
EURASIP Journal on
Embedded Systems

Chaib Draa et al. EURASIP Journal on Embedded Systems (2017) 2017:4
DOI 10.1186/s13639-016-0036-8

RESEARCH Open Access

Sensing user context and habits for
run-time energy optimization
Ismat Chaib Draa1*, Smail Niar1, Jamel Tayeb2, Emmanuelle Grislin1 and Mikael Desertot1

Abstract
Optimizing energy consumption in modern mobile handheld devices plays a very important role as lowering energy
consumption impacts battery life and system reliability. With next-generation smartphones and tablets, the number
of sensors and communication tools will increase and more and more communication interfaces and protocols such
as Wi-Fi, Bluetooth, GPRS, UMTS, and LTE will be incorporated. Consequently, the fraction of energy consumed by
these components will be larger. Nevertheless, the use of the large amount of data from the different sensors can be
beneficial to detect the changing user context, to understand habits, and to detect running application needs. All
these information, when used properly, may lead to an efficient energy consumption control.
This paper proposes a tool to analyze user/application interaction to understand how the different hardware
components are used at run-time and optimize them. The idea here is to use machine learning methods to identify
and classify user behaviors and habit information. Using this tool, a software has been developed to control at
run-time system component activities that have high impacts on the energy consumption. The tool allows also to
predict future applications usages. By this way, screen brightness, CPU frequency, Wi-Fi connectivity, and playback
sound level can be optimized while meeting the applications and the user requirements. Our experimental results
show that the proposed solution can lower the energy consumption by up to 30% versus the out-of-the-box power
governor, while maintaining a negligible system overhead.

Keywords: Energy consumption, Run-time user and application analysis, Device’s context, Applications sequences
prediction

1 Introduction
Mobile and communicating devices became essential
tools in our personal and professional activities. In recent
years, their number and their applications have largely
increased. In our modern societies, each person has sev-
eral handheld devices (smartphone, tablet, portable PC,
etc.). By the end of 2013, 6% of the global population
owned a tablet, 20% owned portable PCs, and 22% owned
smartphones.1 It is predicted that by 2017, 65% of the US
population will own a smartphone.
Next-generation mobile systems will include a large

number of cores, a powerful GPU, large caches, mem-
ory capacity, and a variety of I/O tools and communi-
cation protocols. For instance, the Samsung Galaxy S6
launched in 2015 contains three times more sensors than

*Correspondence: ismat.chaibdraa@univ-valenciennes.com
1University of Valenciennes, Valenciennes, France
Full list of author information is available at the end of the article

the Samsung Galaxy Smarketed in 2010. In the same time,
the number of cores has also increased from 1 to 8.2
Consequently, on one side, next mobile system gener-

ations will contain more powerful components and on
the other side, applications running on these devices will
become more complex. As a result, the needs of new
applications in terms of computing power, communica-
tion, and storage have significantly exceeded the capacity
of the batteries. For this reason, new energy consumption
management systems are needed.
Most of the existing technics for energy saving take into

account neither the user individual profiles nor the chang-
ing application needs. Our proposal is to capture, store,
and process such information using the computing power
and the various sensors to reduce energy consumption.
The key for our power saving technique is therefore to
leverage users context, behaviors, and habits to predict the

© 2016 Chaib Draa et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

Chaib Draa et al. EURASIP Journal on Embedded Systems (2017) 2017:4 Page 2 of 19

running applications and improve upon the default energy
management policies of the OS. The main contributions
of this work can be summarized as follows.

1. We exploit rich sensor hubs to collect and explore a
large set of data to search context usage patterns in
the device use. We also use metrics to gauge user
needs and characterize his/her habits. The
identification of the context and the user’s associated
actions allow us to decrease the energy dedicated to
unused resources in some cases.

2. We propose a new classification and characterization
method of the launched applications to find frequent
sequences of application runs. On this basis, we can
predict which application will probably run next.
With the developed prediction and the knowledge of
each application needs, we are able to adjust the
provided resources and to perform optimizations
such as dynamic voltage frequency scaling (DVFS)
[1], data prefetching, and device management
without impacting negatively the user satisfaction.
Such actions decrease the energy consumption of the
whole system.

