accurately hardware resource utilization (LUTs, FFs, etc.)

of di erent

 applications mapped on FPGA-based acceleratorsff

().Section 3.4

•

•

•

•

•

•

•• Modeling accurately power consumption of FPGA-based accel-

erators ().Section 3.5

•

•

•

•

•

•

•• Estimating the impact of optimization pragmas on both the area

occupation and the

 power consumption for FPGA-based accelerators

under FPGA resource

 constraints ().Section 3

In , we proposed a high-level area estimation tool based on an[12]

analytic model without requiring RTL implementations. Compared to

the work we presented in , this paper is di erent in the following[12] ff

points:

•

•

•

•

•

•

•• We give an

 overview of a wide selection of HLS tools that are cur-

rently available.

•

•

•

•

•

•

•• We elaborate on all

 aspects of the

 proposed framework, including an

analytic power consumption estimation model.

•

•

•

•

•

•

•• We describe the target hardware architecture and the FPGA-based

accelerator interconnection approach in further detail.

•

•

•

•

•

•

•• We provide additional information on the di erent benchmarks andff

optimization pragmas used

 in this work.

In this paper, we introduce igh-level rea and owerHAPE, a H A P

Estimation framework

 for FPGA-based accelerators. We use the

Advanced eXtensible Interface (AXI4) stream to communicate[13]

between the main processor and the Hardware Accelerators (HAs) for

diverse applications. The area and power estimation results are less

than 5% of error compared to RTL implementations. In addition, our

proposed framework provides these estimates faster than existing HLS

tools, such as Xilinx Vivado HLS and without invoking HLS.[8]

The remainder of this paper is organized as follows: pre-Section 2

sents background and related work. introduces our proposedSection 3

framework and the target hardware architecture. An experimental

evaluation appears in . Conclusions and suggestions for

 futureSection

 4

work are given in .Section 5

2. Background and related work

The complexity of SoC designs has signi cantly increased in recentfi

years. Furthermore, streaming embedded applications are widely used

in

 several industrial domains such as automotive, multimedia and

surveillance

 systems. Several Multiprocessor System-on-Chip (MPSoC)

designs, integrating multiple cores or processors on

 a single die ,[14]

have been proposed to cope with the application

 requirements. As an

example of famous commercial platforms based on such architecture,

we quote the NVIDIA Tegra processor which integrates a quad-[15]

core ARM Cortex A15. Unfortunately, such architectures present larger

area and higher power consumption because no single type of processor

can be well suited to every application; hence, they are more suitable

for general-purpose systems rather than embedded

 systems, which re-

quire more performance and energy e ciency.ffi

FPGA-based Processor/Accelerator systems including Xilinx Zynq-

7000 All Programmable SoC , have emerged in parallel as a pri-[11]

vileged target platform to implement intensive processing applications.

In fact, they have the bene ts of being high speed and adaptable to thefi

application constraints at a high performance per watt ratio.

In the following subsections, we give some background information

related to the di erent HLS pragmas used in this work as well as anff

overview of some existing works and HLS tools.

2.1.

 HLS optimization pragmas

HLS tools provide various optimization pragmas such as loop un-

rolling, loop pipelining and array partitioning. The designer is re-

sponsible for exploring the large number of potential design choices

available for an application with these pragmas while

 optimizing for

performance and/or area constraints. These pragmas have a great im-

pact not only on performance but also on resource utilization and

power consumption. Applying multiple pragmas produces various im-

plementations with di erent performance/energy trade-o s. Hence,ff ff

our proposed framework supports these pragmas while enabling a fast

architectural exploration to identify the best design for a given appli-

cation. The optimization pragmas, considered in this work, are detailed

as follows :[4]

(A)

 Loop pipeliningis an optimization pragma applied at the loop

level, allowing parallel executions of loop iterations. When enabled,

the hardware performance is determined by a constant Initiation

Interval (II) of the loop.

II is de ned as

 the number of clock cycles

 between the start times offi

consecutive loop

 iterations .[16] This pragma provides higher

throughput with less

 execution time. illustrates the basicFig. 1

concept of loop pipelining. In sequential languages such as

 C/C++,

the operations in a loop are executed sequentially and the next

Fig. 1. Loop pipelining pragma.

M. Makni et al. Microprocessors and Microsystems 63 (2018) 11–27

12

23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 3 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE1…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

iteration of the

 loop can

 only begin when the last operation in the

current loop

 iteration is complete.

 As shown in , without pi-Fig. 1

pelining, there are three clock cycles between the two read

 opera-

tions and it requires six clock cycles for the entire loop to nish.fi

However, with pipelining, there is only one clock cycle between the

two read operations and it requires four clock cycles for the entire

loop to nish.fi

(B) Array partitioningallows to split program arrays into multiple

smaller arrays stored in multiple memory banks in

 the Block RAMs

(BRAMs). Without loss of generality, we assume

 that each memory

partition has two read and one write ports. In Xilinx Vivado HLS, the

array partitioning strategies include three types, andblock, cyclic

complete, as shown in .Fig. 2

Fig. 3 shows an example of array partitioning pragma. In this ex-

ample, the original array is partitioned into multiple memoryA

banks with block partitioning and partitioning factor of 4. As each

memory bank has two read ports,

 memory load operations for array

A can be executed in the same cycle. As depicted in , arrayFig. 3

partitioning has the advantage of improving the memory bandwidth

by increasing the

 number of load/store ports.

(C) Loop unrollingis another technique to exploit parallelism be-

tween loop iterations. It can reduce the loop overhead by reducing

the number of iterations and replicating the body of the loop. With

loop unrolling,

 we can transform an M-iteration loop into a loop

with M/N iterations. shows an example of loop unrollingFig. 4

pragma. In this

 example, the loop is unrolled by a factor of

 2 to have

N/2 iterations. The loop unrolling can also remove the dependences

between loop index

 variables by completely unrolling loops to

execute

 several iterations

 in parallel. However, for large loop

bounds, loop unrolling leads to high

 FPGA resource requirements as

well as high power consumption.

Designers can use HLS tools to explore diverse hardware im-

plementations by inserting di erent optimization pragmas. Loop pipe-ff

lining, unrolling and array partitioning are the most prominent pragmas

in modern HLS tools, such

 as Xilinx Vivado HLS . When enabled,[8]

these pragmas have the advantage of improving performance in FPGA-

based accelerator systems. However, more

 logic resources are required,

as will be demonstrated by experiments, presented in .Section 4

2.2.

 An overview of High-Level Synthesis (HLS) tools

Hardware designers require writing complex RTL code

 to generate

implementations for mapping the applications on heterogeneous com-

puting systems featuring FPGAs. This process is

 error prone and can

 be

di cult to debug. HLS tools , on the other hand, are moreffi [6,17,18]

straightforward, simple programming and are easily accessible.

Several HLS tools have been developed for targeting speci c ap-fi

plications. LegUp is an open source HLS tool that compiles auto-[6]

matically a C program to

 target a hybrid FPGA-based hardware/soft-

ware system. It can synthesize a design in C language to a

 custom

hardware design. However, LegUp relies on standard commercial HLS

tools (e.g., eXCite , Altera s PowerPlay power analyzer tool[19] ’ [20]) t o

measure speed, area and energy of the generated RTL implementations.

This can be costly and di cult, making large design space a highlyffi

time-consuming process for designers.

