
A Revenue Management Approach for Network
Capacity Allocation of an Intermodal Barge

Transportation System

Yunfei Wang1, Ioana C. Bilegan1(B), Teodor Gabriel Crainic2,
and Abdelhakim Artiba1

1 LAMIH UMR CNRS 8201,
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Abstract. We propose a revenue management (RM) model for the net-
work capacity allocation problem of an intermodal barge transportation
system. Accept/reject decisions are made based on a probabilistic mixed
integer optimization model maximizing the expected revenue of the car-
rier over a given time horizon. Probability distribution functions are used
to characterize future potential demands. The simulated booking sys-
tem solves, using a commercial software, the capacity allocation problem
for each new transportation request. A conventional model for dynamic
capacity allocation considering only the available network capacity and
the delivery time constraints is used as alternative when analyzing the
results of the proposed model.
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1 Introduction

Barge transportation offers a competitive alternative for freight transporta-
tion, complementing the traditional road and rail modes. Moreover, considered
as sustainable, environment-friendly and economical, barge transportation has
been identified as instrumental for modal shift and the increased use of inter-
modality in Europe [3]. Yet, studies targeting barge transportation are scarce,
(e.g., [4,6–8,11,14]), the ones considering the intermodal context being even
more rare (e.g., [13,15,17,18]). An important and recent review of the scientific
literature on multimodal freight transportation planning can be found in [12].

Revenue Management (RM ), broadly used in passenger transportation to
manage trip prices and bookings (e.g., [1]), has been identified as a desirable
feature for freight transportation, including barge intermodal services [15]. RM
is expected to provide freight carriers with tools to better manage revenues
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and enhance service by, in particular, tailoring the service levels and tariffs to
particular classes of customers. In [16], the authors study revenue management
in synchromodal container transportation to increase the revenue of the trans-
portation providers. In their study, several delivery types are provided by car-
riers. Each type of delivery is associated with a fare class, characterized by a
specific price and a specific due time. In [9], authors propose a cost-plus-pricing
strategy to determine the price of delivery types in the context of intermodal
(truck, rail and barge) freight transportation. The price associated with each
delivery type is the sum of the operational cost and the targeted profit margin.
The price of a delivery type depends on its urgency as well. Different scenarios,
i.e., self-transporting, subcontracting, and a mix of the two are studied, with
different operational costs and targeted profit margins. However, in both [9,16],
only one type of customers, who sign long-term contracts with the carriers, is
considered. Consequently, no accepting or rejecting decision is made during the
operational phase. In [10], customers are classified into two categories: contract
sale (large shippers, which might be considered regular) customers, and free sale
(scattered shippers) customers. A two-stage stochastic optimal model is then
proposed to maximize the revenue. In the first stage, the revenue is maximized
serving contract sale customers only. In the second stage, the slot capacity after
serving contract sale customers is used to serve the scattered shippers customers
through a dynamic pricing method for price settling and an inventory control
method for slot allocation applied jointly in each period of free sale. The explo-
ration of RM-related issues in freight transportation is still at the very early
stages, however, as illustrated by the reviews related to air cargo operations [5],
railway transportation [1], and container synchromodal services [15].

We aim to contribute to the field by proposing a RMmodel to address the net-
work capacity allocation problem of an intermodal barge transportation system.
As intermodal barge and rail systems share a number of characteristics, e.g.,
scheduled services, limited transport capacity (resource) and uncertain future
demands, the approach is inspired by the work of [2] where the authors develop
a model to dynamically allocate the rail capacity at operational level. In defin-
ing the revenue management problem for barge transportation we induce novel
features to our modeling, however: we adapt it for the barge transportation
space-time network, we enrich it by introducing different categories of customers
with the definition of specific treatment for each of them, including particular
accept/reject rules. An important feature offered by the new modeling lays in the
proposal of a negotiation process based on the optimisation model when deal-
ing with rejected demands, as explained in more details further on. Customers
are classified into different categories as follows. Regular customers, who sign
long-term contracts with the carriers/providers, must be satisfied and thus all
these regular category of demands have to be accepted. On the other hand, the
so called spot-market customers, who request transportation less frequently and
on an irregular basis, may be rejected if needed. The accept/reject mechanism
is settled according to an estimation of the profitability of each new incom-
ing demand, given the availability of service capacities at the time of decision.
In order to better consider customer behavior specificities, those spot-market
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customers are further classified into partially-spot customers, who would accept
their requests to be partially accepted, and fully-spot customers, whose requests
must be either accepted as a whole or not accepted at all. These acceptance rules
are introduced and used in the new RM model (through specific decision vari-
ables). Moreover, based on the customer differentiation, and on the associated
acceptance rules, different mechanisms are set out in a new negotiation process
model which is implemented and used when dealing with rejected demands. At
the authors best knowledge, this is the first contribution proposing to intro-
duce RM techniques, e.g., price differentiation and customer classification, at
the operational level planning of barge transportation activities.

