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Abstract: In the optimal functioning of SoCs, two significant metrics of quality are the most 
important; life time and reliability. The context of this paper focuses on methods to increase the 
lifetime of a processor. Two methods are presented; relax point injection (RPI) and code 
structure adaptation (CSA). In RPI, a specific treatment is incorporated into the application code 
to prevent a harmful rise in the temperature of the chip. The MTTF of the processor is increased 
by 33.88% through means of an RPI method. However, the execution time of the application is 
sometimes increased by the RPI to a higher than 12%. In CSA method, the arrangement of the 
application code is regulated to improve the lifetime of the processor. The MTTF of the 
processor is increased up to 28% by CSA technique and the implementation time is maintained. 
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1 Introduction 

In the previous system-on-chip (SoC) generation, there was 
a greater power density due to the increase in complexity 
and reduced size of the feature. At the same time, power is 
becoming the major limitation of the system design. 
However, the power measurement and management 
techniques have become a necessity. In this context, to 
measure the power related in program behaviour, Chunling 
et al. (2007) presented an infrastructure based on simulation 
and physical measurement to correlate between instructions-
per-cycle and power dissipation for the each piece of code. 
On the other hand, Ayala et al. (2007) proposed a 
hardware/software approach to reduce the power of shared 
register files in embedded VLIW processors. This work is 
relies on a set of special hardware extensions that are 
controlled by the compilers of the embedded platforms. The 
results obtained show that this approach can reduce the 
power up to 60% without any performance degradation. 

The high power density results in the development of 
temperature hotspots, consequently lead to ageing in a 
variable manner, and a rise in the malfunction of the chip. 
Indeed, these hotspots can cause some processor errors. 
However, the processor errors can be classified in two 
categories. First, soft errors due to electrical noise or 
external radiation. These errors do not fundamentally 
damage the microprocessor and are not viewed as a long-
term reliability concern. Second, Hard errors are caused by 
defects in the silicon or metallisation of the processor 
package. They will result in permanent processor failure. 
Then, hard errors directly determine long-term processor 
reliability. Furthermore, Hard failures can be divided into 
extrinsic failures and intrinsic failures (Pecht et al., 1999). 
Indeed, extrinsic failures are caused by process and 
manufacturing defects. Such as, contaminants on the 
crystalline silicon surface and surface roughness which can 

cause adielectric breakdown (Srinivasan et al., 2004). Other 
extrinsic failures include short circuits and open circuits in 
the interconnects due to incorrect metallisation. Intrinsic 
failures, however, depend on the processor’s materials, 
related to the processor wear-out. Some examples of 
intrinsic failures include time dependent dielectric 
breakdown (TDDB) in the gate oxides, electromigration and 
stress migration in the interconnects, and thermal cycling. 
We will describe these errors in the section 3.2.4 with the 
RAMP model, which is the only processor models intrinsic 
failures. However, not only the functioning of the system is 
impacted through temperature gradients and hotspots, but 
the processing of the circuit also becomes unpredictable and 
the lifetime of the chip is also impacted. As a result, efforts 
are being made to improve the chip lifetime and prevent 
harm caused by increased temperatures. In fact, thermal 
monitoring and management, and lifetime improvement 
techniques are deployed. For example, the dynamic thermal 
monitoring methods adopted by Intel and AMD, which 
conduct the corrective actions required to regulate the 
temperature of the on-chip (McGowen et al., 2006). In 
many cases, the corrective action power off the system or 
lower the voltage and frequency of the system, resulting in 
lower performance efficiency. 

In this paper, we propose the techniques of relax point 
injection (RPI) and code structure adaptation (CSA) to 
improve the lifetime of the microprocessor. The cost-
efficient techniques adopted for the modification of 
application code and regulations of microprocessor 
performance are of two types. The first one includes the 
implantation of a specific treatment by the RPI into a 
particular location in the application code to prevent 
damage of the microprocessor by rising in the temperature. 
The second, the arrangement of the application code is 
enhanced by CSA to determine the most efficient code 
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which results in processor main time to failure (MTTF) 
increase. The remaining paper is divided into the following 
parts. Section 2 describes the work associated. In Section 3, 
we define the tools of profiling and simulation utilised for 
processor MTTF and thermal profile calculation and 
approximation. In Section 4 we will present a relax point 
injection (RPI) technique to improve processor MTTF and 
we will analyse the results. And in Section 5 the code 
structure adapter (CSA) technique will be presented and 
explained. Additionally, we will propose a simulation 
process based on the Pilot Application (PApp) to determine 
the effectiveness of our techniques and the results will be 
assessed. In the end, a conclusion and a work for the future 
will be discussed. 

2 Related works 

Higher temperature makes the processor much more 
vulnerable to various failure mechanisms such as electro-
migration, stress migration and dielectric breakdown (Blish 
and Durrant, 2000). In fact, a 10°C–15°C increase in 
temperature can reduce the mean time to failure of a device 
by half (Viswanath et al., 2000). Further, monitoring 
temperature and reducing hotspots are critical for achieving 
reliable and efficient operation of complex systems on a 
chip. In this context, to evaluate and control high 
temperature in processor, several methods and techniques 
are deployed. We divided this section into two parts. In the 
first one, we mentioned some temperature modelling 
techniques. In the second one, we described different 
thermal management and reliability improvement 
techniques. 