ROCCC is an open source HLS tool that can generate custom[18]

HAs from C programs. ROCCC is designed to accelerate critical kernels

that perform repeated computation on streams of data, such as FIR

filters. However, ROCCC does not support several commonly-used

 as-

pects of the C language, such as generic pointers, shifting by a variable

amount and non-for loops, and the ternary operator. Therefore,

ROCCC s strict subset of C is insu cient for compiling any of the’ ffi

CHStone and Polybench benchmarks used in this study and described in

Section 4. In addition, it does

 not support advanced optimization

pragmas such as array partitioning, loop pipelining, etc. Therefore,

their work has limited design space.

On the commercial front, there is Altera s C2H tool . This tool’ [21]

allows designers to partition a high-level source code (C pro-

gram functions) into custom HAs. The software segments

 are executed’

on a Nios II soft processor. The C2H system architecture is similar

 to

that targeted by Canis et al. . eXCite tool is another commercial[6] [19]

HLS tool. It compiles a standard C program to a hybrid processor/ac-

celerator architecture. Catapult is a HLS tool acquired from Mentor[22]

Graphics. This tool accepts a

 large subset of C, C++ and

 SystemC,

targeting

 ASICs and FPGAs. In contrast to , the synthesized RTL[19,21]

generated by Catapult, is optimized for power, area, and speed. Loops

can be unrolled completely or partially, or they can be pipelined with a

certain initiation interval. However, memory accesses are not optimized

by the tool, array elements that are reused in subsequent iterations are

fetched from memory on every use.

GAUT is a HLS tool that is designed for DSP applications. GAUT[5]

accepts a C program as an input to be synthesized into an architecture

with a processing unit, a memory unit, and a communication unit, and

requires that the user supply speci c constraints, such as the pipelinefi

initiation interval. eXCite and GAUT tools have not been under active

development for several years and are no longer maintained.

With regard to commercial tools, there has been considerable

 ac-

tivity in recent years,

 both in start-ups and major EDA vendors. Vivado

HLS is a commercial HLS tool, released by Xilinx . This tool starts[8]

from a high-level programming language (e.g., C/C++) to

Fig. 2. Array partitioning pragma for the three strategies with partitioning

factor of 2

 .[4]

Fig. 3. Array partitioning example for block partitioning strategy with factor of

4).

Fig. 4. Loop

 unrolling pragma.

M. Makni et al. Microprocessors and Microsystems 63 (2018) 11–27

23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 4 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE1…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

13

automatically

 generate a circuit speci cation in hardware descriptionfi

language that performs the same function. It can also optimize the area,

speed and power consumption of the hardware

 implementation.

Another commercial HLS tool is

 Altera SDK for Open Computing

Language (OpenCL). At

 a

 high level, Altera SDK translates an[30,31]

OpenCL kernel to a hardware circuit

 that executes on the FPGA. Similar

to Xilinx Vivado HLS tool

 , recent Altera FPGA devices support op-[8]

timization pragmas for di erent application domains, such as loopff

unrolling, pipelining, etc.

Since the proposed work deals with area/power estimation of FPGA-

based accelerators during high level synthesis, hence this paper will

focus only on related approaches at higher abstraction levels and not

lower levels.

2.3. An overview of high-level performance/area/power estimation tools

Several works have investigated the high-level estimation aspect for

di erent FPGA-based accelerators but mostly from a performance per-ff

spective [28,32,33]. In [29], the authors propose a high-level estima-

tion model to

 estimate the power consumption of FPGA-based systems.

Their estimation model is only based on Logic Slices and Block RAMs

(BRAMs) parameters. They use a test application to validate the pro-

posed model, which is a 720p video frame standard. However, this

work has limited design space since it only focuses on

 one application,

which is not su cient to validate an analytic model. Our approach

 onffi

the contrary

 uses di erent sets of applications to validate the proposedff

estimation models. Moreover, in , the framework does not support[29]

any optimization pragma to improve the performance of their system.

Therefore, their proposed power estimation model is not validated for

our work.

Most of the high-level estimation models are aimed

 towards speci cfi

entities like IP Cores or arithmetic operators or softcore[34] [35]

processors etc. and are not generic for

 FPGA-based architectures.[36]

The model

 presented in only works on streaming functions (video[37]

streaming applications), and cannot be easily expanded to large design

space with di erent application domains, such as signal processingff

applications, etc.

The authors

 of Shao et al.

 propose , a pre-RTL,

 power-[17]

 Aladdin

performance accelerator modeling framework. Aladdin allows for sev-

eral design space exploration options such as loop unrolling, pipelining

and array partitioning. It estimates performance, power, and area of

accelerators within 0.9%, 4.9%,

 and 6.6% with respect to RTL im-

plementations. However, Shao et al. is mainly oriented towards[17]

Application Speci c Integrated Circuit (ASIC) accelerators. This limitsfi

the target hardware architectures to

 ASIC-based accelerators.

Unlike

 the aforementioned works, our proposed pre-RTL models do

not rely on any commercial HLS tools. Furthermore, we use di erentff

sets

 of applications (data mining, signal processing, image processing,

etc.) to validate our proposed framework.

In , the authors perform more extensive design space through[28]

several HLS optimization pragmas, such as loop pipelining, unrolling,

etc. The Lin-Analyzer

 tool is primarily focused on streaming ap-[28]

plications and implementation of these applications on FPGA-based

accelerators.

The majority of the current

 state-of-the-art methods , pro-[17,28]

pose high-level estimation models to estimate the computation cost and

ignore the data communication cost between the di erent systemff

components. Moreover, Makni and co-workers consider[16,23,26,27]

only loop unrolling pragma and ignore the other two prominent

pragmas (loop pipelining and array

 partitioning) that have signi cantfi

impact on system performance and power consumption.

Existing works that present analytic area estimation[23,24,28]

models for FPGA-based systems often ignore the hardware resource

constraints of the target FPGA platform in their models. In this work,

we estimate the area occupation for FPGA-based accelerator systems

under FPGA resource constraints.

Canis and co-workers use commercial HLS tools to per-[6,27,38]

form area, performance and power estimations. However the usage of

commercial HLS tools in

 their frameworks signi cantly increases thefi

exploration time to hours or even days in some cases. Schafer et al. [38]

propose a divide and

 conquer algorithm for

 solving HLS design space

exploration problems. They rst parse kernels into a set of clustersfi

which consist of loops, functions and arrays. Then they exhaustively

search each cluster by invoking HLS tools with all possible con gura-fi

tions to nd the local Pareto-optimal points. Finally, they combine thefi

local Pareto-optimal con gurations and invoke HLS tools again to ndfi fi

the global Pareto-optimal points. Performing full synthesis at each de-

sign iteration can become quite time-consuming. Therefore, their

method su ers from long simulation/synthesis runtime.ff

Several authors rely on a static program analysis to[23 27,38]–

estimate the performance of SoC designs while exploring the massive

design space. However, the static analysis causes false dependences

between the operations and therefore introduces

 large inaccuracies in

the estimated performance due to the lack of memory information

during the static analysis. In

 contrast, our proposed methodology is

based on a dynamic analysis, which is built with

 runtime information to

avoid false data dependences that restrict algorithmic parallelism.

In addition, our proposed Pre-RTL framework can estimate resource

utilization and power for larger SoC con gurations and more general C/fi

C++ source code than those supported by Shao and co-workers

[17,28]. Moreover, it supports

 several options for design optimization,

such as array partitioning, loop unrolling and pipelining to explore

large design space.