The application of RM strategies requires a booking system to manage trans-
port requests, and the capability to forecast future demands. In our case, the
simulated booking system performs an accept/reject decision for each new trans-
port request, based on the results of the proposed optimization model maximiz-
ing the expected revenue of the carrier over a given time horizon. In case of
acceptance, the corresponding optimal routing is also provided by the optimiza-
tion. Probability distribution functions are used to characterize future potential
demands for transportation and, thus, the proposed optimization model takes
the form of a probabilistic mixed integer program (MIP). A commercial solver
is used to address this model. Simulation is used to analyze the performance of
the proposed optimization model and RM strategies, through comparisons with
a conventional dynamic capacity allocation model considering only the available
network capacity and the delivery time constraints.

The remainder of this paper is organized as follows. We briefly describe the
network capacity allocation problem and the considered RM concepts and strate-
gies for intermodal barge transportation in Sect. 2. The proposed RM model is
introduced in Sect. 3. Simulation and numerical results are discussed and ana-
lyzed in Sect. 4. We conclude in Sect. 5.

2 Problem Characterization

We first briefly present the general problem of dynamic capacity allocation for
barge transportation. The mechanisms of the booking system are then discussed,
together with the proposed RM strategies. The associated notation is identified
as well.

2.1 Dynamic Capacity Allocation Problem

Consolidation-based carriers, such as those operating barge services, plan and
schedule their operations for the “next season” with the goal of jointly maxi-
mizing the revenue and satisfying the forecast regular demand, through efficient
resource utilization and operations. Transport requests fluctuate greatly dur-
ing actual operations, however, in terms of origins, destinations, volumes, etc.,
not to speak of those unforeseen demands the carrier will try to accommodate.
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The capability to answer customer expectations of the transport network is con-
sequently continuously changing as well, together with its efficiency and prof-
itability. Setting up some form of advanced booking system is the measure gen-
erally adopted to handle this complex situation.

Transport booking requests are traditionally answered on a first-come first-
serve (FCFS) basis. Moreover, a transport request is (almost) always accepted
provided the network currently has the capability to satisfy both the volume and
the delivery time specified by the customer. This has the unwanted consequence
that requests coming at a latter time might not be accepted, even though they
present the potential to generate a higher revenue, due to a lack of transport
capacity, resulting in the loss of additional revenue for the carrier.

RM-based booking systems operate according to different principles. The
booking system considered in this paper manages the transport capacity, and the
decision to accept or reject a new demand, considering a set of potential future
demands characterized by different fare classes. To make the final decision, the
acceptance and rejection of the current demand are compared by optimizing
the estimated total revenue of all demands, current and potential future ones.
Therefore, in our model, a current transport request may be rejected if it appears
less profitable compared with the estimated profit of future demands competing
for the transport capacity. The resource is then reserved for the future demands,
expecting a higher total revenue. On the other hand, when the booking system
accepts the current transport request and more than one possible routing exist,
a “better” capacity allocation plan can be obtained by considering the future
demands. That is, the capacity available in the future might more closely match
future demands, increasing the possibility of acceptance and the generation of
additional revenue.

We formulate the dynamic capacity allocation problem on a space-time net-
work over a time interval composed of 1, ..., T time instants. The nodes of the
G = (NIT , A) network are obtained by duplicating the representation of the
physical terminals at all time instants, i.e., a node n(i, t) ∈ NIT specifies the
physical terminal i and the time instant t.