2.1 Thermal modelling 
To evaluate thermal variations on chip, the circuit designers 
insert within chip thermal sensors that acquire temperatures 
at few selected locations. The acquired temperatures are 
then used to guide runtime thermal management techniques. 
In this context (Nowroz et al., 2010), temperature is 
characterised by signals of real processors and devise 
thermal sensor allocation techniques, and devise signal 
reconstruction techniques that fully characterise the thermal 
status of the processor using the limited number of 
measurements from the thermal sensors. For modelling a 
temperature in chip, several methods and techniques are 
deployed. First, works in Yi-Kan and Sung-Mo (2000), 
Torki and Ciontu (2002), Rencz et al. (2000), Vladimir et al. 
(1997), Koval and Farmaga (1994) and Batty et al. (2002) 
are focus in describing the techniques for modelling 
localised heating within a chip due to different power 
densities of various blocks, but none of these tools are easily 
adapted to architectural exploration. Skadron et al. (2002) 
proposed a simple model for tracking temperature on a 
perunit level, but it ignored the effect of lateral heat 
diffusion. The analytical model in Michaud et al. (2005) is 
based on an explicit solution to the heat equation. Moreover, 
some thermal models are intended to be used at the full-

system level. Indeed Heath et al. (2006) proposes a system-
level temperature emulation suite that uses offline 
calibration and the online update of per-component 
utilisation information to calculate the temperature of the 
systems. Choi et al. (2007) employs computational fluid 
dynamic (CFD) modelling of rack-mounted servers. 
Although, both tools are considered the microprocessor yet 
there is only one component within the system and hence no 
localised information is obtained, which is essential for 
architectural studies. 

2.2 Thermal management and reliability 
improvement techniques 

2.2.1 Thermal management techniques 
Techniques to overcome the thermal problems became 
necessary, among these, the dynamic thermal management 
techniques (DTM). DTM measure a microprocessor 
temperature either directly by the circuit sensors or 
indirectly with the performance analysers, and these 
measures will be used to modify the microprocessor 
configuration parameters in order to maintain its 
temperature below a given threshold (Kong et al., 2012). In 
addition, multiple thermal control methods for 
microprocessors and shows trade-offs between temperature 
profile, frequency settings, power consumption and 
implementation complexity are proposed in Zanini et al. 
(2013). Design-time thermal optimisation techniques for 
embedded systems are proposed in Liu et al. (2007). This 
technique can be used in the system design phase. 
Furthermore, Intel and AMD, the leading microprocessor 
vendors, had dynamic thermal monitoring techniques that 
took necessary corrective action to maintain on-chip 
temperature (Blish and Durrant, 2000). Unfortunately the 
corrective actions, in most cases, shut down the system or 
reduced system voltage and frequency, leading to 
considerable performance degradation. In other hand, 
software can also play an important role in identifying and 
eliminating thermal hotspots. This is particularly true for 
compiler-scheduled very long instruction word (VLIW) data 
paths. Indeed, Mutyam et al. (2006) has focused on a 
compiler-based approach to make the thermal profile more 
balanced in the integer functional units of VLIW 
architectures. For balanced thermal behaviour and peak 
temperature minimisation, the author in Mutyam et al. 
(2006), propose a technique based on load balancing across 
the integer functional units with or without rotation of 
functional unit usage. Also, while traditional task 
scheduling techniques have focused on performance 
improvement, without regardless to temperature issues, 
modern techniques, such as proposed in Kumar et al. 
(2006), managed the temperature through the software- 
hardware cooperation. Extensive research, like 
Buyuktosunoglu et al. (2003), Hughes et al. (2001) and 
Srinivasan and Adve (2003) has gone into techniques that 
can maximise energy and thermal performance by 
exploiting architectural features and adaptation capabilities. 
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2.2.2 Reliability and lifetime improvement techniques 
The higher temperature, performance, energy, and lifetime 
reliability of processor are directly related. In fact, many 
thermal managing and reliability techniques are highlighted. 
In this context, a thermal management technique 
classification, mainly in temperature monitoring and 
thermal reliability/security is suggested in Kong et al. 
(2012). The first one, requirement for dynamic thermal 
management (DTM), included temperature estimation and 
sensor placement techniques for accurate temperature 
measurement or estimation. The second one dealt with the 
problems of temperature-dependent reliability modelling, 
dynamic reliability management (DRM), and malicious 
codes that specifically cause overheating. More, Coskun et 
al. (2009) presented a framework for evaluating the 
effectiveness of a number of mechanisms of thermal control 
(job scheduling, job migration, dynamic voltage and 
frequency scaling) in various combinations, and it presented 
effective new policies for managing thermal effects. 
However, the authors in Coskun et al. (2009) show that the 
techniques that are nearly identical in performance, power, 
and even peak temperature can differ by a factor of two in 
an expected processor lifetime, with a performance cost of 
less than 4%. The authors in Song et al. (2016), study the 
lifetime reliability consequences of heterogeneous multicore 
processors. They present the lifetime reliability theoretical 
models of multicore processors based on Amdahls Law, 
including compact thermal estimation. Particularly, this 
work shows that there’s a strong correlation between 
heterogeneous multicore processors and device aging. 
However the authors in Viswanathan et al. (2009) analysed 
the impact of reliable overclocking on on-chip temperature. 
Reliable overclocking, on an average, achieves 35% 
increase in performance over a non-overclocked system. 
Although reliable overclocking mechanisms facilitated 
improved performance, but a major hurdle in realising them 
was their impact on on-chip temperature. As the systems 
operated faster, on-chip temperatures quickly reached and 
exceeded the safe limits. This led to system crash and 
caused a serious threat to the lifetime reliability of the 
system. When a thermal throttle was applied, the 
performance drops by 25%. Other, a non-overclocked 
system has a longer lifetime, of about 30 years, as its onchip 
temperature does not exceed 347K. However, a reliably 
overclocked system has a much shorter lifetime of about 9 
years (Viswanathan et al., 2009). 

