
Int. J. Embedded Systems, Vol. X, No. Y, 200x 1

Copyright © 20XX Inderscience Enterprises Ltd.

Application source code modification for processor
architecture lifetime improvement

Montassar Ben Saad*
National School of Engineering,
University of Sfax,
Sfax 3038, Tunisia
Email: montassar.bs@gmail.com
*Corresponding author

Ahmed Jedidi
College of Engineering,
Ahlia University, Bahrain
and
National School of Engineering,
University of Sfax, Tunisia
Email: ajedidi@ahlia.edu.bh

Smail Niar
LAMIH,
University of Valenciennes and Hainaut-Cambrésis,
59300 Valenciennes, France
Email: smail.niar@univ-valenciennes.fr

Mohamed Abid
National School of Engineering,
University of Sfax,
Sfax 3038, Tunisia
Email: mohamed.abid_ces@yahoo.fr

Abstract: In the optimal functioning of SoCs, two significant metrics of quality are the most
important; life time and reliability. The context of this paper focuses on methods to increase the
lifetime of a processor. Two methods are presented; relax point injection (RPI) and code
structure adaptation (CSA). In RPI, a specific treatment is incorporated into the application code
to prevent a harmful rise in the temperature of the chip. The MTTF of the processor is increased
by 33.88% through means of an RPI method. However, the execution time of the application is
sometimes increased by the RPI to a higher than 12%. In CSA method, the arrangement of the
application code is regulated to improve the lifetime of the processor. The MTTF of the
processor is increased up to 28% by CSA technique and the implementation time is maintained.

Keywords: mean time to failure; thermal dissipation; relax point injection; code structure
adaptation.

Reference to this paper should be made as follows: Ben Saad, M., Jedidi, A., Niar, S. and
Abid, M. (xxxx) ‘Application source code modification for processor architecture lifetime
improvement’, Int. J. Embedded Systems, Vol. X, No. Y, pp.xxx–xxx.

Biographical notes: Montssar Ben Saad. is currently PhD student and member in the Laboratory
Computer and Embedded Systems University of Sfax, Tunisia. He received his Master degree in
Intelligent and Communicating Systems in 2010 at National Engineering School of Sousse,
University of Sousse, Tunisia. His current research interests are monitoring, exploration and
optimisation of the thermal dissipation and improving lifetime in SoC.

Ahmed Jedidi received his PhD in Computer Engineering from the University of Sfax in 2012.
Currently, he is a Chairperson/Assistant Professor in College of Engineering Ahlia University
Bahrain. Also he is a member of the laboratory Computer and Embedded Systems (CES
Laboratory), Sfax University, Tunisia. His research interests are in embedded systems
performance, FPGA and optical network communication.

2 M. Ben Saad et al.

Smail Niar received his PhD in Computer Engineering from the University of Lille in 1990.
Since then, he has been a Professor at the University of Valenciennes where leads the mobile and
embedded systems research group at the Laboratory of Automation, Mechanical and Computer
Engineering, a joint research unit between CNRS and the university of Valenciennes. He co-
supervises the ‘intelligent infrastructures and vehicles’ task within the International Campus on
Safety and Inter-modality in Transportation (CISIT). He is a member of the European Network
of Excellence on High Performance and Embedded Architectures and Compilation (HIPEAC)
and EuroMicro. He is an IEEE senior member. His research interests are in multi-core
architectures, heterogeneous and reconfigurable embedded systems, design space exploration,
and reliability issues for embedded and mobile systems in general and in transportation systems
(automotive) in particular.

Mohamed Abid is a Professor at the Engineering National School of Sfax (ENIS), University of
Sfax, Tunisia. He received his PhD degree from the National Institute of Applied Sciences,
Toulouse (France) in 1989 and the Thèse d’état degree from the National School of Engineering
of Tunis (Tunisia) in 2000 in the area of computer engineering and microelectronics. He is
founding member and Head of the research laboratory ‘Computer Embedded System’ CESENIS
since 2006. He occupied the post of Director of Doctoral School Sciences and Technologies,
ENIS-University of Sfax (2009–2013) and the post of Doctoral degree Computer System
Engineering, ENIS – University of Sfax (2003–2010, and since 2014). He is author or coauthor
of more than 115 publications in journals, than 300 papers in international conferences and joint
author of more than 15 book’s chapters. He was a supervisor or co-supervisor of 48 PhD
defended, some of them are in cooperation.

1 Introduction

In the previous system-on-chip (SoC) generation, there was
a greater power density due to the increase in complexity
and reduced size of the feature. At the same time, power is
becoming the major limitation of the system design.
However, the power measurement and management
techniques have become a necessity. In this context, to
measure the power related in program behaviour, Chunling
et al. (2007) presented an infrastructure based on simulation
and physical measurement to correlate between instructions-
per-cycle and power dissipation for the each piece of code.
On the other hand, Ayala et al. (2007) proposed a
hardware/software approach to reduce the power of shared
register files in embedded VLIW processors. This work is
relies on a set of special hardware extensions that are
controlled by the compilers of the embedded platforms. The
results obtained show that this approach can reduce the
power up to 60% without any performance degradation.

The high power density results in the development of
temperature hotspots, consequently lead to ageing in a
variable manner, and a rise in the malfunction of the chip.
Indeed, these hotspots can cause some processor errors.
However, the processor errors can be classified in two
categories. First, soft errors due to electrical noise or
external radiation. These errors do not fundamentally
damage the microprocessor and are not viewed as a long-
term reliability concern. Second, Hard errors are caused by
defects in the silicon or metallisation of the processor
package. They will result in permanent processor failure.
Then, hard errors directly determine long-term processor
reliability. Furthermore, Hard failures can be divided into
extrinsic failures and intrinsic failures (Pecht et al., 1999).
Indeed, extrinsic failures are caused by process and
manufacturing defects. Such as, contaminants on the
crystalline silicon surface and surface roughness which can

cause adielectric breakdown (Srinivasan et al., 2004). Other
extrinsic failures include short circuits and open circuits in
the interconnects due to incorrect metallisation. Intrinsic
failures, however, depend on the processor’s materials,
related to the processor wear-out. Some examples of
intrinsic failures include time dependent dielectric
breakdown (TDDB) in the gate oxides, electromigration and
stress migration in the interconnects, and thermal cycling.
We will describe these errors in the section 3.2.4 with the
RAMP model, which is the only processor models intrinsic
failures. However, not only the functioning of the system is
impacted through temperature gradients and hotspots, but
the processing of the circuit also becomes unpredictable and
the lifetime of the chip is also impacted. As a result, efforts
are being made to improve the chip lifetime and prevent
harm caused by increased temperatures. In fact, thermal
monitoring and management, and lifetime improvement
techniques are deployed. For example, the dynamic thermal
monitoring methods adopted by Intel and AMD, which
conduct the corrective actions required to regulate the
temperature of the on-chip (McGowen et al., 2006). In
many cases, the corrective action power off the system or
lower the voltage and frequency of the system, resulting in
lower performance efficiency.