A set of already-selected services, each with given schedule, route and capac-
ity, provides transportation among the nodes in NIT . Note that, in this research,
we assume that services have already been scheduled at the tactical planning level
(i.e., when the Scheduled Service Network Design problem is solved) and are not
to be rescheduled at the operational level. The capacities of scheduled services
are also fixed since vehicles are already assigned to services and no extra-vehicles
are considered to be available upon request. A service s ∈ S is characterized by
its transport capacity cap(s) and set of legs η(s). Leg l ∈ η(s) represents a path
between two consecutive stops of service s, and is characterized by its origin
and destination terminals, o(l), d(l) ∈ NIT , with the respective departure tdep(l)
and arrival tavl(l) times. Let s(l) and cap(l) = cap(s(l)) identify the service it
belongs to and its capacity, and define cap avl(l), the residual capacity of leg l
after having routed the already accepted demands.
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The set of arcs A is then made up of the sets AL and AH representing the
transport and holding arcs, respectively. Set AL is composed of all the defined
service legs, while AH arcs link two representations of the same terminal at
two consecutive time periods. Holding arcs represent the possibility of demand
flows to wait at their respective origins or at intermediate terminals during their
journey, to be picked up by services passing by at later periods.

2.2 RM Strategy

Revenue Management groupes together a set of concepts and techniques aimed
to better integrate customer behavior knowledge into the optimal capacity allo-
cation models. For instance, different fares are applied to well differentiated
products/services and different market segments are identified and used with
the overall objective to maximise expected revenue. To define RM strategies
for barge transportation systems, we introduce customer classification and price
differentiation.

Customers are classified into three categories according to the business rela-
tionship: regular customers (R), who sign long-term contracts with the carrier or
whom the carrier trusts; partially-spot customers (P), who contact the carrier
infrequently and do not require that all their demand be accepted; fully-spot
customers (F), who also require service irregularly but their demand must be
accepted as a whole or not at all.

Let k̃ be the current booking request. Let D(k̃) be the set of demands
accepted before the arrival of k̃, and K(k̃) the set of forecasted future demands
with direct interactions in time with k̃. A transport request d̃ ∈ D(k̃)∪K(k̃)∪ k̃
is then characterized by the volume to be transported in TEUs, vol(d̃); the ori-
gin and destination terminals, o(d̃) and d(d̃), respectively; the time tres(d̃) it is
submitted to the booking system; the time tavl(d̃) it becomes available at its ori-
gin terminal and the corresponding anticipation time, Θ(d̃) = tavl(d̃) − tres(d̃);
the due time (latest delivery time) tout(d̃) and the requested delivery time
∆(d̃) = tout(d̃) − tavl(d̃); the unit tariff f(d̃) according to the fare class of the
demand (defined bellow); and the category cat(d̃) of customers (R, P or F). Note
that a future demand k is considered to be part of the set of potential future
demandsK(k̃) when it has “direct interactions” with the current booking request
k̃, which is true when the two time conditions are satisfied:

– tres(k) > tres(k̃)
– [tavl(k), tout(k)] ∩ [tavl(k̃), tout(k̃)] ̸= ∅.

Let VMAX(k) be the maximum volume a future demand request k ∈ K(k̃)
may take, and Pk(x) the discrete probability distribution function indicating the
probability that a given value 0 ≤ x ≤ VMAX(k) occurs.

We define four fare classes for any pair of terminals in the physical network
(and the distance separating them) as the combination of Θ(d̃), early or late
booking, and ∆(d̃), slow or fast delivery requested. A demand with the highest
fare class thus corresponds to a late booking and fast delivery request, while
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a demand with the lowest fare class corresponds to an early booking and slow
delivery request.

The proposed RM strategy for barge transportation is then to examine each
new transport request, k̃, and decide on its acceptance, and routing through the
network for accepted ones, by considering its feasibility and profitability, given
the current status of the network and an estimation of future demands. The
former means that currently there is sufficient capacity and time to satisfy k̃.
The latter indicates that the expected total revenue given the acceptance of
k̃ is at least not worse than the one corresponding to rejecting it, taking into
account the potential future demands. The model of Sect. 3 is used to make these
decisions.

A rejected request has no influence on the transport network. Similarly, the
potential future demands are only used to calculate the expected total revenue,
and do not impact the status of the network.

3 The Formulation

We now present the Revenue Management decision model that is to be solved
for every arriving request for transportation k̃. The decision variables are:

– ξ(k̃): accept or reject k̃, where ξ(k̃)
• equals 1 when cat(k̃) = R,
• varies within [0, 1] when cat(k̃) = P,
• takes the value 0 or 1 when cat(k̃) = F;

– v(k̃, a): volume of demand k̃ on arc a;
– maxvol(k): maximum volume available on the network (at the decision time)

to serve the potential future demand k ∈ K(k̃);
– v(k, a): volume of the potential future demand k ∈ K(k̃) on arc a.

