
Accepted Manuscript

Customizing VLIW Processors from Dynamically Profiled Execution Traces

Gorker Alp Malazgirt, Arda Yurdakul, Smail Niar

PII: S0141-9331(15)00146-5

DOI: http://dx.doi.org/10.1016/j.micpro.2015.09.005

Reference: MICPRO 2280

To appear in: Microprocessors and Microsystems

Received Date: 3 February 2015

Revised Date: 26 August 2015

Accepted Date: 8 September 2015

Please cite this article as: G.A. Malazgirt, A. Yurdakul, S. Niar, Customizing VLIW Processors from Dynamically

Profiled Execution Traces, Microprocessors and Microsystems (2015), doi: http://dx.doi.org/10.1016/j.micpro.

2015.09.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.micpro.2015.09.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.micpro.2015.09.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.micpro.2015.09.005


  

Customizing VLIW Processors from Dynamically Profiled
Execution Traces

Gorker Alp Malazgirta, Arda Yurdakula, Smail Niarb

aBogazici University, Computer Engineering Department, Istanbul, Turkey
bLAMIH - University of Valenciennes, Valenciennes, France

Abstract

The design philosophy of VLIW processors is to maximize instruction level parallelism
(ILP) starting from compiler and machine code level to all the way down to memory
and computational blocks. For this purpose, VLIW tailoring has been an important re-
search area, because non-tailored VLIWs cannot fully utilize the available VLIW hard-
ware resources. This paper introduces a method which achieves VLIW customization
by processing execution traces obtained by dynamic profiling. Our method differen-
tiates memory and non-memory instructions while processing execution traces. Cus-
tomizing VLIW multi-port memory from memory operations provides better memory
utilization and higher performance. Moreover, exploration of the multi-port memory
configuration is coupled with data path exploration, namely the number and the com-
position of execution units for efficient extraction of ILP. We have designed a genetic
algorithm for the exploration of the large design space formed by the execution traces.
Our experiments show that our method has improved and found more compact mem-
ory topologies than state-of-the-art VLIW customization algorithms. In addition, we
compare the execution performance, power consumption, average parallelism and area-
delay product results of our VLIW model with a RISC processor model on evaluated
benchmarks using our simulator framework.

Key words: VLIW, dynamic profiling, genetic algorithm, mathematical model,
FPGA, ASIC

1. Introduction and Motivation

Embedded computing with application specific VLIW (Very Long Instruction Word)
based processors has long been an alternative to superscalar processors to run applica-
tions in many areas such as digital image processing, telecommunications and con-
sumer electronics. VLIW’s long instruction words encode the concurrent operations,
which are decided at compile time. This explicit encoding leads to reduced hardware
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complexity compared to a high degree superscalar out-of-order implementations of
Reduced Instruction Set Computers (RISCs) or Complex Instruction Set Computers
(CISCs), because unlike superscalar out-of-order processors, the VLIW hardware is
not responsible for discovering instruction level parallelism (ILP). VLIW architectures,
however, require more compiler support than RISC and CISC [1][2].

Although VLIW hardware is simpler than superscalar out-of-order RISC and CISC,
they must be designed efficiently because executing multiple operations concurrently
comes with the cost of having wider instruction memory, data memory and more com-
plex interconnections. Data memory needs higher number of ports for providing mul-
tiple data to different execution units. Thus, the area of the data memory increases
[3]. Larger memory with higher memory bandwidth requirements and execution units
must be connected with larger interconnection networks which increase total area and
decrease performance.

Tailoring a VLIW processor for a specific application necessitates the extraction
of concurrent operations. Then, concurrent operations are bundled as instructions ex-
ploiting the available instruction level parallelism. Numerous studies have shown that
VLIW customization using ILP information can generate performance improvements
[2, 4, 5, 6].

ILP information has been either statically or dynamically produced. With static
profiling, this information is collected by analyzing the program without executing it.
In order to measure certain characteristics of a program, static profilers apply algo-
rithms. Information like cache misses [7] is hard to extract with static profiling. There-
fore, outputs of these static profiles are estimates in many cases. In addition, static
profiling at basic block level can prevent extracting existing ILP because of creating
poor schedules [33].