In this paper, we propose the techniques of relax point
injection (RPI) and code structure adaptation (CSA) to
improve the lifetime of the microprocessor. The cost-
efficient techniques adopted for the modification of
application code and regulations of microprocessor
performance are of two types. The first one includes the
implantation of a specific treatment by the RPI into a
particular location in the application code to prevent
damage of the microprocessor by rising in the temperature.
The second, the arrangement of the application code is
enhanced by CSA to determine the most efficient code

 Application source code modification for processor architecture lifetime improvement 3

which results in processor main time to failure (MTTF)
increase. The remaining paper is divided into the following
parts. Section 2 describes the work associated. In Section 3,
we define the tools of profiling and simulation utilised for
processor MTTF and thermal profile calculation and
approximation. In Section 4 we will present a relax point
injection (RPI) technique to improve processor MTTF and
we will analyse the results. And in Section 5 the code
structure adapter (CSA) technique will be presented and
explained. Additionally, we will propose a simulation
process based on the Pilot Application (PApp) to determine
the effectiveness of our techniques and the results will be
assessed. In the end, a conclusion and a work for the future
will be discussed.

2 Related works

Higher temperature makes the processor much more
vulnerable to various failure mechanisms such as electro-
migration, stress migration and dielectric breakdown (Blish
and Durrant, 2000). In fact, a 10°C–15°C increase in
temperature can reduce the mean time to failure of a device
by half (Viswanath et al., 2000). Further, monitoring
temperature and reducing hotspots are critical for achieving
reliable and efficient operation of complex systems on a
chip. In this context, to evaluate and control high
temperature in processor, several methods and techniques
are deployed. We divided this section into two parts. In the
first one, we mentioned some temperature modelling
techniques. In the second one, we described different
thermal management and reliability improvement
techniques.

2.1 Thermal modelling
To evaluate thermal variations on chip, the circuit designers
insert within chip thermal sensors that acquire temperatures
at few selected locations. The acquired temperatures are
then used to guide runtime thermal management techniques.
In this context (Nowroz et al., 2010), temperature is
characterised by signals of real processors and devise
thermal sensor allocation techniques, and devise signal
reconstruction techniques that fully characterise the thermal
status of the processor using the limited number of
measurements from the thermal sensors. For modelling a
temperature in chip, several methods and techniques are
deployed. First, works in Yi-Kan and Sung-Mo (2000),
Torki and Ciontu (2002), Rencz et al. (2000), Vladimir et al.
(1997), Koval and Farmaga (1994) and Batty et al. (2002)
are focus in describing the techniques for modelling
localised heating within a chip due to different power
densities of various blocks, but none of these tools are easily
adapted to architectural exploration. Skadron et al. (2002)
proposed a simple model for tracking temperature on a
perunit level, but it ignored the effect of lateral heat
diffusion. The analytical model in Michaud et al. (2005) is
based on an explicit solution to the heat equation. Moreover,
some thermal models are intended to be used at the full-

system level. Indeed Heath et al. (2006) proposes a system-
level temperature emulation suite that uses offline
calibration and the online update of per-component
utilisation information to calculate the temperature of the
systems. Choi et al. (2007) employs computational fluid
dynamic (CFD) modelling of rack-mounted servers.
Although, both tools are considered the microprocessor yet
there is only one component within the system and hence no
localised information is obtained, which is essential for
architectural studies.

2.2 Thermal management and reliability
improvement techniques

2.2.1 Thermal management techniques
Techniques to overcome the thermal problems became
necessary, among these, the dynamic thermal management
techniques (DTM). DTM measure a microprocessor
temperature either directly by the circuit sensors or
indirectly with the performance analysers, and these
measures will be used to modify the microprocessor
configuration parameters in order to maintain its
temperature below a given threshold (Kong et al., 2012). In
addition, multiple thermal control methods for
microprocessors and shows trade-offs between temperature
profile, frequency settings, power consumption and
implementation complexity are proposed in Zanini et al.
(2013). Design-time thermal optimisation techniques for
embedded systems are proposed in Liu et al. (2007). This
technique can be used in the system design phase.
Furthermore, Intel and AMD, the leading microprocessor
vendors, had dynamic thermal monitoring techniques that
took necessary corrective action to maintain on-chip
temperature (Blish and Durrant, 2000). Unfortunately the
corrective actions, in most cases, shut down the system or
reduced system voltage and frequency, leading to
considerable performance degradation. In other hand,
software can also play an important role in identifying and
eliminating thermal hotspots. This is particularly true for
compiler-scheduled very long instruction word (VLIW) data
paths. Indeed, Mutyam et al. (2006) has focused on a
compiler-based approach to make the thermal profile more
balanced in the integer functional units of VLIW
architectures. For balanced thermal behaviour and peak
temperature minimisation, the author in Mutyam et al.
(2006), propose a technique based on load balancing across
the integer functional units with or without rotation of
functional unit usage. Also, while traditional task
scheduling techniques have focused on performance
improvement, without regardless to temperature issues,
modern techniques, such as proposed in Kumar et al.
(2006), managed the temperature through the software-
hardware cooperation. Extensive research, like
Buyuktosunoglu et al. (2003), Hughes et al. (2001) and
Srinivasan and Adve (2003) has gone into techniques that
can maximise energy and thermal performance by
exploiting architectural features and adaptation capabilities.

4 M. Ben Saad et al.

2.2.2 Reliability and lifetime improvement techniques
The higher temperature, performance, energy, and lifetime
reliability of processor are directly related. In fact, many
thermal managing and reliability techniques are highlighted.
In this context, a thermal management technique
classification, mainly in temperature monitoring and
thermal reliability/security is suggested in Kong et al.
(2012). The first one, requirement for dynamic thermal
management (DTM), included temperature estimation and
sensor placement techniques for accurate temperature
measurement or estimation. The second one dealt with the
problems of temperature-dependent reliability modelling,
dynamic reliability management (DRM), and malicious
codes that specifically cause overheating. More, Coskun et
al. (2009) presented a framework for evaluating the
effectiveness of a number of mechanisms of thermal control
(job scheduling, job migration, dynamic voltage and
frequency scaling) in various combinations, and it presented
effective new policies for managing thermal effects.
However, the authors in Coskun et al. (2009) show that the
techniques that are nearly identical in performance, power,
and even peak temperature can differ by a factor of two in
an expected processor lifetime, with a performance cost of
less than 4%. The authors in Song et al. (2016), study the
lifetime reliability consequences of heterogeneous multicore
processors. They present the lifetime reliability theoretical
models of multicore processors based on Amdahls Law,
including compact thermal estimation. Particularly, this
work shows that there’s a strong correlation between
heterogeneous multicore processors and device aging.
However the authors in Viswanathan et al. (2009) analysed
the impact of reliable overclocking on on-chip temperature.
Reliable overclocking, on an average, achieves 35%
increase in performance over a non-overclocked system.
Although reliable overclocking mechanisms facilitated
improved performance, but a major hurdle in realising them
was their impact on on-chip temperature. As the systems
operated faster, on-chip temperatures quickly reached and
exceeded the safe limits. This led to system crash and
caused a serious threat to the lifetime reliability of the
system. When a thermal throttle was applied, the
performance drops by 25%. Other, a non-overclocked
system has a longer lifetime, of about 30 years, as its onchip
temperature does not exceed 347K. However, a reliably
overclocked system has a much shorter lifetime of about 9
years (Viswanathan et al., 2009).