 In this

 work, we use Advanced eXtensible Interface

(AXI4) stream interface to communicate between the processor[13,39]

and the

 custom HAs. Based on several experimental results [16], w e

found that

 the suitable interconnect solution for the recent streaming

applications is the AXI4 stream protocol. AXI4 is the latest revision of

the Advanced Microcontroller Bus Architecture (AMBA) 4.0

 standard

[39] Table 1. summarizes the di erent HLS tools surveyed above. Weff

compare various HLS tools based on di erent criteria. In this paper, weff

Table

 1

Current state-of-the-art techniques vs. proposed approach.

Analysis (Static/ dynamic) Accuracy Pragma

 exploration Target Model outputs

Bilavarn [TCAD 06] Static Medium Loop Unrolling FPGA Computation cost Area[23] ’

Smith [FPL 09] Static Medium N/A FPGA Area[24] ’

Villarrea [FCCM 10] Static Medium N/A FPGA HLS tool[18] ’

Canis [FPGA 11] Static+ HLS High Loop Pipelining FPGA HLS tool[6] ’

Liu [DAC 13] Static

 + HLS High Loop Unrolling + Loop Pipelining + Array

 Partitioning ASIC Computation cost Area[25] ’

Boucle [DSD 13] Static Medium Loop Unrolling+ Array to registers FPGA Computation cost[26] ’

Shao [ISCA 14] Dynamic High Loop Unrolling+ Loop Pipelining+ ArrayPartitioning ASIC Performance Area Power[17] ’

Zhong [ICCD 14] Static + HLS High Data ow+ Loop unrolling FPGA Computation cost Area[27] ’ fl

Zhong [DAC 16] Dynamic High Loop Unrolling + Loop Pipelining + Array Partitioning FPGA Computation cost[28] ’

Makni [PDP 17]

 Dynamic

 High Data ow+ Loop Pipelining FPGA Data communication cost[16] ’ fl

Sharma [ARC 17] Static High N/A FPGA Power[29] ’

Our

 proposed framework Dynamic High Loop Unrolling + Loop Pipelining + Array Partitioning FPGA Data communication cost Area Power

M. Makni et al. Microprocessors and Microsystems 63 (2018) 11–27

23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 5 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE1…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

14

propose a high-level framework based on di erent analytic models toff

rapidly estimate area occupation and power consumption

 for a large set

of SoC con gurations. Our goal

 is to assist the design space explorationfi

to reduce the number of invocations of

 HLS tools. In addition, the

proposed framework supports di erent optimization pragmas withff

multi-level parallelism on FPGAs. We propose a dynamic

 analysis

method that exploits runtime information to obtain true dependences

between operations and therefore accurately

 estimates area occupation

and power consumption. This also obviates the need to use HLS tools,

resulting in a rapid and reliable design space framework.

3. Proposed approach: a high-level area-power estimation

framework

In this section, we describe our proposed high-level estimation

framework. We also give an overview of the HLS ow and the Low-fl

Level Virtual Machine

 (LLVM) framework.

3.1. High-Level Synthesis: HLS

Several advantages arise from the use of HLS in the design ow.fl

First of all, the amount of code to be written by designers is reduced

dramatically, which saves time, programming e ort and reduces theff

risk of mistakes. HLS can

 also optimize a design by applying several

optimization pragmas to increase the performance of the system, re-

sulting an extensive design space. This is particularly relevant for the

design of complex FPGA-based systems.

As shown in a, HLS creates an RTL implementation from C/Fig. 5

C++ level source code. HLS has traditionally been divided into three

important steps : and . b illus-[4] Allocation, Scheduling Binding Fig. 5

trates the di erent steps of the HLS ow.ff fl

3.1.1. Allocation

After analysis of the source code, determines the types ofallocation

operators and the amount of hardware resources available for use (e.g.,

the number of multipliers, adders,

 etc.). This step also manages

 other

hardware constraints (e.g., time, area, and power) at a high-level of

abstraction.

3.1.2. Scheduling

As shown in

 , determines in which clock cycles anFig. 6 scheduling

operation will occur.

 It takes into account the di erent hardware re-ff

sources extracted from C/C++ source code at the top level. The al-

location of resources can be constrained to ensure that the design does

not exceed FPGA s

 capacity.’

3.1.3. Binding

Binding determines which hardware unit is

 used to implement each

operation. It saves area by sharing functional units between operations

and sharing registers/memories between variables.

 Given for example

the schedule presented in , there are two binding decisions: (a)Fig. 6

binding may decide to share the multipliers since both are in

 a di erentff

cycle, (b) binding may decide to use two

 di erent multipliers becauseff

the cost of sharing (muxing) would impact timing. Based on user con-

straints e.g., for latency and

 FPGA resource usage, scheduling and

binding are determined.

3.2.

 The proposed framework

3.2.1. Modeling methodology

The proposed framework, shown in a, takes a high-level spe-Fig. 8

ci cation (C/C++)

 of an algorithm in the form of nested loops, andfi

FPGA resource constraints as inputs. It automatically estimates the total

execution time, the FPGA resource utilization and the power con-

sumption for a hybrid architecture containing an FPGA-based accel-

erator. An overarching goal of the proposed framework is

 to provide

area and energy bene ts of a hardware design, while retaining the ease-fi

of-use associated with software. a and b illustrate the detailedFigs. 8

flow. The proposed framework primarily consists of four important

steps: computation cost estimation, data communication cost estima-

tion, area occupation estimation and power consumption estimation.

Computation cost estimation has been implemented using Lin-Analyzer

[28], while data communication cost estimation has been implemented

using an analytic

 model detailed in our previous work in .[16]

Integrating the proposed power

 model

 with the

 existing perfor-

mance and area models allows designers

 to analyze and evaluate the

Fig. 6. Scheduling.

M. Makni et al. Microprocessors and Microsystems 63 (2018) 11–27

23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 6 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE1…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

Fig. 5. High-Level Synthesis (HLS).

15

performance/power trade-o for complex applications within the strictff

time-to-market and non-recurring engineering constraints.

Furthermore, our proposed framework allows designers to select the

most e cient pragmas in

 their SoC designs. This gives the designersffi

multiple implementation choices (e.g., loop unrolling factors, array

partitioning factors) to improve system performance.

The foundation of the proposed framework infrastructure is the use

of DDDG graph generated from a dynamic execution trace to represent

program

 behaviors. This technique avoids the false data dependences

created by the static analysis used in most existing HLS tools. Besides,

the features of the dynamic trace coupled with the data ow nature offl

accelerators makes DDDG a good

 candidate for modeling hardware

behavior. a illustrates the overall structure of our framework,Fig. 8

starting from an unmodi ed C/C++ description of an application andfi

passing through an phase, described in ,optimization Section 3.2.2

where the sub-trace is extracted and constructed. The sub-trace then

passes to a phase, discussed in , where thegeneration Section 3.2.3

DDDG is constructed and optimized to derive a realistic and accurate

representation of the application. The outcome of these two phases is a

pre-RTL, performance-area-power estimation of HAs across a wide

range of design alternatives.

In contrast to dynamic approaches, HLS tools use program depen-

dence graphs (PDG) that statically capture both control and data de-

pendences. Static analysis

 is inherently conservative in its dependence

analysis, because it is used for generating code and hardware that works

in all

 circumstances

 and is built without run-time information. The

following subsections give details about the optimization phase

() and the generation phase () of HAPE,Section 3.2.2 Section 3.2.3

presented in a.Fig. 8

3.2.2. Optimization phase

The main goal of the optimization phase is to represent the funda-

mental dependences of the application by removing

 operations that are

not required for the hardware implementation.