Dynamic profiling allows program information to be collected during the execution
of the program. A profile can contain information from several different executions of
a program. Dynamic profiling is more accurate than static profiling, since it does not
rely on estimates such as memory pointer aliasing but accurately captures the data flow
information in the memory when the program is executed. Hence, all the irregular
patterns can be captured by the profiler. Dynamic profiles are dependent on the input
data set. Dynamic profiling has already been used in high level synthesis domain to
generate better solutions than static approaches [8, 9]. Similarly, our work also shows
that dynamic profiling has generated better solutions than static profiling in application
specific VLIW processor tailoring.

Multi-port memories are vastly used in VLIW processors and they are one of the
most resource consuming on-chip modules [10][3]. Although VLIW processors allow
more parallelism, they are difficult to utilize because of more memory ports and band-
width requirements than RISC and CISC processors [11]. This is due to increasing code
size and register usage for supporting more ILP. An under-utilized multi-port memory
decreases data access times drastically and increases power consumption [3][12]. Due
to these challenges, significant number of previous research has been focused on cus-
tomizing the data path of VLIW processors with small and fixed number of ports in
their multi-port memories [13][14]. Hence, the effort has been on ILP extraction for
customization of the VLIW data path, namely the number of execution units. In con-
trast, our method extracts ILP to customize both the number of memory ports and the
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data path.
In this way, we achieve the highest performance with minimum memory size and

highest memory utilization. Similarly, we can also extract the number, the composi-
tion and the connection scheme of execution units in the VLIW data path as shown
in Figure 1. Our method starts with extracting the port number of multi-port memory
for minimum execution time, then uses this information to customize the number and
composition of execution units. We aim to decrease the number of memory access
steps by combining concurrent memory instructions. Although the number of mem-
ory instructions are constant, the reduction in memory access steps increase execution
performance.

Our paper proposes a method which achieves VLIW customization by using in-
structions obtained from dynamic profiles. We generate:

• Minimum size multi-port memory that provides enough memory bandwidth for
achieving the minimum execution time

• Customization of VLIW data path according to the selected multi-port memory

• Reducing number of memory access operations by allowing concurrent accesses
to multi-port memory in a single VLIW instruction

Our method is designed to be used at the initial stage of the VLIW processor design.
At the beginning, the application is profiled and the execution trace is extracted. At
this stage, the number of the memory ports or the execution units are not known. Then,
our tailoring rules described in Section 3.2 are applied on memory instructions for
finding out the number of memory ports of the VLIW’s multi-port memory. Based on
the multi-port memory decision, the same tailoring methods are applied on the non-
memory operations. After the number of ports of memory and the composition of
execution units are found, a compiler with parametric back-end capabilities can be
used to compile the application [1, 15].

Our paper has the following differences from state of the art methods. We differ-
entiate memory instructions and non-memory operations while processing execution
traces. We extract ILP from memory operations and use this parallelism information
to extract the memory constrained ILP from the non-memory operations, i.e. the data
path. We customize the number of memory ports based on memory operations. This
information is used for customization of execution units. In contrast, state of the art
either neglect memory operations or do not differentiate them from non-memory op-
erations. This causes lower performance and memory utilization. Moreover, previous
research that explores the number of memory ports is not coupled with data path ex-
ploration, namely the number and composition of execution units. Instead, the number
of execution units are either fixed or they are template-based.

Our customization method aims to ensure that maximal performance is attained
with the fewest number of memory ports and execution units. In addition, decreasing
the number of execution units and identifying the composition of these units set forth
an efficient approach as opposed to incorporation of homogeneous execution units on
the data path. When number of memory ports increases, number of FUs has to increase
in order to utilize the available ports and vice versa. Tailoring the composition of
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EUs with respect to the application prevents generation of redundant hardware and
maximizes resource utilization.