To improve multiprocessor system reliability, Jun et al.
(2014) proposed some novel static fault-tolerant scheduling
techniques. Indeed, the goal of fault-tolerance is to avoid the
failure of the overall system when some of its subsystems
fail. In fact, Jun et al. (2014) studied a static scheduling
algorithm and propose an ILP formulation for optimally
fault-tolerant scheduling. Buyuktosunoglu et al. (2003)
demonstrated that simply balancing power consumption and
decreasing maximal on-chip temperature are not sufficient
to significantly improve the processor lifetime
reliability. However, to improve the processor reliability,

Buyuktosunoglu et al. (2003) proposes that a processor core
should be set to different frequency according to its power
consumption. Further, Basoglu et al. (2010) proposes a
technique to model NBTI degradation with dynamic
changes in temperature, voltage, and frequency. Based on
this model, the authors utilise this knowledge of the guard
band and a predictive model to absolutely improve
processor power consumption and lifetime without
impacting the processor performance against negative bias
temperature Instability (NBTI) degradation. By this
approach the authors improve the lifetime of 8-core
processor at the 45 nm technology by two years and saves
up to 16% of the dynamic energy consumed. Also, the
authors in William et al. (2015) present a lifetime reliability
characterisation of many-core processors based on a full-
system simulation of integrated microarchitecture, power,
thermal, and reliability models. This work present two
variance reduction technique for proactive reliability
management: proportional dynamic voltage-frequency
scaling (DVFS) and coordinated thread swapping.
Additionally, dynamic reliability management solutions are
often adopted in multi-core systems to mitigate aging and
wear-out effects. The authors in Bolchini et al. (2016)
analyse the effects on reliability of a set of classical policies,
on a multi-core architecture, by systematically varying the
related parameters, such as the number of spare cores to be
selected, in the whole value space. The reported
experimental results of this work show that the peculiarities
of both the architecture and the workload have to be taken
into account in the selection of the most proper runtime
policy.

3 Simulation tools

In recent years, lifetime and reliability become important
quality metrics in the high-performance SoCs. In order to
estimate and increase the lifetime (MTTF) of
microprocessor, we propose a profiling and simulation tools
to understand the behaviour of application code, and
estimate the thermal profile and MTTF of the
microprocessor.

3.1 Profiling tool
Usually, to optimise its application, a programmer is
interested to know the evolution and the nature of the code
and mapping with different parameters. For that, profiling
tools and analysis are extremely important for
understanding the behaviour of the program. Valgrind is a
suit of a debugging and profiling tool. In our method, we
used the profiler callgrind (Nethercote et al., 2006) of
Valgrind tools. It records the call history among functions in
programs run and the collected data consisting in the
number of instructions executed, their relationship to source
lines, the caller/callee relationship between functions, and
numbers of such calls (Weidendorfer et al., 2004). It can
produce a callgraph of fonctions.

 Application source code modification for processor architecture lifetime improvement 5

3.2 Thermal and MTTF estimation tools
In this section, we present our tool to assess and calculate
MTTF in SoC. Our tool represents the combination between
the power model from the Wattch simulator (Tiwari et al.,
2000), the thermal model of the HotSpot simulator
(Stan et al., 2003) and the lifetime reliability model from
RAMP (Srinivasan et al., 2004) as shown in Figure 1. The
target at processor architecture in our simulation tools is the
third generation superscalar Alpha 21264 Ev6
microprocessor.

3.2.1 Alpha 21264 microprocessor
The Alpha 21264 Ev6 is the third generation superscalar
Alpha microprocessor with out of-order and speculative
execution. They are used for performance optimisation. The
instructions of Alpha EV6 contain integrated and floating
point instructions, which can be classified into arithmetic,
comparison, bit-level, load and store, conditional move,
branch, and conversion classes (Kessler et al., 1998). The
Alpha Ev6 also includes a high-bandwidth memory system
to quickly deliver data values to the execution core,
providing robust performance for many applications,
including those without cache locality. Figure 2 shows that
the Alpha EV6 functional units are represented by eighteen
blocks in the Ev6 floorplan. With his functional units and
his dynamic execution techniques, Alpha 21264 is 50% to
200% faster than its predecessor for many applications.

3.2.2 Power model of Wattch simulator
Wattch () is an accurate, architecture level power tool
embedded within the SimpleScalar simulator. SimpleScalar
is a set of tools that model a virtual computer system with
CPU, Cache and Memory Hierarchy. The power model
keeps track of which units per cycle and records the total
energy consumed for an application. Indeed Wattch
calculates instantaneous power at every cycle, and outputs

the total power accumulated over a simulated period of time
and the average power. Wattch uses a modified version of
simplescalar sim-outorder to collect results (Tiwari et al.,
2000). Wattch has three power information type cc1, cc2,
cc3. They are built from the architectural functional unit
power information.

In our work we use a third one cc3 to calculate the
Alpha 21264 microprocessor power for each application.
Or, cc3 is non-ideal conditional clocking. It shows models
power leakage by assuming that an idle unit consumes only
10% of its maximum power for a cycle in which it is
inactive (Tiwari et al., 2000). It is the most real. The
instantaneous power traces provided by the Wattch power
tool is used to calculate the temperature in HotSpot
simulator.

3.2.3 Thermal model of HotSpot simulator
HotSpot is an architecture level simulator, fast enough to
allow for the simulation of long dynamic temperature traces
on the order of seconds, it’s designed to calculate
temperature profiles which are accurate for the experiments
at the architecture level. It is one of the thermal simulators
widely used in the computer architecture community. It is
based on an equivalent circuit of thermal resistances and
capacitances that correspond to microarchitecture blocks
and essential aspects of the thermal package (Stan et al.,
2003).

Basically, HotSpot aims to evaluate the application
thermal effect on the microprocessor. In that, it can be
integrated with a power/performance architectural
simulators, like Wattch and SimpleScalar, to obtain the
power information related to each application. To convert
power into temperature of each functional unit HotSpot
proceeds in two stages. In the first one, the conversion is
performed until the temperature becomes stable. In the
second one, the temperature increases by continuously
converting the power into temperature based on the stable
temperature.