To improve multiprocessor system reliability, Jun et al. 
(2014) proposed some novel static fault-tolerant scheduling 
techniques. Indeed, the goal of fault-tolerance is to avoid the 
failure of the overall system when some of its subsystems 
fail. In fact, Jun et al. (2014) studied a static scheduling 
algorithm and propose an ILP formulation for optimally 
fault-tolerant scheduling. Buyuktosunoglu et al. (2003) 
demonstrated that simply balancing power consumption and 
decreasing maximal on-chip temperature are not sufficient 
to significantly improve the processor lifetime  
reliability. However, to improve the processor reliability,  
 

Buyuktosunoglu et al. (2003) proposes that a processor core 
should be set to different frequency according to its power 
consumption. Further, Basoglu et al. (2010) proposes a 
technique to model NBTI degradation with dynamic 
changes in temperature, voltage, and frequency. Based on 
this model, the authors utilise this knowledge of the guard 
band and a predictive model to absolutely improve 
processor power consumption and lifetime without 
impacting the processor performance against negative bias 
temperature Instability (NBTI) degradation. By this 
approach the authors improve the lifetime of 8-core 
processor at the 45 nm technology by two years and saves 
up to 16% of the dynamic energy consumed. Also, the 
authors in William et al. (2015) present a lifetime reliability 
characterisation of many-core processors based on a full-
system simulation of integrated microarchitecture, power, 
thermal, and reliability models. This work present two 
variance reduction technique for proactive reliability 
management: proportional dynamic voltage-frequency 
scaling (DVFS) and coordinated thread swapping. 
Additionally, dynamic reliability management solutions are 
often adopted in multi-core systems to mitigate aging and 
wear-out effects. The authors in Bolchini et al. (2016) 
analyse the effects on reliability of a set of classical policies, 
on a multi-core architecture, by systematically varying the 
related parameters, such as the number of spare cores to be 
selected, in the whole value space. The reported 
experimental results of this work show that the peculiarities 
of both the architecture and the workload have to be taken 
into account in the selection of the most proper runtime 
policy. 

3 Simulation tools 

In recent years, lifetime and reliability become important 
quality metrics in the high-performance SoCs. In order to 
estimate and increase the lifetime (MTTF) of 
microprocessor, we propose a profiling and simulation tools 
to understand the behaviour of application code, and 
estimate the thermal profile and MTTF of the 
microprocessor. 

3.1 Profiling tool 
Usually, to optimise its application, a programmer is 
interested to know the evolution and the nature of the code 
and mapping with different parameters. For that, profiling 
tools and analysis are extremely important for 
understanding the behaviour of the program. Valgrind is a 
suit of a debugging and profiling tool. In our method, we 
used the profiler callgrind (Nethercote et al., 2006) of 
Valgrind tools. It records the call history among functions in 
programs run and the collected data consisting in the 
number of instructions executed, their relationship to source 
lines, the caller/callee relationship between functions, and 
numbers of such calls (Weidendorfer et al., 2004). It can 
produce a callgraph of fonctions. 



 Application source code modification for processor architecture lifetime improvement 5 

3.2 Thermal and MTTF estimation tools 
In this section, we present our tool to assess and calculate 
MTTF in SoC. Our tool represents the combination between 
the power model from the Wattch simulator (Tiwari et al., 
2000), the thermal model of the HotSpot simulator  
(Stan et al., 2003) and the lifetime reliability model from 
RAMP (Srinivasan et al., 2004) as shown in Figure 1. The 
target at processor architecture in our simulation tools is the 
third generation superscalar Alpha 21264 Ev6 
microprocessor. 

3.2.1 Alpha 21264 microprocessor 
The Alpha 21264 Ev6 is the third generation superscalar 
Alpha microprocessor with out of-order and speculative 
execution. They are used for performance optimisation. The 
instructions of Alpha EV6 contain integrated and floating 
point instructions, which can be classified into arithmetic, 
comparison, bit-level, load and store, conditional move, 
branch, and conversion classes (Kessler et al., 1998). The 
Alpha Ev6 also includes a high-bandwidth memory system 
to quickly deliver data values to the execution core, 
providing robust performance for many applications, 
including those without cache locality. Figure 2 shows that 
the Alpha EV6 functional units are represented by eighteen 
blocks in the Ev6 floorplan. With his functional units and 
his dynamic execution techniques, Alpha 21264 is 50% to 
200% faster than its predecessor for many applications. 

3.2.2 Power model of Wattch simulator 
Wattch () is an accurate, architecture level power tool 
embedded within the SimpleScalar simulator. SimpleScalar 
is a set of tools that model a virtual computer system with 
CPU, Cache and Memory Hierarchy. The power model 
keeps track of which units per cycle and records the total 
energy consumed for an application. Indeed Wattch 
calculates instantaneous power at every cycle, and outputs 

the total power accumulated over a simulated period of time 
and the average power. Wattch uses a modified version of 
simplescalar sim-outorder to collect results (Tiwari et al., 
2000). Wattch has three power information type cc1, cc2, 
cc3. They are built from the architectural functional unit 
power information. 