In the experimental section, we introduce numerous results. First of all, we present
that our method can be used in different technologies, namely FPGA and ASIC. Sec-
ond, we show that our method is able to customize algorithms from different domains
such as compute and data intensive. We have compared our customization method with
a recent method [16]. We show that our method recommends VLIW architectures with
fewer number of ports and execution units than the state of art in order to provide same
execution performance. In addition, we simulate the benchmarks and the compare exe-
cution performance and power consumption of benchmarks between our VLIW model
and the RISC processor model which has been used extensively in FPGA and ASIC
designs. We also present the area-delay product of data-memory results and show that
our customized VLIWs can exploit the available ILP efficiently.

The rest of this paper is organized as follows. Next section presents our reference
VLIW processor model and its building blocks. Section 3 details our tool flow and the
customization methods are explained. Experimental results are presented in Section 4.
We discuss the related works in Section 5 and the last section includes our discussion
and conclusion.

2. Reference VLIW Architecture Model

The reference VLIW architecture is shown in Figure 1. It is executes multiple
independent instructions in each execution unit. The customizable parts of the VLIW
are the number of execution units, the composition of functional units, the number of
memory ports and necessary bypass blocks.

2.1. Execution Unit
Each Execution Unit consists of a Functional Unit (FU) and a Control Unit (CTRL).

Execution units are connected to multi-port memories via input and output interconnec-
tion network. Though, each EU can have different data widths, in this work, we require
that each execution unit has two 32-bit inputs and one 32-bit output. Data forwarding
is possible through bypass blocks (BP).

2.1.1. Functional and Bypass Blocks
Each FU as shown in Figure 2 can contain an ALU for integer, floating point and

logic operations. It also contains a Load/Store Unit which manages all load and store
operations. Similarly, the branch unit (BR) handles the branch operations. The branch
units are assumed to be multi-way branches with conditional execution capabilities and
this design decision allows reordering of branch instructions [17]. All the blocks of the
FU are controlled by each CTRL unit inside an EU. Only one block can be active in-
side an FU for each concurrent operation. When a VLIW instruction is decoded by
the CTRL unit, the decoded instructions are executed by FUs. The blocks inside an
FU are decided after the Maximum ILP optimization algorithm which is explained in
Section 3.3.2. Therefore, if an application does not have any branch instructions, FUs
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are built without the BR units. On the other hand, if Maximum ILP optimization al-
gorithm finds a reordering which facilitates concurrent executions of data independent
branch instructions, then several FUs can employ the BR units. Bypass blocks allow
output data of a FU to be forwarded as input to itself or another FU by replacing two
consecutive load/store instructions with bypass instructions and bypass blocks. Thus,
the output of one FU is written to bypass block registers instead of memory and the
memory instruction is replaced with bypass instruction. Unlike the register file, bypass
blocks are not general purpose memory. Instead, they are placed between the outputs
and inputs of FUs and connected with multiplexers. Moreover, similar to memory
ports, redundant bypass blocks should always be eliminated.

2.1.2. Control Unit
Control Unit (CTRL) decodes the long instruction word and generates the signals

to enable the blocks of FU. Therefore, CTRL logic must exist in each execution unit.
CTRL is also responsible for enabling/disabling bypass blocks for data forwarding. In-
struction memory provides RISC like instructions which are fixed width. Nevertheless
the instructions are longer than RISC instructions in order to specify independent op-
erations. Instruction structure is shown in Figure 3. Each VLIW instruction word array
encodes several operations. The width of the VLIW instruction depends on number of
execution units. In the sub instruction, the valid bit allows predication, in other words,
it indicates whether the instruction should be ignored. Each sub instruction encodes
three operand addresses that are two read and one write. The available memory space
is mapped to banks, therefore the compiler can schedule concurrent operations using
available memory space in different banks. Opcode field selects which operation to ex-
ecute and Function field selects a variant of the operation and enables/disables bypass
block.

2.1.3. Interconnection Network
We do not detail the implementation of the interconnection network in this paper.

However, we assume that every execution unit can access memory through any port for
reading and writing. This helps programmability and reduces compiler workload.