Figure 1 MTTF and thermal simulation tool (see online version for colours)

6 M. Ben Saad et al.

Figure 2 Alpha 21264 Ev6 processor floorplan (see online
version for colours)

3.2.4 Reliability model of RAMP
Reliability-aware microprocessors (RAMP), developed by
researchers at the IBM T.J. Watson Research Center and the
University of Illinois Urbana-Champaign, is the first
application-aware architecture-level methodology that use
the analytic models for important failure mechanisms to
evaluate the microprocessor lifetime and reliability
(Srinivasan et al., 2004). It is based on the current
temperature, utilisation, and power profile of
microprocessor, provided by the power and thermal
simulators, to calculate its lifetime. The MTTF represents a
microprocessors’ expected average lifetime and it is based
on five processor failure mechanisms:

• Electromigration (EM): Occurs in aluminum and
copper interconnects due to the mass transport of
conductor metal atoms in the interconnects.
Electromigration has an exponential dependence on
temperature. The MTTF associated at this mechanism
is described by the Black model.

()
Ea

n KT
critMTTF A J J e

⎛ ⎞
⎜ ⎟− ⎝ ⎠= − (1)

where A is a constant, J is the current density in the
interconnect, Jcrit is the critical current density required
for electromigration, Ea is the activation energy for
electromigration, K is Boltzmann’s constant, T is
absolute temperature in Kelvin, and n is an empirical
constant (Srinivasan et al., 2004).

• Stress migration (SM): Similar to electromigration,
stress migration is a phenomenon where the metal
atoms in the interconnects migrate. It is caused by
mechanical stress due to differing thermal expansion
rates of different materials in the device.

0

Ea
n KTMTTF A T T e

⎛ ⎞
⎜ ⎟− ⎝ ⎠= − (2)

where T0 is the stress free temperature of the metal
(metal deposition temperature), and T is the operating
temperature (Srinivasan et al., 2004).

• Time-dependent dielectric breakdown (TDDB): is the
gate dielectric’s gradual breakdown which leads to
transistor failure.

()1

YX Z
T

a bT kT

MTTF e
V

⎛ ⎞+ +⎜ ⎟
⎜ ⎟

+ ⎜ ⎟⎜ ⎟
⎝ ⎠⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (3)

where a, b, X, Y and Z are fitting parameters, and k is
Boltzmann’s constant (Srinivasan et al., 2004).

• Negative-bias temperature instability (NBTI): an
electrochemical reaction that upwards transistor
threshold voltage which in return leads to processor
failure because of timing constraint violations.

1

ln ln
1 2 1 2

B B
KT KT

D
KT

A A CMTTF
e e

t

e

β

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎡⎛ ⎞⎛ ⎞ ⎛ ⎞−⎢⎜ ⎟⎜ ⎟ ⎜ ⎟= −
⎜ ⎟ ⎜ ⎟⎢⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠⎣

⎤⎛ ⎞
⎥⎜ ⎟×

⎜ ⎟⎥⎝ ⎠⎦

 (4)

where A, B, C, D, and β are fitting parameters, and k
the Boltzmann’s constant (Srinivasan et al., 2004).

• Thermal and cycling (TC): it is permanent damage
accumulated every time there is a cycle in temperature,
eventually leading to failure. There are two types of
TC; large cycles which occur at a low frequency
because of changes like powering up and down, and
small cycles which occur at a high frequency because
of changes in work-load.

()q
ambient

AMTTF
T T

=
−

 (5)

where T is the average temperature of the structure,
Tambient is the ambient temperature and q is the
Coffin-Manson exponent (Srinivasan et al., 2004).

The MTTF of the microprocessor, named here MTTFp, is
the inverse of the total failure rate of the microprocessor
named λ. It is the sum of the failure rates of the individual
structures due to individual failure mechanisms.

1 1

1 1
p j k

ili l

MTTF
λ λ

= =

= =
∑ ∑

 (6)

where λil the failure rate of the ith structure due to the lth
failure mechanism (Srinivasan et al., 2004).

3.3 Simulation frameworks
To configure the three simulators, we have to set the
different models with the Alpha 21264 EV6 configuration
parameters. In fact, we have to initialise Lifetime Reliability
Model with the different EV6 floorplan functional unit to
calculate failures in each one. Hotspot uses the Alpha 21264
Ev6 floorplan that is different from Wattch and it has
eighteen functional units in floorplan. In Wattch some
functional units have just the same single value and some
units include the operations of integer and floating point.

 Application source code modification for processor architecture lifetime improvement 7

Indeed, we use the power transferable formula in Wattch to
correspond the same floorplan in Hotspot as shown in
Table 1.

Table 1 Power formula in hotspot

Alpha EV6 functional
blocks (HotSpot) Functional blocks formula (Wattch)

L2 0.72 ∗ dcache2_power/cycle_count
L2_left 0.14 ∗ dcache2_power/cycle_count
L2_right 0.14 ∗ dcache2_power/cycle_count
Icache Icache_power/cycle_count
Dcache Dcache_power/cycle_count
IntExec Ialu_power/cycle_count
DTB Dtlb_power/cycle_count
Bpred Bpred_power/cycle_count

FPMul 0.52 ∗ falu_power/cycle_count

FPAdd 0.48 ∗ falu_power/cycle_count

IntQ 0.55 ∗ window_power/cycle_count

FPQ 0.45 ∗ window_power/cycle_count

FPMap 0.53 ∗ rename_power/cycle_count

IntMap 0.47 ∗ rename_power/cycle_count
LdStQ lsq_power/cycle_count

IntReg 0.59 ∗ regfile_power/cycle_count

FPReg 0.41 ∗ regfile_power/cycle_count
ITB Itlb_power/cycle count

The power model in Wattch and the RAMP model are built
by cycle. For every cycle, RAMP and Wattch will collect
and compute failure mechanisms and power consumption
for each Alpha Ev6 functional units. Moreover, the input of
Hotspot consists of the unit power of functional unit and the
increasing temperature of the cycle is very low. That’s why
to synchronise the models values exchange; we decided to
collect all the values of each block every 10,000 clock
cycles.

4 Relax point injection

The consequences of drastic temperature increase not only
deteriorate the system efficiency, but also shorter the life
time of the processor. Keeping this in view, there were
various procedures developed for the maintenance of onchip
temperature. To solve this problem, we used a software
solution to increase processor lifetime and to maintain its
temperature. This solution does not have an adverse effect
on the processor’s efficiency. Yet it bargains between the
performance and MTTF by an application code.

4.1 Methodology
Our technique goal is to modify (precisely adjust) the
application code to improve the microprocessor lifetime.

The flow chart in Figure 3 displays the fundamental concept
of this process.

Initially, the selected application is profiled with the aim
of requiring some code information’s and searching a hot
spot code. This part of the code is the section which
contains a large number of instructions and it is also the
cause of temperature increase in the system. Following the
first step, a hot spot code is then altered for an increment in
the MTTF. The alterations lead to the simulation of a new
code, which is then tested for observation. Finally, if the
aims don’t meet, the hot spot code is further altered success.
It is observed that the modification procedure follows
various paths. In a particular section of the code, a loop that
increases a counter is introduced using relax point injection
(RPI). The temperature of the processor and its resources is
directly influenced by RPI which affects its MTTF. One
step that is crucial to this process is the determination of the
place of insertion of RPI in the code. In order to ensure
proper insertion, the data gathered from profiling and the
quantity of instructions and their execution time are noted.