 For example,

 our fra-

mework can remove additional load/store operations by bu ering dataff

in internal registers within HAs. This phase applies typical hardware

optimizations for the dynamic execution trace, respecting three re-

quirements:

•

•

•

•

•

•

•• Only represent necessary computation and memory instructions in

the program s trace.’

•

•

•

•

•

•

•• Remove all false memory dependences between

 dynamic instruc-

tions, keeping only true read-after-write dependences within the

DDDG graph.

•

•

•

•

•

•

•• Remove unnecessary dependences and redundant load/store op-

erations generated due to stack overheads and register spilling [17]

in order to save

 memory bandwidth.

Our proposed framework

 leverages the LLVM compiler framework

[17,40] for

 execution trace collection. The core of LLVM is an inter-

mediate representation (IR), which is

 essentially machine independent

assembly language. As

 shown in , high-level source code (C/C+Fig. 7

+) is translated into LLVM s

 IR then analyzed and modi ed by a series’ fi

of compiler optimization passes. In this

 subsection, we highlight the

important key elements of the LLVM framework, as well

 as the Dynamic

Data Dependence Graph (DDDG) graph representation .[17]

The LLVM IR

 is a single static

 assignment (SSA) form, which pro-

hibits variable re-use, guaranteeing a 1-to-1 correspondence between

an instruction and its destination register.

 As illustrated

 in , reg-Fig. 7

ister names in the IR

 trace are pre xed by %.

 Types are

 explicit in thefi

IR. For example, i64 speci es a 64-bit integer type.fi

From , we can note that LLVM instructions (IR trace) areFig. 7

simple enough to directly correspond to hardware operations (e.g., a

hardware requires knowing data dependencies between operations.

As illustrated in , a DDDG is a directed, acyclic graph, whereFig. 7

nodes represent

 computation and edges represent dynamic data de-

pendences between nodes. The DDDG graph is generated from an ex-

ecution trace (IR) to represent program behaviors. This technique

avoids the false data dependences created by the static analysis.

3.2.3. Generation phase

Respecting the above requirements, our proposed framework gen-

erates the DDDG graph from

 an optimistic execution trace. It uses a

high-level, machine independent Intermediate Representation (IR)

provided by the open-source LLVM compiler . Code analysis, op-[40]

timization and modi cation are performed on IR via LLVM passes infi

order to remove the instructions that are not part of the program .[17]

In contrast to existing works, the proposed framework only focuses

on the relevant sub-trace based on the pragma settings provided by

designers, instead of

 analyzing the entire program trace (a). ThisFig. 8

makes the estimations very fast even for applications with relatively

large input size. The goal of the phase is to generate an op-generation

timized DDDG from the dynamic execution sub-trace. The outcome of

these two

 phases is a pre-RTL, performance-area-power estimation of

HAs across a wide range of design alternatives. From the generation

phase, we can get observations that will later help us to understand how

the hardware resources are consumed in the system.

Based on the optimistic program s IR

 trace, we can easily detect the’

di erent functional units (memory/computation operations) and thenff

generate the DDDG graph to

 represent HAs. Streaming interfaces are

supported by our framework to simplify HA integrations in FPGA-based

SoCs. As our approach is based on dynamic analysis, all the

 data de-

pendences are known after obtaining the execution trace.

3.3.

 Target hardware architecture

With FPGA-based accelerators, designers have the opportunity to

assign the right processing unit to the right task in order to achieve the

application constraints. This level of control enables

 the target platform

to meet the demands of modern applications requiring high perfor-

mance while meeting a low power consumption. The Zynq-7000 All

programmable SoCs are examples of such platforms in the cur-[3,41]

rent embedded market.

To explore various con gurations that can be efi ffi ciently used for the

diverse applications, an FPGA-based accelerator platform is used as

 it

can provide e cient hardware implementations. Such platforms typi-ffi

cally contain a processor for

 executing the software segments of the

application and other HAs that can be used to accelerate the critical

components in the application. FPGA has been widely used to imple-

ment the HAs

 for applications.

The Zynq-7000 SoC [41] consists of a processing system (PS) and a

programmable logic (PL), as shown in Fig. 9. Xilinx Zynq platforms typi-

cally integrate an application processor such as the dual-core Cortex A9

from ARM, with a highly reconfigurable FPGA fabric. These platforms are

becoming increasingly complex a nd will integrate more and more pro-

cessors and logic elements. The communication between the processing

system and the programmable logic is achieve d b y AXI4 interconnection

[13]. In our FPGA implementations, HAs a re attached to the AXI4 inter-

connection via the AXI master interface. The commu nication and the

synchronization between the main processor and the different HAs are

done through the AXI4 stream interface [13] using the Direct Memory

Access (DMA) to exchange data between the main memory (DDR) and the

local memories (BRAMs) of the HAs. The advantage of using a DMA is that

the processor can execute other computations while the accelerator per-

forms its work. In addition, this interconnect provides a pipelined control

that enables the software r unning on the processor to que ue multiple task s

M. Makni et al. Microprocessors and Microsystems 63 (2018) 11–27

23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 7 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE1…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

load from memory, or an arithmetic computation). Canis and co-
workers operate directly with the LLVM IR, scheduling the[6,17,28]
instructions into speci c clock cycles.

 Scheduling operations infi

requests, redu cing its latency.
Table 2 lists the di erent symbols

 used in the modeling of the area/ff

power metrics.

16

3.4. Area analysis: an analytic area estimation model

The performance/power trade-o is an important challenge in theff

design space exploration process. Achieving the high performance is

constrained by the number of

 available resources that can be synthe-

sized on FPGA. Area occupation is measured in terms of the

 required

FPGA resources: Look-Up Tables (LUTs), Flip-Flop registers (FFs), BRAMs

and . As illustrated in b, the area estimation model uses theDSPs Fig. 8

pragma settings provided by users, to construct the execution sub-trace

and generate the optimized DDDG graph.

In this paper, we

 estimate the area occupation of the HAs with

 the

following assumptions: (a) hardware functional units

 associated with

nodes (DDDG) follow the default setting of Xilinx Vivado HLS in-[8]

cluding FPGA resource occupation. For instance, we assume that a 32-

bit oating-point addition node is mapped to a pipelined oating-pointfl fl

add (FA) unit, which consumes two DSPs and zero BRAM; (b) Each

memory bank has two reads and one write ports; (c) Resource con-

straints are modeled for

 DSP, BRAM, LUT and FF.

Fig. 7. C code, IR trace and its corresponding DDDG graph.

M. Makni et al. Microprocessors and Microsystems 63 (2018) 11–27

23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 8 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE1…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

Fig. 8. The HAPE overview.

17

Our developed area estimation model applies optimization pragmas

as well as resource constraints to the DDDG graph to explore a large

design space with di erent trade-off ffs (Fig. 8a).

In this subsection, we develop an e cient analytic model to esti-ffi

mate the

 area occupation of the application based upon di erentff

parameters generated from

 the DDDG graph, such as number of loop

levels, loop

 bounds, input data size, etc. Our analysis allows then to

estimate the application s hardware usage

 in order to reject unfeasible’

designs. In addition, the AXI4 stream interface can also consume a

signi cant number of FPGA resources. This quantity depends on thefi

number of input data arrays, denoted and can be estimated bynIA

Eq. (1). DMA area represents the FPGA

 resources required by a DMA

controller.