2.2. Memory Architecture
The reference architecture uses the multi-port memory design in [18]. Each ex-

ecution unit has an address space and this address space corresponds to a bank with
different height and width. Each bank consists of replicated BRAMs in the FPGA
implementation. Each memory bank is associated with a write port. In the FPGA im-
plementation, inside a bank, all BRAMs hold the same data and represent the same
address space range to increase the number of read ports. Banks have their own lo-
cal address space and union of all banks forms the global address space so the global
address space is the sum of all local address spaces of processing elements. This multi-
port memory structure simplifies the work required by the reordering algorithm. Dur-
ing the write operation, it guarantees updating all the copies that is interfaced to the
execution unit. In addition, both the Maximum ILP Extraction Algorithm explained in
Section 3.2 and the Maximum ILP Optimization Algorithm explained in Section 3.3.2
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prevent data conflicts. When these algorithms are executed, the data which are used
by the sub-instructions of a VLIW instruction are arranged such a way that each sub-
instruction accesses a different memory bank in the memory architecture at each access
step. This guarantees prevention of data conflicts in a VLIW instruction.

3. Tailoring of VLIW Architectures

In this section, we detail the steps of our VLIW customization method. We start
explaining the dynamic profiling. We further detail our tool flow with a sample exam-
ple. Then our maximum ILP extraction method is explained. Before we discuss the
details of our evolutionary algorithm, we explain the mathematical model.

3.1. Dynamic Profiling of Applications
For application specific dynamic profiling, we developed a software tool which can

use any binary instrumentation library to extract executed instruction traces. After cap-
turing traces, the tool creates separate memory and non-memory trace files. Our VLIW
customization algorithms work on the instructions provided by the trace. Therefore,
our tool provides the flexibility of processing well-known ISAs as well as custom in-
struction traces provided by the designer. Since code generation is the responsibility of
the compiler, our profiling tool does not take part in the code generation.

A sample memory load/store instruction trace file is shown in Figure 4(a). It con-
tains only load/store instructions, thus non-memory instructions are filtered. In figure,
Access Step column represents the global order of the memory instruction. This order
contains memory and non-memory instructions, it helps to preserve data dependencies.
Instruction Address column stores the virtual addresses obtained from our R2 profil-
ing tool. Instruction Signature column makes us differ two identical memory access
instructions that take place at different access steps. For instance in access steps "1"
and "23", there are two mov instructions at address M1. However, the second mov
instruction M1 at access step 23 is 22 access steps ahead of the first one. So we use two
different signatures to distinguish these instructions. Signatures help us to record par-
allelism across the loop boundaries. Memory load/store instructions have source and
destination arguments, therefore Arg 1, Arg 2 and R/W columns respectively identify
source, destination and Load/Store type of instruction at given access step.

Using memory access trace, data dependency table is generated. This is done by
analyzing true register dependencies and memory read/write orders in the trace. While
traversing through the trace we bind instructions with their memory/register usage.
This binding is kept in a table. Our parallelism analysis and memory reduction algo-
rithms query for lifetimes of registers and memory addresses for given instructions at
each access step. In addition, Data Address column stores the actual memory address
that is inferred by Arg 1 or Arg 2 columns.

Data dependency analysis using data addresses is equivalent of pointer alias analy-
sis [19] with perfect accuracy, because, after dynamic profiling, actual memory address
referred by a load or store can be processed. A dependency or a conflict can be ex-
tracted when different instructions access the same address location. Similarly, branch
and indirect jump predictions are redundant when instruction traces convey all of these
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information. Instead, the processing time is spent for ILP extraction and instruction
rescheduling for resource optimization such as the number of memory ports.

The non-memory instruction traces must also be processed in order to fully exploit
the parallelism from a given execution trace. The number and composition of VLIW
execution units are decided after exploring the parallelism from the non-memory in-
struction traces. Thus, we apply the previously explained procedures to non-memory
instructions. As shown in Figure 4, Access Step and Instruction Signature are used for
global ordering of instructions and identifying identical instructions. Arg # represent
data locations which can be a register, a memory address. For data analysis, data depe-
dency table is also generated. Both Maximum ILP Extraction Algorithm explained in
Section 3.2 and the Maximum ILP Optimization Algorithm explained in Section 3.3.2
can process non-memory and memory instruction traces.