Figure 3 Profiling and modifying the application code to
improve the processor lifetime (see online version
for colours)

The hot spot code affects the CPU by increasing its
temperature and thereby influencing the MTTF. It is
observed that the processor undergoes a temperature
increase more rapidly than a decrease. In order to avoid that,
the RPI insertion should be carried out prior to each target
code in the entire application code.

The total rate of application instruction divided by 3 is
called RPIsize and a characteristic feature of RPI. It can be
calculated using the following equation:

8 M. Ben Saad et al.

3
TNI InsRRPIsize ×

= (7)

The total number of the application instruction is denoted by
TNI, and the rate of instruction to be added is represented
by InsR. The division by 3 is carried out due to the fact that
every loop iteration contains three instructions. The
example given in Figure 4 can be used to further elaborate
this technique. An outline is created of the benchmarks of
Dijkstra Mibench (Guthaus et al., 2001) with a callgrind
profiler (Nethercote et al., 2006). After this, the part of code
having the greatest application instruction number is
identified. The dijkstra (i, j) function, described in Figure
4(a), was termed in the loop, and in Figure 4(b) is
constituted by 96.75% of the overall instructions on the
application. RPI inserted in the target is following this step.

The RPI in the given example was found to have an RPIsize
10,000 loop iteration, as described in Figure 4(c).

4.2 Experimentation results
The assessment of the RPI technique through MTTF is the
aim of this experiment. To achieve this goal, one loop
counter incrementing is inserted and its size has increased
by three times (InsR = 5% then 10% then 20%) in all of the
mibench benchmarks i.e. Basicmath, Qsort, Adpcm_encode,
Adpcm_decode, Dijkstra, FFT and Rijndeal to obtain
various forms of these (version InsR 5%. InsR 10% and
InsR 20%). We analysed the variations of MTTF, Maximum
Temperature, CPI and Cycle Number metrics compared to
the RPIsize for each benchmarks as shown in the Figure 5
and Table 2.

Figure 4 The Dijkstra Code example, (a) profiling and target code detection (b) kcachegrind call graph (c) relaxing point injection in
Dijkstra code (see online version
for colours)

(a) (b) (c)

Figure 5 MTTF, CPI and maximum temperature variation rate (see online version for colours)

 Application source code modification for processor architecture lifetime improvement 9

Table 2 MTTF, temperature, CPI, RPIsize and cycle numbers variations

Benchmarks Basicmath Qsort Dijkstra Adpcm_encode Adpcm_decode FFT Susan Rijndeal

Instructions
number

VO 6,374,690,678 515,237,860 255,620,666 605,872,292 498,397,968 915,640,054 395,124,652 391,487,888

RPI_5% 106,244,845 8,587,298 4,260,345 10,097,872 8,306,633 15260667 6585410 6524798
RPI_10% 212,489,690 17,174,596 8,520,689 20,195,744 16,613,266 30521335 13170821 13049596

RPIsize

RPI_20% 424,979,380 34,349,191 17,041,378 40,391,487 33,226,532 61042670 26341643 26099192
VO 12.1 26.06 17.32 18.77 30.3 9.8 28.9 24.6

RPI_5% 17.33% 4.83% 5.99 % 17.66% 17.01% 4.80% 7.30% 5%
RPI_10% 25.19% 10.44% 13.98% 24.00% 23.18% 7.10% 9.10% 7.20%

MTTF

RPI_20% 33.88% 22.59% 20.87% 28.67% 27.77% 17.80% 14.50% 19.30%
VO 1.0253 0.7057 0.5264 0.8042 0.7172 0.7717 0.5784 0.4874

RPI_5% –3.14% –5.13% –1.67% –3.77% –3.00% –0.70% –2.04% –1.11%
RPI_10% –6.23% –6.99% –3.29% –7.08% –5.69% –1.00% –3.53% –2.50%

CPI

RPI_20% –11.60% –9.22% –6.08% –12.63% –10.28% –1.58% –7.14% –4.97%
VO 86.3 70.62 76.24 67.7 70.5 92.2 72.33 70.55

RPI_5% –2.73% –0.94% –2.28% –3.29% –2.20% –2.06 –2.10% –2.12%
RPI_10% –4.15% –1.54% –2.68% –5.00% –3.44% –3.33 –3.40% –3.12%

Temperature

RPI_20% –5.83% –2.38% –3.18% –6.77% –5.09% –5.39 –4.40% –4.68%
VO 6,502,184,491 365,640,223 134,547,295 487,121,323 357,351,343 652,089,198 225,500,827 190,828,182

RPI_5% 2.01% 2.33% 3.09% 2.85% 2.76% 2.10% 2.15% 2.11%
RPI_10% 3.74% 4.79% 6.28% 5.70% 5.52% 3.46% 3.45 3.30%

Cycle Nbr

RPI_20% 7.19% 9.71% 12.66% 11.40% 11.04% 532%. 4.32% 4.66%

These variations confirm our idea that when we insert relax
point we increase MTTF in all the benchmarks.

As matter of fact, MTTF increases with the size of the
relax point. For example the Basicmath MTTF are increased
by 17.33%, 25.19% and 33.88% for relax point size
increased by 5%, 10% and 20% respectively. As shown in
Figure 5, we note that the variation of MTTF has a direct
relation to CPI rate and Maximum Temperature decrease,
but if we take the example of Adcpm_encode benchmarks,
when the CPI rate evolves from 3.77% to 12.63%, MTTF
increased from 17.66% to 28.67% for relax point size 5%
and 20%, respectively. Also, temperature dissipation
evolves from 3.29% to 6.77% for the same example. When
we decrease the CPI and Maximum Temperature values we
increase MTTF. Consequently, we note that the execution
time for each benchmark increases as shown, in Figure 6.
Indeed, when we insert a third type of relax point (InsR
20%) in Dijkstra, a 12.66% increase was seen in the cycle
number. In fact, these evolutions are normal because our
idea consist to add instructions in the application despite
these instructions are loops with an empty body.

5 Code structure adaptation

RPI can be described as a software solution. Its advantages
include increasing the MTTF of the system and lowering the
processor’s highest temperature without extra costs. It also
has disadvantages, such as the increase in the execution
time of the application. A new technique is suggested, in

this section, based on the modification of source code
structure, so that these disadvantages con be overcome.