Obviously, ξ(d) and v(d, a) variables are fixed on all arcs for the already accepted
demands, which we denote d, d ∈ D(k̃).

The objective function of the model with respect to the current demand
k̃ maximizes the sum of its corresponding revenue and the expected revenue
computed on the basis of future demand forecasts:

max (f(k̃) · ξ(k̃) · vol(k̃) + φ) (1)

where

φ =
∑

k∈K(k̃)

f(k)
maxvol(k)∑

x=0

xPk(x) (2)

Following [2], φ is linearized by introducing additional binary decision vari-
ables ykj for each potential future demand k, where the integer-valued j takes all
the values between 1 and VMAX(k). Note that VMAX(k) represents the max-
imum possible volume of a booking request, which translates mathematically,
in terms of probability distribution, as Pk(j) = 0 when j ≥ VMAX(k) + 1.
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The binary decision variables ykj are defined to be equal to 1, if no more than
volume j of capacity is available on the network to serve the potential future
demand k and 0 otherwise. In order to make this definition consistent, for each
future demand k, at most one of the variables ykj may take the value 1 (since
this will correspond to the maximum capacity available on the network to serve
that specific demand). Thus, the objective function becomes:

max (f(k̃) · ξ(k̃) · vol(k̃) +
∑

k∈K(k̃)

f(k)
∑

1≤j≤VMAX(k)

ykj

j∑

x=0

(xPk(x))) (3)

since maxvol(k) is defined as follows:

maxvol(k) =
∑

1≤j≤VMAX(k)

jykj (4)

with ∑

1≤j≤VMAX(k)

ykj ≤ 1 (5)

and
ykj ∈ {0, 1}. (6)

Following this definition, note that the optimal value of maxvol(k) is com-
puted (4) as a result of the optimisation problem. Thus, this optimal value
is obtained when maximizing the expected revenue corresponding to current
demand k̃ on the network, taking into account the entire remaining available
capacity and the overall profitability of the whole set of potential future demands
on that specific time window.

The constraints of the model are the usual flow conservation relations at
nodes and the capacity restrictions imposed by the service network. The latter
take the form defined by (7) for each service leg

∑

k∈K(k̃)

v(k, a) + v(k̃, a) ≤ cap avl(a), ∀a ∈ AL (7)

while the flow conservation constraints for all nodes n(i, t) ∈ NIT are:

∑

a∈A+(n(i,t))

v(k̃, a) −
∑

a∈A−(n(i,t))

v(k̃, a) =

⎧
⎪⎨

⎪⎩

ξ(k̃)vol(k̃) if (i, t) = o(k̃)

0 if (i, t) ̸= o(k̃), (i, t) ̸= d(k̃)

−ξ(k̃)vol(k̃) if (i, t) = d(k̃)

(8)
and

∑

a∈A+(n(i,t))

v(k, a) −
∑

a∈A−(n(i,t))

v(k, a) =

⎧
⎪⎨

⎪⎩

maxvol(k) if (i, t) = o(k)

0 if (i, t) ̸= o(k), (i, t) ̸= d(k)

−maxvol(k) if (i, t) = d(k)

(9)
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where A+(n(i, t)) and A−(n(i, t)) stand for the sets of incoming and outgoing
arcs, respectively, of node n(i, t) ∈ NIT .

Finally, the constraints defining the range of the decision variables are:

ξ(k̃) =

⎧
⎪⎨

⎪⎩

1, if cat(k̃) = R

[0, 1], if cat(k̃) = P

{0, 1}, if cat(k̃) = F

(10)

v(k̃, a) ≥ 0, ∀a ∈ A (11)

v(k, a) ≥ 0, ∀k ∈ K(k̃), ∀a ∈ A. (12)