3.2. Exploring Maximum ILP from Instruction Traces
In order to extract the maximum and average parallelism from instruction traces,

we have designed a single pass algorithm that schedules instructions to access steps
and guarantees data dependency. Maximum parallelism is important because it yields
the maximum amount of memory access or FU usage in an instruction bundle. Sim-
ilarly, average parallelism gives an idea of how much ILP is extracted from a given
application.

We define maximum parallelism as

pmax = max
t

(nt) (1)

where nt is the number of memory access instructions at access step t. The parallelism
exploration schedules and bundles instructions in the trace file without breaking data
dependencies. Hence, we propose the rescheduling logic rules with the following defi-
nitions.

Definition 1. Instruction Signature Within the trace or a portion of the trace, let there
be m instructions I = {I1, I2....., Im} with execution times {e1, e2, ...., em}. We define the
instruction signature as S i,k = ⟨Ii, Ax, ρ, k, e⟩ ∈ S where

• S is the set of all instruction signatures

• Ax is data memory address and range of x is as big as the data memory/register
file size.

• ρ denotes memory access operations, i.e., ρ ∈ {read,write}.

• k represents the kth occurrence of an instruction.

• e represents the execution time of the signature

Definition 2. Rescheduling Logic Rules Let S i, S j be any two signatures in S. For all
k > 0, all signatures can be moved to an earlier access step provided that the following
rules are not violated:
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• Rule 1: ⟨S i, Ax,write, k+1⟩ cannot start before or at the same time with ⟨S j, Ax,write, k⟩

• Rule 2: ⟨S i, Ax, read, k+1⟩ cannot start before or at the same time with ⟨S j, Ax,write, k⟩

• Rule 3: ⟨S i, Ax,write, k+1⟩ cannot start before or at the same time with ⟨S j, Ax, read, k⟩

The instructions satisfying these rules exploit ILP without breaking data dependen-
cies. All rules are concerned with data hazards that may happen when write and read
to same address occur by different instructions. Rule 3 also handles register data de-
pendency. All the rules are checked in a single pass of memory instructions. Figure 5
and Figure 4(c) show the data dependency obtained after applying the rescheduling
logic rules to Figure 4(a). In the figure, edges represent data dependencies between
instructions. Nodes that have no in- or out-edges can be scheduled independently at
any available access step.

Algorithm 1 shows the steps of Maximum ILP Extraction Algorithm. The input
of the algorithm is an instruction trace file similar to Figure 4(a) and the data depen-
dency graph. The algorithm iteratively applies rescheduling logic rules and bundles
signatures to access steps. Thus, the original dependencies are preserved. The out-
put of the algorithm is a new instruction trace file as shown in Figure 4 (b). We call
the new instruction trace file as rescheduled instruction trace file. In the algorithm, for
each signature, rescheduling logic rules and data dependencies are checked. Signatures
that satisfy all the rescheduling rules and data dependencies are scheduled at the same
access step. Otherwise, signatures are scheduled to the next access steps.

Maximum ILP Extraction Algorithm can be both applied to memory and non-
memory signatures. The Rescheduling Logic Rules do not break the original order
of instructions. We first apply the algorithm to memory signatures. Then, algorithm is
applied to non-memory signatures. The maximum parallelism can be easily calculated
by using Equations 2 and 3. For memory instructions, the number of memory read
write ports can be calculated as follows:

MEMwrite = maxt(wt) (2)

MEMread = maxt(rt) (3)

where wt and rt is the number of write and read instructions, respectively, at access step
t.