Figure 6 Cycle number increasing (see online version
for colours)

5.1 Methodology
Based on the RPI results, we note that the processor
temperature and MTTF are associated to the execution
process. Indeed, if the processor executes basic instructions
(like an empty loop) before the hot spot code, its
temperature decreases and its MTTF improves. This
observation has pushed us to find a new technique that
reorganises the application code to improve the processor

10 M. Ben Saad et al.

MTTF. In fact, modification of the application code
structure to increase the MTTF of the processor is the major
theme of this technique. First, based on code statistics, we
deconstructed the application code in independent sections.
And, we classifed these sections by their instruction
number, then, we adapted their order among one another in
order to obtain an optimum MTTF code structure for the
processor. ‘Adapt’ means changing the position of
independent code sections between themselves, without
adding a new treatment, contrary to RPI technique. The
method discussed is called ‘code structure adaptation’
(CSA).

Unlike RPI technique, this technique does not alter the
execution time of the application. Four benchmarks are
selected to assess the CSA: Basicmath, FFT, Dijkstra and
Qsort. These bookmarks are deconstructed by the CSA into
three categories: less, medium and higher. The instruction
number of every target section is the basis for this
classification. Higher in the hot spot section with a bigger
instruction number, less define the section with a smallest
instruction number and medium for the medium one.
Following this step, the structure of the benchmark code is
rearranged and three versions of the application are
achieved:

• Vorg version: is the original application version, it must
be started with the medium section, then follow by the
less section and finished with the higher one.

• Vd version: is the modified application version where
we put the higher section of code at the top of
application code, then follow by the medium section
and finally the less one.

• Vi version: is another modified version of the
application, where we put the less section of code at the
top of application code, then follow by the medium
section and finally the higher one. These can be seen in
Figure 7.

Figure 7 Application Code Decomposition (see online version
for colours)

5.2 Experimentation and discuss results
In this step we focus on MTTF values relative to each
version of the benchmarks and we select the optimal code
structure. The experimentation goal is to analysis the effect
of the hot spot section position in the application code on
the processor MTTF. For the Vi version, hot spot section is
put in the last position of code unlike Vd version. We noted
that the Vi version for each benchmark gave the highest
processor MTTF as shown in Figure 8. As an example, in
Qsort benchmark, we-have more than 14 % Increase of
MTTF between Vorg and Vi, and more than 35 % between
Vd and Vi.

Figure 8 Alpha EV6 MTTF for each application versions
(see online version for colours)

Indeed, if the execution process started with the hot spot
instructions, the processor lifetime will be severely affected.
In contrast, the version Vi make the system more safe. In
this way, we can deduce, by putting the simplest treatment
in the top of application code and the most complex one at
the end, the processor will be safer. Indeed, if the processor
executes the higher section in first position, its temperature
has rapidly increased. Moreover, knowing that the processor
undergoes a temperature increase more rapidly than a
decrease, the effect in the Vd version of medium and less
section will be more important on the processor, because
they will be executed depending on the temperature which
is already high because of the hot spot section. In addition,
the CSA doesn’t change neither the performance of the
processor nor the cycle numbers. Which is normal because
using CSA we don’t add any new instructions in the
application code; we only reorganised its structure.
Unfortunately, the identification of the independent code
sections limited by the CSA technique. Therefore, structural
adaptation is not apparent. The problem can be further
elaborated through discussing the example of matrix
multiplication. The code can be broken down into three
categories: initialisation, multiplication and results.
However, the code has a disadvantage. It cannot be altered
due to the requirement of upper section result by every
section.

Srinivasan et al. (2005) describes in detail the dynamic
reliability management (DRM) technique. With DRM, the
designers can meet reliability targets by using processor

 Application source code modification for processor architecture lifetime improvement 11

adaptation to reduce processor temperature, current density,
voltage, and/or frequency as needed at runtime. Indeed, the
authors studied an oracular control algorithm for processor
adaptations and evaluating its performance on processors
with different reliability-qualification cost. Particularly, for
an application running on a processor with a specific
reliability-qualification cost, it selected the configuration
that gave maximum performance and met the required
MTTF target. So we deduct that the effectiveness of this
method depends essentially on the processor architecture
and the application domain. Indeed the authors use the
maximum constant temperature the processor can run at
while meeting the target MTTF, and the results have shown
that for different processor configurations with a
temperature <100°C, the performance can be reduced from
0 to 30%. Its results differ from one application to another.
However, our methods (RPI and CSA) are a software
techniques. Specifically, we modify the application’s source
code to increase the MTTF while maintaining a fixed
processor configuration.

Like mentioned before, we used the Alpha 21264
microprocessor in the simulation and its operating
temperature is 100°C. in this case, we increased the MTTF
by more than 35% without any loss of performance in CSA
method. Also, we obtained average 12% MTTF increase
with RPI method. Based on these results, our methods offer
an interesting solution for the developer to increase the
reliability and the lifetime of the processor with a lower cost
and fixed configuration.

5.3 Pilot application process

5.3.1 Simulation process
In this section we propose a simulation process to overcome
of the CSA limitation. During this simulation process, a full
application takes the place of the section of code and a
family of independent benchmarks replace a full application
in CSA technique.The main objective of this part of work is
to analyse the effect of the execution behaviour of the serial
applications on the MTTF. Then, we test and validate the
efficiency of the CSA method. For that, we use a Pilot
Application (PApp) in this execution process. The
formation of a (PApp) is the main purpose. The principles
of the PApp must contain:

1 the PApp must be built by an independent application

2 the origin family of the applications must be the same

3 the size and thermal profile of the applications must
vary (maximum temperature).

5.3.2 Simulation results
The key criterion in the PAdd realisation is the maximum
temperature of processor relative for each benchmark.
Indeed, we categorise the applications on the basis of
temperature influence (maximum temperature) as shown in
Figure 9. The benchmark with a higher temperature is
considered a ‘hot spot application’. For each application

family, the execution order of the applications is altered in
every PApp form. And in the end, a number of PApp
versions are executed and the processor MTTF is calculated
for each of these. We build 18 PApp for three families, as
shown in Table 3:

1 Mibench:
• Automative :Basicmath, Qsort and Susan
• Telecomm: FFT, CRC32 and Adpcm encode.

2 SPEC2000 CINT: 175.vpr, 164.gzip and 256.bzip2.

Knowing that the processor MTTF is strongly related to its
temperature, in this experiment step we will be interested in
the influence of position of ‘hot spot application’ into the
execution process on the processor lifetime. For that, first,
for each application family: Basicmath, FFT and 175.vpr,
present a ‘hot spot application’. Indeed the maximum
temperature generated by each one is respectively 86°C,
92°C and 85°C. Changing the position covered by each of
them in their respective families can modify their influence
on the processor temperature and consequently MTTF.

Figure 9 Alpha Ev6 maximum temperature for each benchmarks
family (see online version for colours)

Second, we elaborate the execution process versions (PApp)
presented in Table 3. For each PApp the position of the hot
spot benchmark is changing, for example in version 4 it is
executed in the last position unlike to version 1. After the
simulations step, Figure 10 presents the Alpha Ev6
processor MTTF for each version of PApp for each
benchmarks family. Based on these results, we note a
significant difference of MTTF between these PApp
versions. It varies between 8% and 28%. Also we notice
that the version 4 of each benchmarks family have a higher
MTTF. In fact, the processor is more safe with a version 4
than version 1.