In our work we use a third one cc3 to calculate the 
Alpha 21264 microprocessor power for each application. 
Or, cc3 is non-ideal conditional clocking. It shows models 
power leakage by assuming that an idle unit consumes only 
10% of its maximum power for a cycle in which it is 
inactive (Tiwari et al., 2000). It is the most real. The 
instantaneous power traces provided by the Wattch power 
tool is used to calculate the temperature in HotSpot 
simulator. 

3.2.3 Thermal model of HotSpot simulator 
HotSpot is an architecture level simulator, fast enough to 
allow for the simulation of long dynamic temperature traces 
on the order of seconds, it’s designed to calculate 
temperature profiles which are accurate for the experiments 
at the architecture level. It is one of the thermal simulators 
widely used in the computer architecture community. It is 
based on an equivalent circuit of thermal resistances and 
capacitances that correspond to microarchitecture blocks 
and essential aspects of the thermal package (Stan et al., 
2003). 

Basically, HotSpot aims to evaluate the application 
thermal effect on the microprocessor. In that, it can be 
integrated with a power/performance architectural 
simulators, like Wattch and SimpleScalar, to obtain the 
power information related to each application. To convert 
power into temperature of each functional unit HotSpot 
proceeds in two stages. In the first one, the conversion is 
performed until the temperature becomes stable. In the 
second one, the temperature increases by continuously 
converting the power into temperature based on the stable 
temperature. 

Figure 1 MTTF and thermal simulation tool (see online version for colours) 
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Figure 2 Alpha 21264 Ev6 processor floorplan (see online 
version for colours) 

 

3.2.4 Reliability model of RAMP 
Reliability-aware microprocessors (RAMP), developed by 
researchers at the IBM T.J. Watson Research Center and the 
University of Illinois Urbana-Champaign, is the first 
application-aware architecture-level methodology that use 
the analytic models for important failure mechanisms to 
evaluate the microprocessor lifetime and reliability 
(Srinivasan et al., 2004). It is based on the current 
temperature, utilisation, and power profile of 
microprocessor, provided by the power and thermal 
simulators, to calculate its lifetime. The MTTF represents a 
microprocessors’ expected average lifetime and it is based 
on five processor failure mechanisms: 

• Electromigration (EM): Occurs in aluminum and 
copper interconnects due to the mass transport of 
conductor metal atoms in the interconnects. 
Electromigration has an exponential dependence on 
temperature. The MTTF associated at this mechanism 
is described by the Black model. 

( )
Ea

n KT
critMTTF A J J e

⎛ ⎞
⎜ ⎟− ⎝ ⎠= −  (1) 

where A is a constant, J is the current density in the 
interconnect, Jcrit is the critical current density required 
for electromigration, Ea is the activation energy for 
electromigration, K is Boltzmann’s constant, T is 
absolute temperature in Kelvin, and n is an empirical 
constant (Srinivasan et al., 2004). 

• Stress migration (SM): Similar to electromigration, 
stress migration is a phenomenon where the metal 
atoms in the interconnects migrate. It is caused by 
mechanical stress due to differing thermal expansion 
rates of different materials in the device. 

0
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n KTMTTF A T T e

⎛ ⎞
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where T0 is the stress free temperature of the metal 
(metal deposition temperature), and T is the operating 
temperature (Srinivasan et al., 2004). 

• Time-dependent dielectric breakdown (TDDB): is the 
gate dielectric’s gradual breakdown which leads to 
transistor failure. 
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where a, b, X, Y and Z are fitting parameters, and k is 
Boltzmann’s constant (Srinivasan et al., 2004). 

• Negative-bias temperature instability (NBTI): an 
electrochemical reaction that upwards transistor 
threshold voltage which in return leads to processor 
failure because of timing constraint violations. 
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where A, B, C, D, and β are fitting parameters, and k 
the Boltzmann’s constant (Srinivasan et al., 2004). 

•  Thermal and cycling (TC): it is permanent damage 
accumulated every time there is a cycle in temperature, 
eventually leading to failure. There are two types of 
TC; large cycles which occur at a low frequency 
because of changes like powering up and down, and 
small cycles which occur at a high frequency because 
of changes in work-load. 

( )q
ambient

AMTTF
T T

=
−

 (5) 

where T is the average temperature of the structure, 
Tambient is the ambient temperature and q is the 
Coffin-Manson exponent (Srinivasan et al., 2004). 

The MTTF of the microprocessor, named here MTTFp, is 
the inverse of the total failure rate of the microprocessor 
named λ. It is the sum of the failure rates of the individual 
structures due to individual failure mechanisms. 

1 1

1 1
p j k

ili l

MTTF
λ λ

= =

= =
∑ ∑

 (6) 

where λil the failure rate of the ith structure due to the lth 
failure mechanism (Srinivasan et al., 2004). 

3.3 Simulation frameworks 
To configure the three simulators, we have to set the 
different models with the Alpha 21264 EV6 configuration 
parameters. In fact, we have to initialise Lifetime Reliability 
Model with the different EV6 floorplan functional unit to 
calculate failures in each one. Hotspot uses the Alpha 21264 
Ev6 floorplan that is different from Wattch and it has 
eighteen functional units in floorplan. In Wattch some 
functional units have just the same single value and some 
units include the operations of integer and floating point. 
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Indeed, we use the power transferable formula in Wattch to 
correspond the same floorplan in Hotspot as shown in  
Table 1. 