Let λ be defined as the number of access steps in the rescheduled instruction trace
file. Then average parallelism can also be calculated as follows:

pave =
⌈∑λ

t=1 nt

λ

⌉
(4)

3.3. Optimizing Resources for VLIW Tailoring
Maximum ILP extracted by Algorithm 1 is important because fastest execution

requires maximum parallelism. However, implementations based on maximum paral-
lelism will be inefficient in terms of area and power consumption. Therefore, we have
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Algorithm 1: Maximum ILP Extraction Algorithm
Input: Instruction Trace File and Data Dependency Graph
Output: Rescheduled Instruction Trace File

1 Rescheduled Instruction Trace File, is initialized as empty ;
2 Rescheduled_Access_Step_Pointer, which points to the already scheduled

instructions in Rescheduled Instruction Trace File, is initialized with 1;
3 foreach signature in the Instruction Trace File do
4 Check data dependencies and apply Rescheduling Logic Rules to the

signature against the signatures pointed by
Rescheduled_Access_Step_Pointer ;

5 if all the reordering rules are satisfied and no data dependencies exist then
6 add signature to the step pointed by Rescheduled_Access_Step_Pointer

in Rescheduled Instruction Trace File;
7 else
8 increment Rescheduled_Access_Step_Pointer;
9 add signature to the new access step;

10 end
11 end

designed a heuristic to reduce maximum parallelism. We optimize VLIW instruction
bundles by reordering instructions to different access steps. This helps to gain sig-
nificantly from resource usage while keeping the performance attained at maximum
parallelism.

We rely on the mathematical model while developing our heuristic. In the follow-
ing subsections, we firstly present our mathematical model, then explain the related
heuristic.

3.3.1. Mathematical Model
We assume that data dependency is stored as a graph. This graph is a polar di-

rected non-hierarchical acyclic graph Gs(V, E) where the vertex set V = {vi; i =
0, 1, ...,m} is in one-to-one correspondence with the set signatures and the edge set
E = {(vi, v j); i, j = 0, 1, ...,m} represents dependencies between operations. The
formal model of resource optimization can be achieved by using binary decision vari-
ables with two indices: W = {wi,t; i = 0, 1, ...,m; t = 1, ..., λ} and R = {ri,t; i =
0, 1, ...,m; t = 1, ..., λ}. The set of W consists of instructions which write to mem-
ory and the set of R consists of operations which read from memory or a register.
The indices of the binary variables relate to the instructions and access steps. Thus,
a binary variable, wi,t, is 1 only when signature vi is scheduled at access step t and
writes to memory or a register. λ represents the number of access steps calculated by
Algorithm 1. The first three constraints are formal models of our rescheduling rules
presented in the previous section. In other words Rule 1 guarantees write-after-write,
Rule 2 guarantees write-after-read and Rule 3 guarantees read-after-write sequencing.
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• Constraint 1 = Rule 1:

λ∑

t=1

t.wi,t −
λ∑

t=1

t.wj,t ≥ 1 ∀i, j = 1, ..m : (vi, v j) ∈ E (5)

• Constraint 2 = Rule 2

λ∑

t=1

t.ri,t −
λ∑

t=1

t.wj,t ≥ 1 ∀i, j = 1, ..,m : (vi, v j) ∈ E (6)

• Constraint 3 = Rule 3

λ∑

t=1

t.wi,t −
λ∑

t=1

t.r j,t ≥ 1 ∀i, j = 1, ..m : (vi, v j) ∈ E (7)

We also have to satisfy that each instruction should not appear more than once in
any access step. Hence, the next two constraints are formulated to realize this situation:

• Constraint 4
λ∑

t=1

wi,t = 1 ∀i = 1, ..m (8)

• Constraint 5
λ∑

t=1

ri,t = 1 ∀i = 1, ..m (9)

Each binary decision variable which is bound to an instruction must exist in exactly
one access step.

Our final constraint formulates pmax given by Equation 1. The model tries to mini-
mize the number of instructions at any access step t without changing the access steps:

• Constraint 6

pmax ≥
λ∑

t=1

wi,t +

λ∑

t=1

r j,t i, j = 1, ..m (10)

The objective is to minimize the maximum number of instructions at all access steps,
so as to lower the number of memory ports and number of concurrent operations.

min pmax (11)