(1)

In this work, we use and to represent respec-nFA, nFS, nFM nFD

tively the total number of oating addition, oating subtraction,fl fl

fl floating multiplication and oating division

 operations required for the

application execution. These values are obtained from the DDDG

 graph

generated from the dynamic execution trace (a).Fig. 8 N op represents

the number of operation nodes (multiplication, addition,computation

etc.), while N m represents the total number of operations ex-memory

tracted from the DDDG graph. N load and N store represent the number of

memory and operations respectively.load store

Let s consider

 a nested loop’ where K L is the in-

nermost loop level. B K is the bound of the nested loop . The IterationK

Latency, , is the number of clock cycles required to perform a singleIL

iteration of the loop. L K is the number of loop levels in the nested loop

K. The number of single-level loops in an application is represented by

Sl . In this paper, the total number of nested loops in

 a given application

is represented by . The

 constants used in analytic equations, denotedn

Ci, are determined by analyzing the results of the RTL designs generated

from Vivado HLS tool. These constants depend on the used

 FPGA fa-

mily. They are collected from the default setting of Vivado HLS tool

after its hardware resource estimation. The values of these constants are

summarized in . With the generated DDDG (a), our fra-Table 3 Fig. 8

mework estimates the di erent hardware resources (LUTs, FFs, etc.) offf

the FPGA-based accelerator for the given algorithm without generating

RTL implementations.

Loop unrolling can be applied at any loop level. We

 can handle both

Fig. 9. Simpli ed block diagram of ZYNQ architecture.fi

Table

 2

List of symbols.

Symbol Description Obtained by/from

nIA Number of input data arrays Application pro lingfi

DMA area FPGA resources required by a DMA controller Proposed area model

Nload, N store Number of memory load and

 store operations respectively

 DDDG generation

Nop Number of computation operation nodes (multiplication, addition, etc.) DDDG generation

Nm Total number of memory operations extracted from the DDDG graph DDDG generation

nFA Total number of oating addition operations Application pro lingfl fi

nFS Total number of oating subtraction operations Application pro lingfl fi

nFM Total number of oating multiplication operations Application pro lingfl fi

nFD Total number of oating division operations Application pro lingfl fi

C1, C2, C3, C4 Constants, which represent the number of LUT resources required to perform respectively a single FA, FM, FD and FS operation Default setting of Vivado HLS

C5,C6, C7, C8 Constants, which represent the FF resources required to perform respectively a single FA, FM, FD and FS operation Default setting of Vivado HLS

C9, C10, C11 Constants, which represent the number of DSP resources required to perform respectively a single FA, FM and FS operation Default setting

 of Vivado HLS

T Array partitioning type, T = {cyclic; complete; block} Pragma settings

Pf Partition factor Pragma settings

SA Size of an array A, measured in words Application pro lingfi

SBRAM Size of a BRAM (in bits) in FPGA User settings

nA Number of arrays in a given application Application pro lingfi

BRAMb Number of BRAMs per memory bank Proposed area model

BRAMT Estimated total amount of BRAM required to implement the application Proposed area model

K L Innermost loop level Application pro lingfi

BK Bound of the nested loop K Application pro lingfi

IL

 Number of clock cycles required to perform a single iteration of the loop Application pro lingfi

LK Number of loop levels in the nested loop K Application pro lingfi

Sl Number of single-level

 loops in the application Application pro lingfi

n Total number of

 nested loops in a given application Application pro lingfi

BRAMs Generated BRAM utilization, rounded to power of two Proposed area model

; Two empirical

 values Default setting of Vivado HLS

e A simple exponential constant Default setting of Vivado HLS

U Loop unrolling factor Pragma settings

V, V1, V2, V3 Four constants Default setting of Vivado HLS

nBRAMs Total number of the block RAMs, measured in % Proposed area model

nFF Total number of Flip-Flops, measured in % Proposed area model

nLUT Total number of Look-Up tables, measured in % Proposed area model

M. Makni et al. Microprocessors and Microsystems 63 (2018) 11–27

23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 9 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE1…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

C F, CL , C B Coe cients representing the individual e ects of

 Flip-Flop

 registers, LUTs and BRAMs respectively Proposed power modelffi ff
pi Pipelining loop level, disabled if i=0; otherwise, i represents the pipeline level indicating that this pragma

 is applied to the loop

level i of the nested loop

Pragma settings

uj Loop unrolling factor, disabled if j =0; otherwise, j represents the unrolling factor Pragma settings

ak Array partitioning factor, disabled if k = 0; otherwise, k represents the number of factor Pragma settings

18

nested and single loops in the application. Given an unrolling factor

where U i is the unrolling factor of loop level K i in the

nested loop . Loop unrolling removes dependences between loop indexK

variables in the DDDG. In fact, when enabling an unrolling factor U, U

loop iterations can be executed in

 parallel if there is no loop carried

dependences across the di erent loop iterations.ff

Fig. 10 shows execution time and resource usage results of the MM

benchmark obtained from Xilinx Vivado HLS. The MM benchmark in-

cludes one nested loop with 3 loop levels. In this example, loop3 is the

innermost loop and unrolling pragma is applied at loop

 level2 and loop

level3 with di erent factors.ff

As illustrated in , loop unrolling pragma has an impact on theFig. 10

FF and LUT resources as well as total execution time in FPGA-based

accelerators. Furthermore, unrolling the innermost loop of the nested

loop , achieves a high performance with less area occupation.K

The results, presented in , show that applying loop unrollingFig. 10

gives a good performance/area trade-o . In fact, when increasing theff

unrolling factor, the performance boost associated with loop unrolling

pragma comes at the cost of increased FPGA resource consumption.

However, unrolling the innermost loop of the nested loop” ”loop level3

” ”loop3 , achieves a

 high performance with less FPGA resources com-

pared to the other con gurations.fi

3.4.1. BRAM estimation

The array partitioning pragma has a great impact on the BRAM

resource utilization. The memory bandwidth can be improved

 by

splitting up the original arrays into

 multiple independent memory

banks. Our developed BRAM Resource Estimation (BRE) algorithm al-

lows to rapidly estimate the required BRAM resources to map the ap-

should specify the array address , the partition

 factor , and the arrayA Pf

partitioning type , whereT . Varying the

partition factor as well as the arrays data size, may increase

 or de-Pf

crease the required BRAM resources. The

 S A, respectively S A* ,Bits

parameter

 represents the size of an array , measured in , re-A words

spectively in represents the number of arrays in a

 given appli-bits. nA

cation. S BRAM is the size of a BRAM (in) in FPGA. It is a genericbits

parameter

 that can be set by the designer. BRAM b is the number of

BRAMs per memory

 bank.

Without loss

 of generality, we assume that each memory bank has

two read and one write ports. The developed BRE algorithm

() is useful for and types. In fact, no BRAMs areAlgorithm 1 cyclic block

required for the type, since in this type, the array is completelycomplete

split into individual registers. As a result, we use Flip-Flops (FF) instead

of

 BRAMs. It should also be noted that the generated BRAM utilization

BRAMs is always rounded to power of two, as shown in lines 9 and 14 of

Algorithm 1.