The global architecture of our approach is shown in
Fig. 1. This figure presents an abstraction of the several
key stages of our approach. The first stage consists in
collecting data about the user behavior and the device’s
context, such as running applications, the background
processes, the device’s position, the ambient luminosity,
the datem and the time. These data are used in the second
stage through three mechanisms:

• Off-line classification of applications in terms of
resources

• Application prediction mechanism
• On-line device’s context identification

In the third stage, the dynamic optimizer actuator uses
the outputs of the second stage to perform actions such as
device management and applications scheduling in order
to reduce the energy consumption. We have a global
framework which contains two main components:

• Context-based optimization component (COC):
based on the device context and the sensory data

• User needs-based optimization component (UNOC):
based on user actions and application classification.

The rest of this paper is organized as follows. In
Section 2, the architecture of the framework containing
the COC and UNOC is presented. In Section 3, we explain
the COC. In Section 4, we present in details the UNOC
with the classification and prediction mechanisms. In
Section 5, we present the experimental results. Section 6

presents the related work, and finally, in Section 7, a
conclusion and some perspectives are given.

2 Framework architecture for energy
consumption optimization

In order to obtain the provided objectives in the previous
section, we designed a framework to optimize the energy
consumption in mobile systems and to improve the
energy management provided by the OS. This framework
consists of two components, the COC and the UNOC.
They use different sensors/data and run in parallel.
However, depending on the type of used device (smart-
phone, tablet, ultrabook, etc.) some functionalities in
COC or UNOC can be more suitable. The proposed
screen brightness management that depends on the
device position is more appropriate to laptops or fixed
ultrabook. All the rest of optimizations, screen brightness
management using the ambient luminosity, the micro-
phone level management based on the ambient noise,
and the user needs/habits-based component, can be
exploited in all mobile platforms with an OS and a user
layer. Consequently, smartphones, laptops, and tablets
can benefit of these mechanisms. The functional archi-
tecture of the proposed components are given in Fig. 2
for COC and in Fig. 3 for UNOC. These components
implement the abstract architecture presented in
Fig. 1.

2.1 Context-based optimization component (COC)
COC is responsible of collecting data from the embedded
sensors, device position, ambient luminosity, and ambient
noise, etc. These data compose the device context taken
into account to apply different policies on the screen
brightness and the speaker sound level as shown in Fig. 2.
COC works in two phases:

1. Device context analysis: in this phase, we realize
some preliminary experiments to analyze and to
determine the device context. Among the available
sensors, we select the most relevant sensors which
provide information about the device position and
the ambient noise. The results are used to develop
the second phase.

2. Embedded software: in this phase, we control during
run-time the system component’s activities.
Depending on the context, these components may
have a high impact on the consumed energy. The
control is done by exploiting information obtained
from the embedded sensors.

The main idea is that in embedded and mobile sys-
tems, it is possible to save energy and reduce power
consumption by taking the context information into
account. It could be attained by monitoring sensors

Chaib Draa et al. EURASIP Journal on Embedded Systems (2017) 2017:4 Page 3 of 19

Fig. 1 Overview of the proposed approach. A generalization of the several stages of the proposed approach

that exist in mobile devices. Sensors’ data are processed
and correlated to possible power consumption reduction
opportunities.

2.2 User needs-based optimization component (UNOC)
This component is developed to take into account the user
needs and habits in the energy consumption optimization.
Its structure is generic and is shown in Fig. 3. UNOC is
implemented in five steps as follows:

1. Data collecting mechanism: user behavior and
system usage information are collected.

2. Processing the collected data through the analyzer to
guarantee user privacy by anonymizing the data.

3. Storing the collected data in a data base.
4. This step is implemented in two phases:

(a) Uploading the collected data to the back-end
component in order to be processed via

Fig. 2 Context-based optimization component architecture. Architecture of the first component of our framework based on the context

Chaib Draa et al. EURASIP Journal on Embedded Systems (2017) 2017:4 Page 4 of 19

Fig. 3 User needs-based optimization component architecture. Architecture of the second component of our framework based on the user needs
and habits

mechanisms like application classification,
applications prediction, and user behavior
profiling.

(b) Building optimization rules.

5. Pushing the obtained rules to the optimizer actuator
in order to implement a specific optimization for
each hardware component.

In this paper, we focus mainly on the data collecting
mechanism, the application classification, the application
prediction, and the optimization mechanism as follows.

1. The data collecting mechanism: it represents the first
step mentioned previously. In this phase, we collect a
large set of data which are as follows: running
applications, date, time, elapsed time of each
application, and background process.

2. This phase is composed of:

• The off-line application classification in terms of
Wi-Fi and CPU needs. In the current version of
the UNOC, we focus on two components: the
Wi-Fi and CPU. These two units are among the
most power consuming components in mobile
system but the classification can be extended to
screen brightness, microphone, GPS, etc.