4 Simulation, Numerical Results and Analysis

To validate the proposed RM model, we use computer simulation. We simulate
the sequential arrival of current demands as an iterative process. For each ran-
domly generated demand, we run and solve the optimization problem and use the
optimal decision to accept/reject the demand to update accordingly the status
of the network in terms of remaining available capacity. Then, a new iteration
is performed. The demand forecasts are considered to be known and given at
the beginning of the simulation process. Several scenarios are used to test and
validate the proposed model. We first set up a scenario with scarce resources and
a very limited number of origin-destination (OD) pairs of transport requests. By
using this scenario, we analyse the impact of different price ratios applied when
different fares are introduced, corresponding to different classes of booking and
delivery delays required by the customers. A second scenario, with a more com-
prehensive problem setting in terms of number of services, number of possible
OD pairs of demands is devised. This second scenario is settled to discuss the
performance of the RM model with respect to different levels of transportation
capacity on the network, as well as with respect to the accuracy of demand fore-
casts. Based on the second scenario, possible strategies of negotiation when a
demand is rejected are equally considered and numerical results analyzed. The
remaining of this section is organised as follows. We briefly introduce the sce-
narios setting for the simulation in Sect. 4.1. We then illustrate and analyze the
numerical results in Sect. 4.2.

4.1 Scenarios Setting

For all scenarios, four consecutive terminals, i.e., A, B, C and D, are considered
to be located along the inland waterway with travel times for barges between any
two consecutive terminals assumed to be the same. As for the service travel times,
all the scheduled stops of a service (including at its origin and destination), are
assumed to have identical durations as well, these delays corresponding to the
time consumption for operations at port (e.g., loading/unloading containers).
The maximum capacity of services is identical within one set of experiments but
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is varied from one scenario to another. The residual capacities of service legs
are sequentially updated according to the accepted demands and their optimal
routing. Holding arcs of containers at terminals have unlimited capacity.

Let us recall that any current demand k̃ is characterized by its tres(k̃), vol(k̃),
o(k̃), d(k̃), tavl(k̃), tout(k̃), f(k̃) and cat(k̃). We discretize the time so that no
more than one reservation request (tres(k̃)) may arrive at each time instant dur-
ing the simulation; vol(k̃) is a discrete random value between 0 and VMAX (the
same maximum volume is assumed for any demand) following a given probabil-
ity distribution function; vol(k̃) = 0 indicates that there is no booking request
for the current time instant. The origin-destination pair, thus the values of o(k̃)
and d(k̃), are uniformly generated out of the set of possible OD correspond-
ing to a scenario. Both anticipation Θ(k̃) and delivery time ∆(k̃) are randomly
selected from a predefined pool of possible values, following the uniform distri-
bution; the generation of the latter is equally related to the distance between
the o(k̃) and the d(k̃) of the demand. The tavl(k̃) and tout(k̃) are then computed
accordingly. Thresholds for the anticipation and delivery time are predefined
to split the demands into early/late reservation and slow/fast delivery types,
respectively. For a given distance of an OD, a basic fare p is predefined. The
unit transportation price (per container) is then defined as f(k̃) = p · rΘ · r∆,
where rΘ and r∆ are the anticipation ratio and the delivery ratio respectively.
Their corresponding values for early reservation and slow delivery are both set
to 1, the others being integer values (factors) greater than one, corresponding to
larger fares charged on high contribution demands requesting higher quality-of-
service transportation. Finally, cat(k̃) is randomly generated among R, P and F
following the uniform distribution.

For each current demand k̃, the corresponding set of potential future demands
is generated following the same generation procedure, except for its volume.
Indeed, since the objective function is defined based on the mathematical expec-
tation of the potential revenue of future demands, this computation is performed
considering all the possible volumes (from 0 to VMAX), weighted by their prob-
abilities. The summation is bounded, however, by the maximum available capac-
ity (at decision time) on the network to satisfy each specific future demand k
(maxvol(k)). Following the same idea, note that the categories (i.e., R, P or F)
of future demands are not needed either when generating the potential future
demands. By doing so, an estimated value of the expected revenue is obtained
by simulation and used to make the decision of accepting or rejecting the current
demand k̃.

For all the scenarios in the simulation, a FCFS accept/reject policy is con-
ducted as comparison. No potential future demands are considered for the FCFS
model. A current demand k̃ is accepted when at least one feasible route exists
in the space-time network, without considering the expected revenue and hence,
without considering its profitability.

The characteristics of the first scenario are:

– Length of the simulated time horizon is 300 time instants;
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– There are 15 identical services defined, starting every 20 time instants, from
A to D with an intermediate stop at B;

– 3 different ODs are considered: AB, BD and AD;
– Different experiments are conducted, with different values of the anticipation
ratio (rΘ) for late reservation and the values of the delivery ratio (r∆) for fast
delivery: 1, 2, 3 and 4.