Certainly these results confirm the effectiveness of the
CSA technique. If the processor executes the hot spot
treatments in the last of the execution process, the hot spot
influence over its lifetime is consequently decreased. And
we can conclude that, during its execution, if the application
increases the temperature gradually (version 4) until these
maximum values, these make a processor safer.

12 M. Ben Saad et al.

Figure 10 Alpha Ev6 MTTF of each Pilots Application (see online version for colours)

Table 3 PApp versions for each benchmarks family

Benchmarks T Max PApp Version PApp Name

FFT-CRC32-Adpcm_encode PApp Tel.1 FFT 92°C
FFT-Adpcm_encode-CRC32 PApp Tel.2
Adpcm_encode -FFT-CRC PApp Tel.3 CRC32 76°C

Adpcm_encode-CRC32-FFT PApp Tel.4
CRC-FFT-Adpcm_encode PApp Tel.5

Telecomm

Adpcm_encode 67°C
CRC-Adpcm_encode-FFT PApp Tel.6

Basicmath-Qsort-Susan PApp Aut.1 Basicmath 86°C
Basicmath-Susan-Qsort PApp Aut.2
Susan-Basicmath-Qsort PApp Aut.3 Qsort 70°C
Susan-Qsort-Basicmath PApp Aut.4
Qsort-Susan-Basicmath PApp Aut.5

Mibench

Automative

Susan 69°C
Qsort-Basicmath-Susan PApp Aut.6

175.vpr-164.gzip-256.bzip2 PApp Spec.1 175.vpr 85°C
175.vpr-256.bzip2-164.gzip PApp Spec.2
256.bzip2-175.vpr-164.gzip PApp Spec.3 164.gzip 71°C
256.bzip2-164.gzip-175.vpr PApp Spec.4
164.gzip-175.vpr-256.bzip2 PApp Spec.5

Spec2000

256.bzip2 68°C
164.gzip-256.bzip2-175.vpr PApp Spec.6

Finally, the application designers can use the data from our
technique CSA, confirmed by the simulation process PApp,
to produce efficient applications that does not degrade the
performance and does not reduce the processor lifetime.

6 Conclusions

The increased complexity and the decreased feature
sizes have caused a very high power density in the last
generation of system-on-chip (SoC). This situation
generates temperature hotspots, which in turn may lead to a
non-uniform ageing and an acceleration of chip failure. In

fact, temperature gradients and hotspots not only affect the
performance of the system, but also lead to unreliable
circuit operation and affect the chip lifetime. In order to
ensure the proper functioning of a chip and increase its
lifetime, it is essential to regulate the temperature and lower
hotspots. In this context, the content of this paper proposed
two techniques for MTTF increase.

The first technique, namely relax point injection (RPI),
consists in adding a particular treatment in the application
code to protect the chip from a fatal temperature increase.
With an RPI technique, we increase a processor MTTF by
33.88%. Unfortunately, in some cases, RPI increases the
execution time of the application more than 12%.

 Application source code modification for processor architecture lifetime improvement 13

The second technique, namely code structure adaptation
(CSA), consists to readjust the structure of application code
to increase processor lifetime. CSA raises processor MTTF
by 35%, and keeps the application execution time
unchanged. But, the limit of CSA method is to find the
independent sections of code. So, it is not evident to modify
its structure. For that, to improve this technique, we
proposed a simulation process based on the Pilot
Application (PApp). This represents a set of application of
the same family, with different temperature profiles, who
executed in series on the same processor. Each application
replaced a section of code in CSA. And we deducted that, to
make a processor safer, it must execute the application
which a higher temperature in the last position. With this
process, we improved the processor MTTF by 28%. Our
techniques can be of great help to the application designer
because it allows them to take into account the thermal
profile during the development of their application. We can
apply these MTTF optimisation methods on the multicore
architectures in further studies. And we can integrate these
techniques in other thermal management method.

References
Ayala, L.J., Lopez-Vallejo, M., Atienza, D., Raghavan, P.,

Catthoor, F. and Verkest, D. (2007) ‘Energy-aware
compilation and hardware design for VLIW embedded
systems’, Int. J. of Embedded Systems, Vol. 3, Nos. 1/2,
pp.73–82.

Basoglu, M., Orshanshy, M. and Erez, M. (2010) ‘NBTIaware
DVFS: a new approach to saving energy and increasing
processor lifetime’, Proceedings of the 16th ACM/IEEE
International Symposium on Low Power Electronics and
Design (ISLPED), pp.253–258.

Batty, W. et al. (2002) ‘Global coupled EM-electrical thermal
simulation and experimental validation for a spatial power
combining MMIC array’, IEEE Transactions on Microwave
Theory and Techniques, Vol. 50, No. 12, pp.2820–2833.

Blish, R. and Durrant, N. (2000) Semiconductor Device Reliability
Failure Models, International SEMATECH, Tech. Rep.

Bolchini, C., Cassano, L. and Miele, A. (2016) ‘Lifetime-aware
load distribution policies in multi-core systems: An in depth
analysis’, 2016 Design, Automation and Test in Europe
Conference and Exhibition (DATE), Dresden, pp.804–809.

Buyuktosunoglu, A. et al. (2003) ‘Energy efficient coadaptive
instruction fetch and issue’, in Proc. of the 30th Annual Intl.
Symp. on Comp. Architecture.

Choi, J., Kim, Y., Sivasubramaniam, A., Srebric, J., Wang, Q. and
Lee, J. (2007) ‘Modeling and managing thermal profiles of
rack-mounted servers with thermostat’, in Proceedings of the
International Symposium on High Performance Computer
Architecture (HPCA).

Chunling, H., Jimenez, D.A. and Kremer, U. (2007) ‘An
evaluation infrastructure for power and energy optimisations’,
Int. J. of Embedded Systems, Vol. 3, Nos. 1/2 pp.31–42.

Coskun, A.K., Strong, R., Tullsen, D.M. and Rosing, T.S. (2009)
‘Evaluating the impact of job scheduling and power
management on processor lifetime for chip multiprocessors’,
SIGMETRICS Perform. Eval. Rev., Vol. 37, No. 1,
pp.169–180.

Guthaus, M.R., Ringenberg, J.S., Austin, D.E.T.M., Mudge, T. and
Brown, R.B. (2001) ‘Mibench: Afree, commercially
Representative embedded benchmark suite’, in WWC –
4.2001 IEEE International Workshop, pp.3–14.

Heath, T., Centeno, A.P., George, P., Ramos, L. and Jaluria, Y.
(2006) ‘Mercury and freon: temperature emulation and
management for server systems’, in Proceedings of the
Twelfth Conference on Architectural Support for
Programming Languages and Operating Systems, pp.106-
116.