• The execution average time for each application
is calculated, and this phase is also off-line but
the data base can be updated in a weekly basis.

• In-line application prediction mechanism.

3. All these phases are combined and used by the
optimizer actuator which manages Wi-Fi connection
and CPU frequency in order to optimize the energy
consumption. The next section presents the COC in
details.

3 Context-based Optimization Component (COC)
A crucial aspect of energy management is having a good
understanding of how, when, and where users interact
with their handset and how they demand resources such
as luminosity, sound level, high consumption, connectiv-
ity, etc. COC relies on the device context and user actions,
which are context driven by nature. The device’s context
is defined by its position, the ambient light and the ambi-
ent noise. The screen brightness and the speaker sound
level (respectively) are controlled by the device’s position
(normal or abnormal, ambient luminosity and the ambi-
ent noise (respectively)). To do so, policies are applies to
sensory data to impact power consumption. The Sensors
Collection Module (SCM) and Dynamic Hardware Recon-
figuration Module (DHRM) were developed to achieve
the COC work. The following two sections explain how
the SCM and DHRM are used for brightness and sound
managements.

3.1 Brightness management depending on device’s
position

3.1.1 Sensors CollectionModule (SCM)
This module is responsible for collecting data from the
embedded sensors in order to identify the most appropri-
ate device’s stand. In our mobile handset, there are sev-
eral sensors such as accelerometer, ambient light sensor
(ALS), simple orientation sensor, inclinometer, compass,
gyrometer, and geolocation. In order to determine which
collected sensors are the most relevant, some preliminary
experiments have been achieved. First, we collect the sen-
sor values in several device’s position (normal standing,
inclined, jostled, etc.). We compare sensors’ readings for
various device positions in order to pick the most rele-
vant. The sensor values which have a large gap in different
positions are ignored. The available sensors are:

Chaib Draa et al. EURASIP Journal on Embedded Systems (2017) 2017:4 Page 5 of 19

• Ambient luminosity: ambient light sensor (ALS).
• Orientation: inclinometer, compass.
• Motion: gyroscope, accelerometer.
• Location: GPS
• Ambient noise: microphone

We select the following sensors:

1. For ambient luminosity and ambient noise: we use
ALS and microphone because these are the only
sensors that provide us these information.

2. For the orientation, we have chosen inclinometer
because the obtained data from this sensor are more
informative and compass data are changing due to
magnetic strength.

3. For motion, both of accelerometer and gyroscope
have three-dimensional metrics on axes x, y, and z. In
the following example, we compare standard
deviations:

• Accelerometer (x, y, z) = (0.57, 0.37, 0.52)
• Gyroscope (x, y, z) = (89.42, 57.80, 54.95)

Normalized variation indicates sensitivity. More
sensitive values are more informative. This
comparison prompted us to choose gyroscope for
motion.

4. We exclude location-based data collection because it
is private information (PI).

The SCM is calibrated by sensory data collected while
the device is in standing position. After calibration, sen-
sors data is collected in real time. This way, if the device
is tilted, its inclination data is immediately updated in the
SCM. Finally, data are injected in the memory in order
to be consumed by the Dynamic Hardware Reconfigura-
tion Module (DHRM). This reconfiguration is continuous
and carried out in the background. Whenever a sensor
value changes, SCM takes it into account. It updates the
new value and upgrades it through a shared memory, then
DHRM performs optimizations on the screen brightness
level. Figure 4 presents the HW and logic sensors, and
Fig. 5 presents the SCM process.

3.1.2 Dynamic hardware reconfigurationmodule (DHRM)
This module is responsible to manage the hardware com-
ponents depending on the device’s position as mentioned
in Section 3.1.1. Available data in the shared volatile mem-
ory is imported and taken into account by this module in
order to apply business logic decision mechanisms with
the values. The module handles the LCD driver of the
device to manage screen brightness as shown in Fig. 6.
The DHRM compares the new captured sensor’s val-

ues with the normal stand values. Then, according to this
comparison, the DHRM adjusts the screen brightness to

the most suitable level for the user. For example, if the
gyroscope sensor value exceeds the range of allowed val-
ues, the module applies a specific optimization on the
screen’s brightness by decreasing it. The ambient lumi-
nosity is also taken into account to adjust luminosity.
When the environment is too bright, the screen bright-
ness is increased and vice versa. For brightness man-
agement, the power reduction opportunity is about 30%
between the max screen brightness and the min screen
brightness.
The DHRM relies on the data captured by the SCM and

selects four stand device’s state. Here is an example for
each state:

• Hard-to-watch: device shake is too important to
watch it correctly.