The characteristics of the second scenario are:

– Length of the simulated time horizon is 600 time instants;
– There is a total of 30 services running on the network, 15 in each direction:
from A to D and from D to A; they all stop at all terminals;

– All 12 possible ODs are considered;
– Different experiments are conducted, with different capacities of services: 5,
10 and 20 (TEUs);

– Different experiments are conducted, based on different forecast accuracies:
good accuracy, underestimation, overestimation.

4.2 Numerical Results and Analysis

The results obtained when running experiments on the first scenario are illus-
trated in Fig. 1. Figure 1(a) presents the ratio between the total revenue obtained
with the RM model and the total revenue obtained with the FCFS policy, corre-
sponding to different price ratios. Figure 1(b) presents the corresponding ratios
of the number of nonprofitable rejected requests over the total number of rejected
requests when applying the RM model. On the horizontal axis, r indicates the
value of the anticipation ratio (rΘ) for late reservation and the value of the deliv-
ery ratio (r∆) for fast delivery; they are considered to have both the same value r.
As expected, better revenue is always obtained by applying the RM model when
compared with the FCFS policy. When we increase the price ratio r, the differ-
ence in profitability of low-fare compared to high-fare demands grows as well.
A low-fare demand, which has a feasible routing in the transport network, has
then a higher chance to be less profitable compared to a potential future high-
fare demand (even if its probability to occur is low) and consequently will be
rejected or not fully accepted. Therefore, as shown in Fig. 1(b), when we increase
the price ratio r, more demands are rejected because of this economic discrim-
ination (nonprofitability). Consequently, a boost in revenue, as illustrated in
Fig. 1(a) is obtained when we increase the anticipation and delivery price ratios.

Note that, even without any price differentiation, the RM model still gener-
ates better solutions in terms of total revenue (Fig. 1(a), when r=1). In fact, the
consideration of future demands equally aids in finding the best routing solution
when a demand is accepted. This better routing makes room in the space-time
network for potentially infeasible future demands, and hence convert them to
feasible, which is transformed accordingly into extra revenue.

The ratios between total revenues generated when applying the RM model
and when applying the FCFS policy within the second scenario are presented in
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Fig. 1. Effect of price differentiation on revenue (a) and on rejected requests (b)

Table 1. To examine the sensitivity of the RM model to bad forecast accuracy
situations, we conduct three different simulations related to the accuracy of the
demand forecasts, in terms of volume. In these simulations, if the arrival process
of demands to the booking system follows the same probability distribution
function as considered in the objective function of the RM model, we say the
demand forecast is accurate (Real:Estimate=1.0). Real:Estimate=1.5 indicates
the demands are underestimated by a factor of 0.67, while Real:Estimate=0.5
indicates that the demands are overestimated by a factor of 2. The behavior of
the RM model with respect to different levels of maximum service capacity is
also studied. The values 20, 10 and 5 TEUs for the maximum service capacities
are used in three independent sets of experiments.

As expected, the RM model generates higher total revenue than FCFS when
the demand forecast is accurate. However, even when demands are not coming
as expected, RM model still defeats its competitor. The only exception happens
in the simulation when the demands are overestimated and the service capac-
ity is relatively high: the two models generate the same total revenue. The good
performance of the RM model is found to overcome the influence of underestima-
tion which implies more booking requests than expected, which can be relatively
interpreted as a scarce resource situation. Another observation from Table 1 is
that the less network capacity we have, the better the RM model responds.
Therefore, the best revenue ratio (1.7196) is obtained when the resource is scarce
and the demand forecast is accurate.

The reason why the RM model generates better solutions can be as follows:
fully or partially denying demands (due to the different customer categories)
create the possibility of saving the precious resource for more profitable (due to
higher contribution fares) future demands; to accept a demand, the best routing
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Table 1. Total revenue of RM/FCFS

Service Cap.= 20 Service Cap.= 10 Service Cap.= 5

Real:Estimate=1.0 1.0483 1.0531 1.7196

Real:Estimate=1.5 1.0093 1.0391 1.0655

Real:Estimate=0.5 1 1.0093 1.0282

Table 2. Number of rejected demands of RM/FCFS

Service Cap.= 20 Service Cap.= 10 Service Cap.=5

Real:Estimate=0.5 1/1 14/16 59/60

Real:Estimate=1.0 17/25 76/82 143/151

Real:Estimate=1.5 70/74 207/220 266/280

is decided by taking into account the potential future demands. Consequently,
the better routing of current demand may convert some of the potentially infea-
sible future demands into feasible demands.