Table 1 Power formula in hotspot 

Alpha EV6 functional 
blocks (HotSpot) Functional blocks formula (Wattch) 

L2 0.72 ∗ dcache2_power/cycle_count 
L2_left 0.14 ∗ dcache2_power/cycle_count 
L2_right 0.14 ∗ dcache2_power/cycle_count 
Icache Icache_power/cycle_count 
Dcache Dcache_power/cycle_count 
IntExec Ialu_power/cycle_count 
DTB Dtlb_power/cycle_count 
Bpred Bpred_power/cycle_count 

FPMul 0.52 ∗ falu_power/cycle_count 

FPAdd 0.48 ∗ falu_power/cycle_count 

IntQ 0.55 ∗ window_power/cycle_count 

FPQ 0.45 ∗ window_power/cycle_count 

FPMap 0.53 ∗ rename_power/cycle_count 

IntMap 0.47 ∗ rename_power/cycle_count 
LdStQ lsq_power/cycle_count 

IntReg 0.59 ∗ regfile_power/cycle_count 

FPReg 0.41 ∗ regfile_power/cycle_count 
ITB Itlb_power/cycle count 

The power model in Wattch and the RAMP model are built 
by cycle. For every cycle, RAMP and Wattch will collect 
and compute failure mechanisms and power consumption 
for each Alpha Ev6 functional units. Moreover, the input of 
Hotspot consists of the unit power of functional unit and the 
increasing temperature of the cycle is very low. That’s why 
to synchronise the models values exchange; we decided to 
collect all the values of each block every 10,000 clock 
cycles. 

4 Relax point injection 

The consequences of drastic temperature increase not only 
deteriorate the system efficiency, but also shorter the life 
time of the processor. Keeping this in view, there were 
various procedures developed for the maintenance of onchip 
temperature. To solve this problem, we used a software 
solution to increase processor lifetime and to maintain its 
temperature. This solution does not have an adverse effect 
on the processor’s efficiency. Yet it bargains between the 
performance and MTTF by an application code. 

4.1 Methodology 
Our technique goal is to modify (precisely adjust) the 
application code to improve the microprocessor lifetime. 

The flow chart in Figure 3 displays the fundamental concept 
of this process. 

Initially, the selected application is profiled with the aim 
of requiring some code information’s and searching a hot 
spot code. This part of the code is the section which 
contains a large number of instructions and it is also the 
cause of temperature increase in the system. Following the 
first step, a hot spot code is then altered for an increment in 
the MTTF. The alterations lead to the simulation of a new 
code, which is then tested for observation. Finally, if the 
aims don’t meet, the hot spot code is further altered success. 
It is observed that the modification procedure follows 
various paths. In a particular section of the code, a loop that 
increases a counter is introduced using relax point injection 
(RPI). The temperature of the processor and its resources is 
directly influenced by RPI which affects its MTTF. One 
step that is crucial to this process is the determination of the 
place of insertion of RPI in the code. In order to ensure 
proper insertion, the data gathered from profiling and the 
quantity of instructions and their execution time are noted. 

Figure 3 Profiling and modifying the application code to 
improve the processor lifetime (see online version  
for colours) 

 
 

The hot spot code affects the CPU by increasing its 
temperature and thereby influencing the MTTF. It is 
observed that the processor undergoes a temperature 
increase more rapidly than a decrease. In order to avoid that, 
the RPI insertion should be carried out prior to each target 
code in the entire application code. 

The total rate of application instruction divided by 3 is 
called RPIsize and a characteristic feature of RPI. It can be 
calculated using the following equation: 
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3
TNI InsRRPIsize ×

=  (7) 

The total number of the application instruction is denoted by 
TNI, and the rate of instruction to be added is represented 
by InsR. The division by 3 is carried out due to the fact that 
every loop iteration contains three instructions. The 
example given in Figure 4 can be used to further elaborate 
this technique. An outline is created of the benchmarks of 
Dijkstra Mibench (Guthaus et al., 2001) with a callgrind 
profiler (Nethercote et al., 2006). After this, the part of code 
having the greatest application instruction number is 
identified. The dijkstra (i, j) function, described in Figure 
4(a), was termed in the loop, and in Figure 4(b) is 
constituted by 96.75% of the overall instructions on the 
application. RPI inserted in the target is following this step. 

The RPI in the given example was found to have an RPIsize 
10,000 loop iteration, as described in Figure 4(c). 

4.2 Experimentation results 
The assessment of the RPI technique through MTTF is the 
aim of this experiment. To achieve this goal, one loop 
counter incrementing is inserted and its size has increased 
by three times (InsR = 5% then 10% then 20%) in all of the 
mibench benchmarks i.e. Basicmath, Qsort, Adpcm_encode, 
Adpcm_decode, Dijkstra, FFT and Rijndeal to obtain 
various forms of these (version InsR 5%. InsR 10% and 
InsR 20%). We analysed the variations of MTTF, Maximum 
Temperature, CPI and Cycle Number metrics compared to 
the RPIsize for each benchmarks as shown in the Figure 5 
and Table 2. 