Hughes, C.J., Srinivasan, J. and Adve, S.V. (2001) ‘Saving energy
with architectural and frequency adaptations for multimedia
applications’, in Proc. of the 34th Annual Intl. Symp. on
Microarchitecture.

Jun, Z., Sha, E.H-M., Zhuge, Q., Yi, J. and Wu, K. (2014)
‘Efficient fault-tolerant scheduling on multiprocessor systems
via replication and deallocation’, Int. J. of Embedded Systems,
Vol. 6, Nos. 2/3, pp.216–224.

Kessler, R.E., McLellan, E.J. and Webb, D.A. (1998) ‘The Alpha
21264 microprocessor architecture’, Proceedings
International Conference on Computer Design, ICCD98.

Kong, J., Chung, S.W. and Skadron, K. (2012) ‘Recent thermal
management techniques for microprocessors’, ACM Comput.
Surv., Vol. 44, No. 3, pp.13:1–13:42.

Koval, V. and Farmaga. I.W. (1994) ‘MONSTR: a complete
thermal simulator of electronic systems’, in Proceedings of
the ACM/IEEE 31st Design Automation Conference.

Kumar, A., Shang, L., Peh, L. and Jha, N.K. (2006) ‘HybDTM: a
coordinated hardware-software approach for dynamic thermal
management’, in Proceedings of the 43rd Annual Design
Automation Conference (DAC06), pp.548–553.

Liu, Y., Yang, H., Dick, R.P. and Wang, H. (2007) ‘Thermal vs
energy optimization for dvfsenabled processors in embedded
systems’, in Quality Electronic Design, 2007. ISQED ’07. 8th
International Symposium, pp.204–209.

McGowen, R., Poirier, C., Bostak, C., Ignowski, J., Millican, M.,
Parks, W. and Naffziger, S. (2006) ‘Power and temperature
control on a 90-nm Itanium family processor’, IEEE Journal
of Solid-State Circuits, Vol. 41, No. 1, pp.229–237.

Michaud, P., Sazeides, Y., Seznec, A., Constantinou, T. and Fetis,
D. (2005) An Analytical Model of Temperature in
Microprocessors, Technical Report PI-1760/RR-5744,
IRISA/INRIA, Bibliography 153.

Mutyam, M., Li, F., Vijaykrishnan, N., Kandemir, M.T. and Irwin,
M.J. (2006) ‘Compiler-directed thermal management for
VLIW functional units’, in Proceedings of the ACM
SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES06), pp.163–172.

Nethercote, N., Walsh, R. and Fitzhardinge, J. (2006) ‘Building
workload characterization tools with Valgrind’, Invited
tutorial, IEEE International Symposium on Workload
Characterization (IISWC 2006), San Jose, California, USA,
October.

Nowroz, A.N., Cochran, R. and Reda, S. (2010) ‘Thermal
monitoring of real processors: techniques for sensor
allocation and full characterization’, Design Automation
ACM/IEEE Conference (DAC), 47th.

Pecht, M.G. et al. (1999) Guidebook for Managing Silicon Chip
Reliabilty, CRC Press, Boca Raton, FL.

Rencz, M., Szekely, V., Poppe, A. and Courtois, B. (2000)
‘Friendly tools for the thermal simulation of power packages’,
in Proceedings of the International Workshop On Integrated
Power Packaging, pp.51–54.

14 M. Ben Saad et al.

Skadron, K., Abdelzaher, T. and Stan, M.R. (2002) ‘Control-
theoretic techniques and thermal-RC modeling for accurate
and localized dynamic thermal management’, in Proceedings
of the Eighth IEEE International Symposium on High-
Performance Computer Architecture, pp.17–28.

Song, J.W., Mukhopadhyay, S. and Yalamanchili, S. (2016)
‘Amdahl’s law for lifetime reliability scaling in
heterogeneous multicore processors’, 2016 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), Barcelona, pp.594–605.

Srinivasan, J. and Adve, S.V. (2003) ‘Predictive dynamic thermal
management for multimedia applications’, in Proc. of the
2003 Intl Conf. on Supercomputing.

Srinivasan, J., Adve, S.V., Bose, P. and River, J.A. (2004) ‘The
case for lifetime reliability- aware microprocessors’,
Proceedings of 31st International Symposium on Computer
Architecture (ISCA 04).

Srinivasan, J., Adve, S.V., Bose, P. and Rivers, J.A. (2005)
‘Lifetime reliability: toward an architectural solution’, IEEE
Micro, May, Vol. 25, No. 3, pp.70–80.

Stan, M.R., Skadron, K., Barcella, M., Huang, W.,
Sankaranarayanan, K. and Velusamy, S. (2003) ‘Hotspot: a
dynamic compact thermal model at the processor-architecture
level’, Elsevier, Micro Electronics Journal: Circuits and
Systems, Vol. 34, No. 12, pp.1153–1165.

Tiwari, V., Brooks, D. and Martonosi, M. (2000) Wattch: A
framework for architectural-level power analysis and
optimizations’, in 27th Annual ACM/IEEE International
Symposium on Computer Architecture, pp.83–94.

Torki, K. and Ciontu, F. (2002) ‘IC thermal map from digital and
thermal simulations’, in Proceedings of the 2002
International Workshop on THERMal Investigations of ICs
and Systems (THERMINIC), pp.303–308.

Viswanath, R. et al. (2000) ‘Thermal performance challenges from
silicon to systems’, Intel Technology Journal, Vol. 4, No. 3,
pp.1–16.

Viswanathan, S., Ramesh, P.K. and Somani, A.K. (2009)
‘Managing the impact of on-chip temperature on the lifetime
reliability of reliably overclocked systems’, The Second
Intern Confer on Dependability.

Vladimir, S., Poppe, A., Pahi, A., Csendes, A. and Hajas, G.
(1997) ‘Electro-thermal and logi-thermal simulation of VLSI
designs’, IEEE Transactions on VLSI Systems, Vol. 5, No. 3,
pp.258–269.

Weidendorfer, J., Kowarschik, M. and Trinitis, C. (2004) ‘A tool
suite for simulation based analysis of memory access
behavior’, Proceedings of the 4th International Conference
on Computational Science, Krakow, Poland.

William, S., Saibal, M. and Sudhakar, Y. (2015) ‘Architectural
reliability: lifetime reliability characterization and
management of many-core processors’, IEEE Computer
Architecture Letters, Vol. 14, No. 2, pp.103–106.

Yi-Kan, C. and Sung-Mo, K. (2000) ‘A temperature-aware
simulation environment for reliable ULSI chip design’, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 19, No. 10, pp.1211–1220.

Zanini, F., Atienza, D., Jones, C.N., Benini, L. and De Micheli, G.
(2013) ‘Online thermal control methods for multiprocessor
systems’, ACM Trans. Des. Autom. Electron. Syst., Vol. 18,
No. 1, pp.6:1–6:26.