• Mild-motion: from small movement to mild ones like
when playing game.

• Normal-stand: device left in the same position for a
moment.

• Abnormal-tilted: set device in±90◦ on x-/y-axis with
no motion.

Each state is recognized through sensors metrics.
DHRM sets the corresponding screen brightness, accord-
ing to the identified state, as shown in Table 1.
When the device is in normal stand, we take into

account the ambient luminosity for brightness adjustment
as shown in Fig. 7.

3.2 Soundmanagement based on ambient noise
Another use case similar to Section 3.1 was achieved in
order to manage the device’s speaker level depending on
the ambient noise. As in the case of brightness man-
agement, we have two main modules. The first one is
the Ambient Noise Collector (ANC) and is measuring the
ambient noise and shares its to the second module Sound
Control Module (SCM) which will adapt the speaker level
accordingly.
For example, in this scenario when the ambient noise is

high , the SCM increases the speaker’s sound level. On the
other hand, if the ambient noise is at average or low, the
module decreases the speaker’s sound level.
Contrary to the first component, we do not store the val-

ues of the ambient noise, and we act dynamically on the
speaker’s volume. The sound level is modified gradually to
avoid any impact on the user satisfaction, on the base of
the change blindness [2].

4 User needs-based optimization component
(UNOC)

4.1 Classification mechanism
In this paper, the classification is achieved off-line and
used during the optimization phase as mentioned above.

Chaib Draa et al. EURASIP Journal on Embedded Systems (2017) 2017:4 Page 6 of 19

Fig. 4 Available sensors on our mobile device. This figure shows the available HW and logic sensors

Applications are classified according to their Wi-Fi and
CPU usage. For the Wi-Fi, the classification is binary
(Wi-Fi on/off). For the CPU, the classification is based
on upper frequency thresholds. In both cases and before
adjusting any resources, the optimizer actuator consults
the list of background processes to avoid any conflict.

4.1.1 Classification in terms ofWi-Fi
The aim of this classification is to contribute to the man-
agement of the wireless interface according to the needs

of the running applications. To achieve the off-line clas-
sification, we realized some preliminary experiments. At
first, the internet rate is estimated by the sum of the
upload and download rate, when no application and back-
ground process are running. A low rate threshold was
fixed at 10 KB because of the connectivity management in
Microsoft Windows operating system that achieves some
connection rate tests, even when no application needs
connection. Secondly, we run the applications we want to
classify individually and acquire bandwidth use.When the

Chaib Draa et al. EURASIP Journal on Embedded Systems (2017) 2017:4 Page 7 of 19

Fig. 5 Sensors information collecting. This figure illustrates the sensors
values collecting by SCM

sum of the upload and download rates during the execu-
tion of the application is under the 10-KB threshold, we
assume that no wireless connection is required (and vice
versa). Table 2 shows the classification results for three
examples of applications.
On this base, the on-line optimization is carried out: the

Wi-Fi need is evaluated according to the running appli-
cations classes. Obviously, the main point is to assess the
complete requirement of the mobile device current state
in order to avoid the user dissatisfaction when the wireless
connection is disabled.

4.1.2 Classification in terms of CPU need
Windows 8.1 manages the CPU frequency automati-
cally. However, in some cases, the computing resources
provided by theOS exceedwhat is required by the running
applications and the user. To improve this management,
we propose to classify the applications in terms of CPU
frequency.
In the current implementation, we have arbitrarily

defined three thresholds (800 MHz, 1.25 GHz, and
1.75 GHz) that define four classes:

1. Class c1: applications requiring a low CPU frequency
(<800 MHz). Text processing applications such as
Word, Excel, or simple games such as Imperial
Sudoku belong to this class.

2. Class c2: applications requiring a medium CPU
frequency (between 800 MHz and 1.25 GHz). Web
browsers such as Firefox or Google Chrome are in
this class.

3. Class c3: applications requiring high computing
resources (between 1.25 and 1.75 GHz). Advances
games such as 2048 belong to this class.

4. Class c4: applications requiring very high computing
resources (over 1.75 GHz). Image processing and
synthesis such as Image ray-tracing, simulation
applications, and mathematical applications belong
to this class. During our experiments, we found no
applications belonging to this class.

To classify an application, the CPU utilization and fre-
quency are measured during its execution.More precisely,

Fig. 6 Brightness management By DHRM. This figure illustrates the actions performed by DHRM (adjusting brightness)