Figure 4 The Dijkstra Code example, (a) profiling and target code detection (b) kcachegrind call graph (c) relaxing point injection in 
Dijkstra code (see online version  
for colours) 

 
(a) (b) (c) 

Figure 5 MTTF, CPI and maximum temperature variation rate (see online version for colours) 
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Table 2 MTTF, temperature, CPI, RPIsize and cycle numbers variations  

Benchmarks Basicmath Qsort Dijkstra Adpcm_encode Adpcm_decode FFT Susan Rijndeal 

Instructions 
number 

VO 6,374,690,678 515,237,860 255,620,666 605,872,292 498,397,968 915,640,054 395,124,652 391,487,888

RPI_5% 106,244,845 8,587,298 4,260,345 10,097,872 8,306,633 15260667 6585410 6524798 
RPI_10% 212,489,690 17,174,596 8,520,689 20,195,744 16,613,266 30521335 13170821 13049596 

RPIsize 

RPI_20% 424,979,380 34,349,191 17,041,378 40,391,487 33,226,532 61042670 26341643 26099192 
VO 12.1 26.06 17.32 18.77 30.3 9.8 28.9 24.6 

RPI_5% 17.33% 4.83% 5.99 % 17.66% 17.01% 4.80% 7.30% 5% 
RPI_10% 25.19% 10.44% 13.98% 24.00% 23.18% 7.10% 9.10% 7.20% 

MTTF 

RPI_20% 33.88% 22.59% 20.87% 28.67% 27.77% 17.80% 14.50% 19.30% 
VO 1.0253 0.7057 0.5264 0.8042 0.7172 0.7717 0.5784 0.4874 

RPI_5% –3.14% –5.13% –1.67% –3.77% –3.00% –0.70% –2.04% –1.11% 
RPI_10% –6.23% –6.99% –3.29% –7.08% –5.69% –1.00% –3.53% –2.50% 

CPI 

RPI_20% –11.60% –9.22% –6.08% –12.63% –10.28% –1.58% –7.14% –4.97% 
VO 86.3 70.62 76.24 67.7 70.5 92.2 72.33 70.55 

RPI_5% –2.73% –0.94% –2.28% –3.29% –2.20% –2.06 –2.10% –2.12% 
RPI_10% –4.15% –1.54% –2.68% –5.00% –3.44% –3.33 –3.40% –3.12% 

Temperature 

RPI_20% –5.83% –2.38% –3.18% –6.77% –5.09% –5.39 –4.40% –4.68% 
VO 6,502,184,491 365,640,223 134,547,295 487,121,323 357,351,343 652,089,198 225,500,827 190,828,182

RPI_5% 2.01% 2.33% 3.09% 2.85% 2.76% 2.10% 2.15% 2.11% 
RPI_10% 3.74% 4.79% 6.28% 5.70% 5.52% 3.46% 3.45 3.30% 

Cycle Nbr 

RPI_20% 7.19% 9.71% 12.66% 11.40% 11.04% 532%. 4.32% 4.66% 

 
These variations confirm our idea that when we insert relax 
point we increase MTTF in all the benchmarks. 

As matter of fact, MTTF increases with the size of the 
relax point. For example the Basicmath MTTF are increased 
by 17.33%, 25.19% and 33.88% for relax point size 
increased by 5%, 10% and 20% respectively. As shown in 
Figure 5, we note that the variation of MTTF has a direct 
relation to CPI rate and Maximum Temperature decrease, 
but if we take the example of Adcpm_encode benchmarks, 
when the CPI rate evolves from 3.77% to 12.63%, MTTF 
increased from 17.66% to 28.67% for relax point size 5% 
and 20%, respectively. Also, temperature dissipation 
evolves from 3.29% to 6.77% for the same example. When 
we decrease the CPI and Maximum Temperature values we 
increase MTTF. Consequently, we note that the execution 
time for each benchmark increases as shown, in Figure 6. 
Indeed, when we insert a third type of relax point (InsR 
20%) in Dijkstra, a 12.66% increase was seen in the cycle 
number. In fact, these evolutions are normal because our 
idea consist to add instructions in the application despite 
these instructions are loops with an empty body. 

5 Code structure adaptation 

RPI can be described as a software solution. Its advantages 
include increasing the MTTF of the system and lowering the 
processor’s highest temperature without extra costs. It also 
has disadvantages, such as the increase in the execution 
time of the application. A new technique is suggested, in 

this section, based on the modification of source code 
structure, so that these disadvantages con be overcome. 

Figure 6 Cycle number increasing (see online version  
for colours) 

 

5.1 Methodology 
Based on the RPI results, we note that the processor 
temperature and MTTF are associated to the execution 
process. Indeed, if the processor executes basic instructions 
(like an empty loop) before the hot spot code, its 
temperature decreases and its MTTF improves. This 
observation has pushed us to find a new technique that 
reorganises the application code to improve the processor 
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MTTF. In fact, modification of the application code 
structure to increase the MTTF of the processor is the major 
theme of this technique. First, based on code statistics, we 
deconstructed the application code in independent sections. 
And, we classifed these sections by their instruction 
number, then, we adapted their order among one another in 
order to obtain an optimum MTTF code structure for the 
processor. ‘Adapt’ means changing the position of 
independent code sections between themselves, without 
adding a new treatment, contrary to RPI technique. The 
method discussed is called ‘code structure adaptation’ 
(CSA). 