3.4.2. LUT estimation

FF and

 LUT usage become more crucial in the area estimation me-

tric. To estimate

 the total number of LUT resources (LUT T) of a given

application, we sum three important parameters: LUT m, LUT op and

LUT ex, as presented in .Eq. (2) LUT m () corresponds to the LUTEq. (3)

consumed by the multiplexer resources. LUT op () represents theEq. (4)

number of LUT consumed

 by the computation operation nodes, while

LUT ex () represents the LUT resources used by any expressionsEq. (5)

such as multipliers, adders and comparators. These information are

automatically generated from our proposed area estimation model.

Based on empirical method, we use and . These two

empirical values follow the default setting of Vivado HLS and have been

tested for di erent con gurations.ff fi B K is the bound of the nested loop ,K

where B K can be represented as .

 is a simple exponentiale

constant. The term represents the loop unrolling factor. In this paper,U

the unrolling factors correspond to the divisors

 of the loop bound B K. V,

V V V1, 2, 3 are four constants, which are represented by the following

equations.

(2)

(3)

Where

(4)

C C C C1, 2, 3 and 4 are

 four constants, which represent the

 number of

LUT resources required to perform respectively a single oating addi-fl

tion (), oating multiplication (), oating

 division () andFA fl FM fl FD

floating subtraction () operation, as presented

 in .FS Table 3

(5)

Where ;

;

3.4.3. FF Estimation

As FPGAs can exploit diverse types of parallelism

 within applica-

tions, HLS-based techniques typically generate higher performance

accelerators at the cost of more area occupation. Quantifying the ne-

Table

 3

The default area estimated by Vivado HLS for the di erent operations for theff

Xilinx ZC702 platform.

Operation type (32 bits) LUT FF DSP

FA C1=390 C5=205 C9=2

FM C2=321 C6=143 C10=3

FD C3=994 C7=761 0

FS C4=390 C8=205 C11=2

Fig. 10. Execution time and area occupation for MM benchmark with di erentff

loop unrolling factors. Here, LK=3 and ={2, 4, 8, 16, 32, 64, 128}.U

M. Makni et al. Microprocessors and Microsystems 63 (2018) 11–27

23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 10 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

plication on a HA implementation. By increasing

 array partitioning
factor, HLS tool can exploit more

 parallelism in the multi-kernel ap-

plication. However, it requires more FPGA resources. It takes the

parameters nA,

 T,

 Pf, S A and S BRAM as inputs

 and generates BRAM T,

which is the estimated total amount of BRAM required to implement

the application. When applying the array partitioning pragma, we

cessary number of FF resources depends on various parameters such as
the type of an operation (load/store, computation, etc.), the total

number of operations required to execute an application, the number of

the loop levels, etc. Each operation is represented by a node in the

DDDG graph, as illustrated in a. Based on an empirical study, theFig. 8

total number of FF resources (FF T) can be estimated using .Eq. (6)

19

A
lg

o
r

it
h

m
1

.
B

R
A

M
R

e
so

u
rc

e
E

st
im

a
ti

o
n

(B
R

E
)

a
lg

o
ri

th
m

.

M. Makni et al. Microprocessors and Microsystems 63 (2018) 11–27

23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 11 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

20

(6)

FFop () is the FF consumed by the arithmetic operations ex-Eq. (7)

tracted from the DDDG graph, where 5,

 6, 7 and 8 are constantsC C C C

(). These constant values follow the default setting of VivadoTable

 3

HLS.

(7)

FFr () represents

 the FF consumed by the register resourcesEq. (8)

used to map an application into an FPGA. It also includes the FF con-

sumed by the memory load/store instructions.

(8)

Where

;

;

3.4.4. DSP estimation

The DSP resource

 consumption depends on the total

 amount of

compute operations (and)subtraction, multiplication, addition division

required to execute an application. To estimate the total DSP resources

of a speci c SoC design,

 we measure the computation operation nodesfi

within the generated DDDG graph. 9, 10 and 11 () are threeC C C Table 3

constants, which represent the number of DSP

 resources required to

perform respectively a single and operation. The total DSPFA, FM FS

resources (DSP T) required

 to implement an application on an FPGA is

estimated using .Eq. (9)

(9)

In this paper, we estimate the area occupation for FPGA-based ac-

celerators within resource budget. The Area E ciency, denotedffi AE, i s

de ned using , where and represent thefi Eq. (10) BRAM, DSP, FF LUT

available BRAM, DSP, FF and LUT resources of a given FPGA platform,

while and are

 FPGA resources consumed by

 the currentbram, dsp, lut

implementation.

(10)

A given HA implementation can t into the FPGA if and only iffi

AE 1. Consequently, generated area results are equal to the FPGA

resources required by the current con guration. Otherwise, the designfi

exceeds the FPGA resource capacity, and the corresponding con g-fi

uration is automatically rejected from the design space.

3.5. Power analysis: an analytic power estimation model with di erent

pragma combinations

With the increasing complexity of recent SoC designs, the devel-

opment of a high-level, simple and accurate power estimation model for

the FPGA-based accelerators thus becomes

 inevitable.

 High-level ana-

lytic models guide the design space exploration by estimating the var-

ious metrics

 (performance, area, power) of the di erent design pointsff

on

 FPGAs. This helps to reduce the total runtime to

 perform large and

complex design space.

In modern

 FPGA designs, recon gurable resources can be mainlyfi

categorized into Flip-Flops registers (FFs), Block RAMs (BRAMs),

Digital Signal Processing (DSP) slices and Look-Up Tables (LUTs). Based

FPGA-based accelerators. This estimation can be made based

 on an

analytic model that describes the

 dependence of power consumption of

the embedded system on certain parameters such as the number of

FPGA resources (FFs, LUTs, etc.). The di erent symbols used in

 theff

power modeling, are listed in . According to the target systemTable 2

components presented in the previous subsection, the total

 power

consumed by the system (P Tot) when it executes a software task can be

expressed by :Eq. (11)

(11)

where P PS corresponds to the power consumed by the processing system

including the dual ARM cortex cores while executing a

 program. P PL

corresponds to

 the power consumed by the programmable logic or

FPGA. P BRAM represents the power consumed by the Block RAMs

available in the Zynq Programmable Logic. The term P DDR3 represents

the power consumed by the DDR3 external memory.

In our system, the total

 power consumption of

 PL, BRAM, PS, DDR3

has been measured using the di erent rails that are available in theff

Xilinx ZC702 platform . Subtracting the static power of the[42,43]

board from the total power measured for a SoC design provides the

dynamic

 power consumption of Zynq for that design.

In this paper, the ARM processor only controls the whole system,

while the HAs are used to execute the di erent applications. Based onff

empirical method, we use P PS = 354mW and P DDR3 =

 586mW. These

two empirical values are obtained from the above power

 measurement

method. The following general equation represents the model for P Tot

for Xilinx ZC702. The term n BRAM represents

 the total

 number of the

block RAMs, while n FF and n LUT represent the total number of Flip-Flops

and Look-Up tables, respectively, used to execute the application on a

HA implementation.

 In this paper, n BRAM, nFF and n LUT are extracted

from our framework s area model () and measured in

 %.’ Section 3.5 P Tot

is expressed in milliwatts (mW).

(12)

(13)

In and ,Eqs. (12) (13) C F, C L, and CB are coe cients representing theffi

individual e ects of Flip-Flop registers, LUTs and BRAMs respectively.ff

In this paper, the proposed linear equations

 represent the relation be-

tween power consumption and number of FPGA resources estimated by

the proposed area model.

ETot is measured using , where

 Eq. (14) T Tot is the total time that

correspond to the execution of

 the application on the HA im-

plementation.