Due to the introduction of RM techniques, less demands are rejected com-
pared with FCFS. As shown in Table 2, the number of rejected demands when
applying the RM model, is always less than the corresponding number of rejected
demands with the FCFS policy. Given the same level of accuracy of demand
forecast, less demands are rejected with higher network capacity. However, the
difference between the two competitors is slight. For the RM model, almost one
third of the denied transport requests correspond to regular (R) customers.

Therefore, we design another set of simulations including a negotiation phase
with the rejected R category customers. Three different strategies, Nego RM,
Nego FCFS and Nego PP, are integrated with the proposed RM approach. Once
a demand from an R customer is rejected, the negotiation phase is triggered. Both
Nego RM and Nego FCFS strategies then consider that rejected R demand as a
P demand. However, the former tries to fit this demand in the transport network
considering estimated future demands (RMmodel), while the later tries to accept
this demand on the transport network in a greedy manner (FCFS model). Instead
of changing the category of the demand, the Nego PP strategy still treats an R
customer as regular. In order to transport it, the delivery delay of this demand
is extended and a lower unit price is charged (as penalty). For all the tests, a
FCFS policy is also carried on as comparison. The effect of different negotiation
strategies for rejected R type demands on the total revenue and the percentage
of successful negotiation is illustrated in Table 3.

In Table 3, Price Ratio indicates the tested values of both rΘ late reserva-
tion and r∆ fast delivery. Revenue/FCFS indicates the ratio of total revenue
obtained by RM model with (or without) negotiation phase related to FCFS,
and Successful Nego shows the percentage of successful negotiation correspond-
ing to each strategy. Even combined with negotiation, RM model still generates
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Table 3. Effect of different negotiation strategies for rejected R customers

Price Ratio Nego. Strategies Revenue/FCFS Successful Nego. (%)

r= 2 RM 1.1477 0

Nego RM 1.1868 15.25

Nego FCFS 1.1849 16.67

Nego PP 1.0543 53.52

r= 3 RM 1.1493 0

Nego RM 1.6227 16.39

Nego FCFS 1.5365 31.88

Nego PP 1.2772 54.29

r= 4 RM 1.7394 0

Nego RM 1.7533 11.11

Nego FCFS 1.7436 16.67

Nego PP 1.3500 53.13

better solutions than FCFS. For a given price ratio, Nego RM always generates
slightly better solutions, in terms of total revenue, compared with Nego FCFS.
On the other hand, the latter always has better performance in negotiation than
the former. Therefore, carriers can choose the appropriate strategies according
to the requirements of their regular customers. In case that R customers have
a relative loose constraint on the delivery time, Nego PP succeeds more than
50% in the negotiation process for all tested price ratios. One may argue that
there exists other possible ways to compensate; we do not claim the proposed
negotiation strategies are the best solutions. Instead, we put the emphasis on
the fact that with the proposed RM approach, we offer to the carriers a panel
of possible ways to simultaneously increase the satisfaction of regular customers
and make more revenue. Different negotiation strategies may be adopted based
on different types of behavior characterizing regular customers.

5 Conclusions

In this paper, we present a Revenue Management (RM) approach for dynamic
capacity allocation of the intermodal barge transportation network. A new model
is proposed considering the RM strategies. According to the business relation-
ship, customers are classified into three categories, whose transport requests are
accordingly treated differently. A price policy, related to the booking anticipa-
tion and delivery type, is also applied to differentiate the products. We conduct
a set of experiments to validate the RM approach. Compared with the first-come
first-serve (FCFS) based booking strategy, the RM model always generates bet-
ter total revenue, even with inaccurate demand forecast. Another observation
is that facing scarce resource (small transport capacity), the RM model easily
outscores its competitor, and this trend grows when resource levels decrease.
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We also discuss a set of possible negotiation strategies combined with the pro-
posed RM model and conclude that with slightly lower total revenue the decision
support still offers the possibility to better satisfy loyal (regular) customers and
generate more revenue compared with FCFS. Encouraged by these preliminary
results, we are considering to study how the penalty or compensation for the
denied regular demands should be further integrated into the new RM model
proposed.
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