Unlike RPI technique, this technique does not alter the 
execution time of the application. Four benchmarks are 
selected to assess the CSA: Basicmath, FFT, Dijkstra and 
Qsort. These bookmarks are deconstructed by the CSA into 
three categories: less, medium and higher. The instruction 
number of every target section is the basis for this 
classification. Higher in the hot spot section with a bigger 
instruction number, less define the section with a smallest 
instruction number and medium for the medium one. 
Following this step, the structure of the benchmark code is 
rearranged and three versions of the application are 
achieved: 

• Vorg version: is the original application version, it must 
be started with the medium section, then follow by the 
less section and finished with the higher one. 

• Vd version: is the modified application version where 
we put the higher section of code at the top of 
application code, then follow by the medium section 
and finally the less one. 

• Vi version: is another modified version of the 
application, where we put the less section of code at the 
top of application code, then follow by the medium 
section and finally the higher one. These can be seen in 
Figure 7. 

Figure 7 Application Code Decomposition (see online version 
for colours) 

 

5.2 Experimentation and discuss results 
In this step we focus on MTTF values relative to each 
version of the benchmarks and we select the optimal code 
structure. The experimentation goal is to analysis the effect 
of the hot spot section position in the application code on 
the processor MTTF. For the Vi version, hot spot section is 
put in the last position of code unlike Vd version. We noted 
that the Vi version for each benchmark gave the highest 
processor MTTF as shown in Figure 8. As an example, in 
Qsort benchmark, we-have more than 14 % Increase of 
MTTF between Vorg and Vi, and more than 35 % between 
Vd and Vi. 

Figure 8 Alpha EV6 MTTF for each application versions  
(see online version for colours) 

 

Indeed, if the execution process started with the hot spot 
instructions, the processor lifetime will be severely affected. 
In contrast, the version Vi make the system more safe. In 
this way, we can deduce, by putting the simplest treatment 
in the top of application code and the most complex one at 
the end, the processor will be safer. Indeed, if the processor 
executes the higher section in first position, its temperature 
has rapidly increased. Moreover, knowing that the processor 
undergoes a temperature increase more rapidly than a 
decrease, the effect in the Vd version of medium and less 
section will be more important on the processor, because 
they will be executed depending on the temperature which 
is already high because of the hot spot section. In addition, 
the CSA doesn’t change neither the performance of the 
processor nor the cycle numbers. Which is normal because 
using CSA we don’t add any new instructions in the 
application code; we only reorganised its structure. 
Unfortunately, the identification of the independent code 
sections limited by the CSA technique. Therefore, structural 
adaptation is not apparent. The problem can be further 
elaborated through discussing the example of matrix 
multiplication. The code can be broken down into three 
categories: initialisation, multiplication and results. 
However, the code has a disadvantage. It cannot be altered 
due to the requirement of upper section result by every 
section. 

Srinivasan et al. (2005) describes in detail the dynamic 
reliability management (DRM) technique. With DRM, the 
designers can meet reliability targets by using processor 
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adaptation to reduce processor temperature, current density, 
voltage, and/or frequency as needed at runtime. Indeed, the 
authors studied an oracular control algorithm for processor 
adaptations and evaluating its performance on processors 
with different reliability-qualification cost. Particularly, for 
an application running on a processor with a specific 
reliability-qualification cost, it selected the configuration 
that gave maximum performance and met the required 
MTTF target. So we deduct that the effectiveness of this 
method depends essentially on the processor architecture 
and the application domain. Indeed the authors use the 
maximum constant temperature the processor can run at 
while meeting the target MTTF, and the results have shown 
that for different processor configurations with a 
temperature <100°C, the performance can be reduced from 
0 to 30%. Its results differ from one application to another. 
However, our methods (RPI and CSA) are a software 
techniques. Specifically, we modify the application’s source 
code to increase the MTTF while maintaining a fixed 
processor configuration. 

Like mentioned before, we used the Alpha 21264 
microprocessor in the simulation and its operating 
temperature is 100°C. in this case, we increased the MTTF 
by more than 35% without any loss of performance in CSA 
method. Also, we obtained average 12% MTTF increase 
with RPI method. Based on these results, our methods offer 
an interesting solution for the developer to increase the 
reliability and the lifetime of the processor with a lower cost 
and fixed configuration. 

5.3 Pilot application process 

5.3.1 Simulation process 
In this section we propose a simulation process to overcome 
of the CSA limitation. During this simulation process, a full 
application takes the place of the section of code and a 
family of independent benchmarks replace a full application 
in CSA technique.The main objective of this part of work is 
to analyse the effect of the execution behaviour of the serial 
applications on the MTTF. Then, we test and validate the 
efficiency of the CSA method. For that, we use a Pilot 
Application (PApp) in this execution process. The 
formation of a (PApp) is the main purpose. The principles 
of the PApp must contain: 

1 the PApp must be built by an independent application 

2 the origin family of the applications must be the same 

3 the size and thermal profile of the applications must 
vary (maximum temperature). 