(14)

HLS technique o ers various architectural design options with dif-ff

ferent trade-o s via

 pragmas (loop unrolling, pipelining, array parti-ff

tioning). The hardware resource utilization and the total power con-

sumption are dependent on the used pragmas. Therefore, it should

estimate the total power consumption of di erent design points withff

various pragma combinations. In the following subsections, we present

the di erent equations used to estimate the total power consumption

 offf

an FPGA-based accelerator system with/without pragmas.

3.5.1. With loop pipelining

HLS tools provide optimization pragmas for

 users to explore and

M. Makni et al. Microprocessors and Microsystems 63 (2018) 11–27

23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 12 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

Digital Signal Processing (DSP) slices and Look-Up Tables (LUTs). Based
on

 the implementation results,

 we note that the di erent SoC designs,ff

used in this work, consume mainly FFs, BRAMs and LUTs resources. It is

important for designers that use the recent FPGAs to understand how a

design consumes the various FPGA resources. In addition, with the

advance of hardware acceleration

 devices such as FPGAs, it is possible

to achieve performance/power improvement, while o ering moreff

flexibility than an ASIC can provide. In this paper, we propose an ap-

proach for accurately

 estimating the power consumption

 of di erentff

evaluate

 diverse hardware architectures.

 Loop pipelining, unrolling and
array

 partitioning are among the prominent pragmas that have sig-
ni cant impact on hardware resource

 utilization and power consump-fi

tion. Applying optimization pragmas presents a performance/area

trade-o .ff

When loop pipelining pragma is applied, P PL and PBRAM are esti-

mated using and .Eqs. (15) (16)

(15)

21

(16)

The rst and second terms in , represent the individual

 ef-fi Eq. (15)

fect of Flip-Flops and LUTs on power consumption. P PL and P BRAM are

estimated in milliwatts (mW).

3.5.2. With array partitioning

Similar to

 Vivado HLS , our proposed framework supports[8] block,

cyclic completeand array partitioning strategies (). It enables arrayFig. 2

partitioning by mapping addresses of memory nodes (load and store)

 in

the DDDG graph to memory banks.

When array partitioning pragma is applied, P PL and P BRAM are es-

timated using and , respectively.Eq. (17) Eq. (18)

(17)

(18)

nBRAM , n FF and n LUT are measured in %.

3.5.3. With loop unrolling

Loop unrolling is a technique to exploit instruction-level parallelism

inside loop iterations, while loop pipelining enables di erent loopff

iterations to run

 in parallel.

Considering loop unrolling pragma, P PL and P BRAM are estimated

using the following Equations.

(19)

(20)

3.5.4. With loop pipelining, unrolling,

 array partitioning

To assist designers in nding good-quality accelerator designsfi

through appropriate pragma settings, it is vital to obtain performance/

power

 estimations early in the design stage without the need for time-

consuming manual RTL creation. Optimizing the application

 using

pragmas, such as loop pipelining, unrolling and array partitioning,

considerably reduces the total execution time compared to the results

without pragmas.

When the above optimization pragmas are applied, P PL and P BRAM

are estimated using and , respectively.Eq. (21) Eq. (22)

(21)

(22)

3.5.5. With loop pipelining and unrolling

According to optimization pragmas provided by the designer, our

proposed framework estimates the total power consumption of the

di erent FPGA-based accelerator systems. The total power consumptionff

of PL (P PL) and BRAMs (P BRAM), are estimated using and .Eqs. (23) (24)

(23)

(24)

3.5.6. With loop pipelining and array partitioning

The total power consumed by FPGA (P PL)

 and the block RAMs

(P BRAM) are estimated using and , while considering loopEqs. (25) (26)

pipelining and

 array partitioning pragmas.

In this case, P PL and PBRAM are estimated using and .Eqs. (27) (28)

(27)

(28)

3.5.8. Without pragmas

Our proposed framework also allows designers to use the default

implementation of the application without applying any pragmas. This

can reduce the hardware resource utilization. However, it

 does not

optimize the source code. P PL and P BRAM are estimated using Eq. (29)

and , respectively.Eq. (30)

(29)

(30)

4. Experimental results

The main goal of our

 proposed framework is to e ciently exploreffi

the design space and provide accurate area and power estimates for

FPGA-based accelerators. In order to validate our approach, we have

implemented fourteen

 (14) benchmarks from Polybench suite and[44]

CHStone . These benchmarks represent kernels of real applications[45]

in

 wireless communications, video processing, signal processing, etc. In

addition, all these applications operate

 on large matrices with regular

data access patterns. In this paper, the di erent benchmarks have beenff

mapped on

 several HA architectures, running at 100 MHz, over a wide

range of input data sizes. We use Xilinx Vivado HLS version 2014.4 and

Xilinx ZC702 Evaluation Kit to validate our

 estimations.[43]

Table 4 lists the various benchmarks used

 in this work, specifying

their application domain (column 2) as

 well as their di erent input dataff

size (column 3). For each benchmark, the input data

 size

 is chosen

 such

that the benchmark can t into the available resources (LUT, BRAMs,fi

DSP, etc.) of our target FPGA device, Xilinx ZC702 Evaluation Kit .[43]

In this work, the di erent input data sizes are measured in . Theff words

size of the data bus is 32-bit.

Fig. 11 shows the instruction distribution (in %) for the di erentff

benchmarks. These values are obtained from

 the program s IR

 trace, as’

explained in . The IR trace includes di erent instructionSection 3.3 ff

information such as the type of instructions (e.g.,

 memory, computa-

tion)

 required by

 the program to

 generate then the DDDG graph that

models HA behaviors.

4.1.

 Power measurement

Recent Zynq devices combine a dual-core ARM Cortex A9 processor

and an FPGA fabric in the same die and in di erent power domains.ff

According to device vendors, recent 28nm FPGAs

 consume 50% less

power than

 previous generations (e.g., 65-nm FPGA devices) .[46]

Many modern FPGA boards include Power Management Bus

(PMBus) Controllers . The PMBus is a serial interface speci cally[47] fi

designed to support power management protocol. It facilitates the

communication

 with power converters and other devices in a power

system . This technology means that software or hardware running[42]

Table 4

M. Makni et al. Microprocessors and Microsystems 63 (2018) 11–27

23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 13 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

(25)

(26)

3.5.7. With loop unrolling and array partitioning

Our proposed framework can rapidly estimate the power con-

sumption for other combinations of pragmas, such as

 loop unrolling and

array partitioning pragmas with di erent unrolling and

 array parti-ff

tioning factors.

Used benchmarks.

Benchmarks Domain Input data size

CONV2D CONV3D Convolution 4, 8, 32, 64, 128

MM ATAX BICG GEMM MVT SYR2K

SYRK

Linear Algebra 4, 8, 32, 64, 128,

256

CORRELATION COVARIANCE

 Data Mining

 4, 8, 32, 64, 128

IDCT Image processing 8

AES Encryption 32

FFT Signal processing 8

22

on

 the device has access to a controllable power supply.

This is the case with the

 latest Xilinx series 7 FPGAs, including

ZC702,

 that use the Texas Instrument (TI) UCD92xx PMBus controller

[48] [42]. The TI UCD92xx series is a family of digital power controller

which supports a wide range of commands that allow an external host

to con gure, control, and monitor the controller through an I2C elec-fi

trical interface using the PMBus command protocol.