5.3.2 Simulation results 
The key criterion in the PAdd realisation is the maximum 
temperature of processor relative for each benchmark. 
Indeed, we categorise the applications on the basis of 
temperature influence (maximum temperature) as shown in 
Figure 9. The benchmark with a higher temperature is 
considered a ‘hot spot application’. For each application 

family, the execution order of the applications is altered in 
every PApp form. And in the end, a number of PApp 
versions are executed and the processor MTTF is calculated 
for each of these. We build 18 PApp for three families, as 
shown in Table 3: 

1 Mibench: 
• Automative :Basicmath, Qsort and Susan 
• Telecomm: FFT, CRC32 and Adpcm encode. 

2 SPEC2000 CINT: 175.vpr, 164.gzip and 256.bzip2. 

Knowing that the processor MTTF is strongly related to its 
temperature, in this experiment step we will be interested in 
the influence of position of ‘hot spot application’ into the 
execution process on the processor lifetime. For that, first, 
for each application family: Basicmath, FFT and 175.vpr, 
present a ‘hot spot application’. Indeed the maximum 
temperature generated by each one is respectively 86°C, 
92°C and 85°C. Changing the position covered by each of 
them in their respective families can modify their influence 
on the processor temperature and consequently MTTF. 

Figure 9 Alpha Ev6 maximum temperature for each benchmarks 
family (see online version for colours) 

 

Second, we elaborate the execution process versions (PApp) 
presented in Table 3. For each PApp the position of the hot 
spot benchmark is changing, for example in version 4 it is 
executed in the last position unlike to version 1. After the 
simulations step, Figure 10 presents the Alpha Ev6 
processor MTTF for each version of PApp for each 
benchmarks family. Based on these results, we note a 
significant difference of MTTF between these PApp 
versions. It varies between 8% and 28%. Also we notice 
that the version 4 of each benchmarks family have a higher 
MTTF. In fact, the processor is more safe with a version 4 
than version 1. 

Certainly these results confirm the effectiveness of the 
CSA technique. If the processor executes the hot spot 
treatments in the last of the execution process, the hot spot 
influence over its lifetime is consequently decreased. And 
we can conclude that, during its execution, if the application 
increases the temperature gradually (version 4) until these 
maximum values, these make a processor safer. 
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Figure 10 Alpha Ev6 MTTF of each Pilots Application (see online version for colours) 

 

Table 3 PApp versions for each benchmarks family 

Benchmarks T Max PApp Version PApp Name 

FFT-CRC32-Adpcm_encode PApp Tel.1 FFT 92°C 
FFT-Adpcm_encode-CRC32 PApp Tel.2 
Adpcm_encode -FFT-CRC PApp Tel.3 CRC32 76°C 

Adpcm_encode-CRC32-FFT PApp Tel.4 
CRC-FFT-Adpcm_encode PApp Tel.5 

Telecomm 

Adpcm_encode 67°C 
CRC-Adpcm_encode-FFT PApp Tel.6 

Basicmath-Qsort-Susan PApp Aut.1 Basicmath 86°C 
Basicmath-Susan-Qsort PApp Aut.2 
Susan-Basicmath-Qsort PApp Aut.3 Qsort 70°C 
Susan-Qsort-Basicmath PApp Aut.4 
Qsort-Susan-Basicmath PApp Aut.5 

Mibench 

Automative 

Susan 69°C 
Qsort-Basicmath-Susan PApp Aut.6 

175.vpr-164.gzip-256.bzip2 PApp Spec.1 175.vpr 85°C 
175.vpr-256.bzip2-164.gzip PApp Spec.2 
256.bzip2-175.vpr-164.gzip PApp Spec.3 164.gzip 71°C 
256.bzip2-164.gzip-175.vpr PApp Spec.4 
164.gzip-175.vpr-256.bzip2 PApp Spec.5 

Spec2000 

256.bzip2 68°C 
164.gzip-256.bzip2-175.vpr PApp Spec.6 

 
Finally, the application designers can use the data from our 
technique CSA, confirmed by the simulation process PApp, 
to produce efficient applications that does not degrade the 
performance and does not reduce the processor lifetime. 

6 Conclusions 

The increased complexity and the decreased feature  
sizes have caused a very high power density in the last 
generation of system-on-chip (SoC). This situation 
generates temperature hotspots, which in turn may lead to a 
non-uniform ageing and an acceleration of chip failure. In  
 

fact, temperature gradients and hotspots not only affect the 
performance of the system, but also lead to unreliable 
circuit operation and affect the chip lifetime. In order to 
ensure the proper functioning of a chip and increase its 
lifetime, it is essential to regulate the temperature and lower 
hotspots. In this context, the content of this paper proposed 
two techniques for MTTF increase. 

The first technique, namely relax point injection (RPI), 
consists in adding a particular treatment in the application 
code to protect the chip from a fatal temperature increase. 
With an RPI technique, we increase a processor MTTF by 
33.88%. Unfortunately, in some cases, RPI increases the 
execution time of the application more than 12%. 
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The second technique, namely code structure adaptation 
(CSA), consists to readjust the structure of application code 
to increase processor lifetime. CSA raises processor MTTF 
by 35%, and keeps the application execution time 
unchanged. But, the limit of CSA method is to find the 
independent sections of code. So, it is not evident to modify 
its structure. For that, to improve this technique, we 
proposed a simulation process based on the Pilot 
Application (PApp). This represents a set of application of 
the same family, with different temperature profiles, who 
executed in series on the same processor. Each application 
replaced a section of code in CSA. And we deducted that, to 
make a processor safer, it must execute the application 
which a higher temperature in the last position. With this 
process, we improved the processor MTTF by 28%. Our 
techniques can be of great help to the application designer 
because it allows them to take into account the thermal 
profile during the development of their application. We can 
apply these MTTF optimisation methods on the multicore 
architectures in further studies. And we can integrate these 
techniques in other thermal management method. 
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