In this paper, we employ the Fusion Digital Power Designer software

package provided by TI . This software package has several tools[48]

that are able to communicate with the

 UCD92xx series of controllers

from a Windows-based host computer. It requires the use of a USB In-

terface Adapter EVM to connect the PMBus (I2C) interface of the

UCD9248

 controller and the USB port in the host computer.

 The TI

Fusion Digital Power tool reads the voltage and current informa-[48]

tion of the power supply regulators monitored by the UCD9248 Power

controllers, calculates the average power of individual supply and -fi

nally

 calculates the total power consumed by the ZC702 board.

In this section, we will discuss the implementation of the di erentff

benchmarks. By applying the equations obtained in the previous sec-

tion, we were able to estimate power consumption for the di erent SoCff

designs with various trade-o s through HLS optimization pragmas.ff

4.2. Rapid estimation

Table 5 shows the exploration time

 of the proposed framework

(a). The exploration time of our approach includes the overheadFig. 8

necessary to execute the application and generate the IR trace. The

results have been compared to Vivado HLS tool, for the same design

space. lists three selected benchmarks (MM, BICG andTable 5

CONV3D) in column

 1, while column 2 shows the input data size used

for each one. Column 3 presents the total number of explored con g-fi

urations for each benchmark varying pipeline options, array parti-

tioning factors and types. As an

 example, for MM (Matrix Multi-

plication) benchmark, we explored 119

 design points with di erentff

pragma combinations in just 25 seconds. Our proposed framework is

based on accurate modeling techniques and optimization pragmas, and

can provide considerable fast area and power estimates for many de-

signs compared to Vivado HLS tool.

An example of MM design space is

 shown in . The X-AxisFig. 12

shows some selected MM design con gurations. The Y-Axis denotes thefi

exploration time of each con guration in milliseconds (ms). Eachfi

con guration, denoted (pi_uj_ak), is expressed as follows:fi

•

•

•

•

•

•

•• pi: pipelining

 loop

 level, which is disabled when ; otherwise, i

represents the pipeline level indicating that this

 pragma is applied to

the loop level i of the

 nested loop.

•

•

•

•

•

•

•• uj: loop unrolling factor, which is disabled when ; otherwise, j

represents the unrolling factor.

•

•

•

•

•

•

•• ak: array partitioning

 factor, which is disabled when ; other-

wise, k represents the number of factor.

Experiments prove that HAPE can perform a large design

 space

within the strict time-to-market with di erent pragma combinations. Inff

fact, our proposed framework skips the time-consuming

 RTL genera-

tion, synthesis, and simulation process for

 di erent sizes of input data.ff

Consequently, it explores rapidly various hardware con gurations infi

the order of seconds to minutes, over a large multi-level parallelism

design space using di erent pragma combinations.ff

4.3.

 Synthesis results

Fig. 13 plots the resource utilization results of ATAX benchmark

while varying pipeline levels, unrolling and partitioning factors. The

main criteria for area usage are LUTs, BRAMs and FFs resources of an

FPGA. Occupation indicates

 the percentage of FPGA

 resources utilized

by the di erent con gurations.ff fi

As illustrated in , the con guration without pragmasFig. 13 fi

(p0_u0_a0) consumes 6% of the available

 FFs and 11% of LUTs within

the FPGA. The con guration (p2_u64_a8) considering loop pipelining,fi

unrolling and array

 partitioning, occupies 12% of FFs and 19% of LUTs.

By increasing partitioning factor, we can exploit more parallelism in the

Fig. 11. Instruction distribution for

 the di erent benchmarks.ff

Fig.

 12. Execution time in ms for the MM benchmark with di erentff

(pipeline_unrolling_arrayPartition) con gurations.fi

M. Makni et al. Microprocessors and Microsystems 63 (2018) 11–27

23/08/2018 11(23HAPE: A high-level area-power estimation framework for FPGA-based accelerators

Page 14 sur 18https://reader.elsevier.com/reader/sd/158C3563E39532782EE…4BAA3C415E50E71BD3D9FA0DDDADBA2811CA7751C48FEC996B7902315

Table

 5

DSE time for MM, BICG and CONV3D: Vivado HLS tool vs. proposed frame-

work.

Application Input size Design space

 DSE time

Vivado HLS Proposed framework

MM 128*128 119

 18 h 25 s

BICG 256*256 133 1 day 53 s

CONV3D 32*32*32 120 2.61 days 2 min
Fig.

 13. Area Occupation

 (%) of ATAX benchmark with di erent pragmaff

combinations.

23

function, but this requires more hardware resources. Therefore, it is

obvious that the used BRAMs for (p0_u0_a64) is more than that used for

(p0_u0_a0) con guration. This occurs because applying array parti-fi

tioning pragma with the partitioning factor of 64 needs to split the

arrays into multiple banks so that several memory accesses can be

executed simultaneously.

Based on the experimental

 results, we demonstrate that applying

optimization pragmas has a strong impact on the hardware resource

utilization and therefore on the

 power consumption

 of SoC designs. An

additional optimization pragma signi cantly increases the resourcefi

utilization compared to the con gurations without pragmas.fi

Fig. 14 depicts the estimated area occupation versus the total ex-

ecution time results in milliseconds (ms) for ATAX,

 GEMM and COV-

ARIANCE benchmarks with various pragma combinations. The left Y-

axis in denotes hardware resource utilization in each design,Fig. 14

while the

 right Y-axis shows the

 total

 execution time. Here, we use the

AXI4 stream interface to communicate between the processor and the

HA. The measured

 results demonstrate that applying optimization

pragmas presents

 a performance/area trade-o . Furthermore, it is in-ff

teresting to observe that the selected pragmas, if

 exploited carefully,

can improve the accelerator performance within area budget. From

Fig. 14, we note that

 the (p2_u64_a8) con guration of GEMM bench-fi

mark reduces the total execution

 time by about 78% compared to the

(p0_u0_a0) con guration, but with increased FPGA resources. For thefi

other con gurations, we can also see a signi cant speed-up comparedfi fi

to the con gurations without pragmas.fi

As shown in and , optimizing the application usingFigs. 13 14

pragmas, such as loop pipelining, unrolling and array partitioning

considerably reduces the total execution time compared

 to the results

without pragmas. However, more logic resources are required. There-

fore, it is clear that as the number of pragmas increases, the FPGA re-

source requirement and the cost of the

 HA implementation increase as

well.

4.4.

 Estimation accuracy

To evaluate estimation accuracy of the proposed models, we cal-

culate the

 average error between the measured (by RTL implementa-

tion)

 and estimated results:

.

We use the power controller UCD9248 mounted on the evaluation

board using Fusion Digital Power Designer to understand how the[42]

power was consumed by the di erent hardware resources and validateff

the obtained power estimates.

 We use

 the equations presented in

Section 3 to estimate the area occupation and the power consumption

for the

 di erent benchmarks. The power consumption for each designff

point was also estimated using Xilinx XPower Analyzer to generate[49]

the same con gurations as the proposed power model and compare thefi

obtained power results. We then compute the average estimation error

for all the con gurations.fi

In this work, we use rst three

 benchmarks from Polybench Suite,fi

Fig. 14. The trade-o between the estimated area occupation and the totalff

execution time for ATAX, GEMM and COVARIANCE benchmarks with di erentff

pragma combinations.

Fig.

 16. Our proposed power model vs. XPower Analyzer estimation and

measured power with

 loop pipelining.

M. Makni et al. Microprocessors and Microsystems 63 (2018) 11–27