Decision variables are summarized in Table 1. The formal model has provided
insights and forms the foundation of the genetic algorithm (GA) which is explained in
next section. Moreover, additional constraints and problem extensions could easily be
incorporated into the model for further improvements.
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3.3.2. Maximum ILP optimization heuristic
The genetic algorithm (GA) is designed to increase the utilization of VLIW without

decreasing the maximum performance found by Algorithm 1. This is achieved by
finding new schedules with more uniform instruction bundles at each access step. The
algorithm is based on a genetic algorithm (GA) in the literature [20]. The GA has been
used in many domains but it requires fine tuning such as population size, termination
conditions and etc. There does not exit a single GA configuration that works for all
problems. We have made several experiments and selected the GA parameters in order
to reduce exploration time and obtain good solutions. We have selected GA because the
instruction encoding could be converted to a chromosome encoding in a very simple
way. In addition, GA allows to solve multi solution problems because of its population
concept. The population allows designers to process the solutions which are favored
by the GA at the time of the execution. We only implement the existing best solution
in the population when GA.

The GA applies global scheduling, however the distance of rescheduling instruc-
tions from their original access step locations are bounded. We call this distance the
evaluation window. α represents the evaluation window size. An instance of GA is
initialized and run in an evaluation window until its termination criteria is met. This
allows us to decrease the design space and apply GA successfully.

The GA processes the rescheduled trace file generated by Algorithm 1 and produces
a new trace file. For example, the trace file in Figure 4 (b) is input to GA and the trace
file showing the final schedule in Figure 4 (c) is produced. As observed from the
figures, our heuristic has managed to decrease maximum parallelism (pmax) to 3 from
5, and as expected, the number of read and write ports has also decreased.

In Figure 4 (c), we also present which Rescheduling Logic Rules are applied to
the signatures by adding applied rule next to the signature. For example: Rule 1 is
applied to Signature S2,1. The rules are only applied to the instructions which have
data dependency. Therefore, the signatures that do not have any rules indicate that
Rescheduling Logic Rules haven’t been applied to them.

In addition, the GA identifies memory read signatures and remove them if they
satisfy the signature removal rule explained below.

Definition 3. Signature Removal Rule Let S i, S j be any two data read signatures in
S. For all k > 0, one of the duplicate read signatures is removed if following condition
is satisfied:

• Rule 4: ⟨S j, Ax, read, k⟩ is scheduled at the same access step ⟨S i, Ax, read, k⟩

The signature removal rule reduces the number of read instructions in an instruc-
tion bundle by removing duplicate read instructions scheduled at the same access step
during the execution of GA. When duplicate read instructions are removed, it allows
GA to schedule other instructions to these available slots. As a result, total number of
memory instructions is reduced. In addition, removing duplicate read instructions in
an instruction bundle may also reduce the number of memory ports when these slots
are kept empty.

In an evaluation window, instructions are selected for rescheduling from access
steps that have higher number of instructions than pave. These selected instructions are
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rescheduled to access steps that have lower number of instructions than pave. Evalua-
tion windows traverse trace files linearly and there is no overlapping between evalua-
tion windows. In the next evaluation window, a new instance of GA is initialized and
this process repeats from the beginning of the instruction trace file until the end.

For each evaluation window, the value of α is chosen from profiling information.
Our dynamic profiler tool provides the upper bound on α based on checking inter-
iteration loop and data dependencies or indirect jump blocks. As an example, in Figure
4 (b), α is 6. This is determined by the profiler; the loop bound is 22 instructions which
are reordered to 6 access steps in exploring maximum ILP step.

The GA can be applied to memory and non-memory instructions. Yet, we first start
by optimizing memory instructions and find the number of read/write memory ports.
Then, algorithm is applied to non-memory instructions. We prevent the number of
execution units to exceed the number of memory ports. When GA is applied on non-
memory instructions, the number of FUs and the composition of FUs are identified.
Following sections detail the important parameters of the GA.

Solution Encoding: We have observed that chromosome encoding can represent
VLIW instruction bundles without much effort. Each encoding is designed as one
dimensional array. Each element of the array represents an instruction. This array is
called the chromosome and each instruction is a gene of the chromosome. The example
shown in Figure 5 is encoded as shown in Table 2. There are eighteen instructions in
the given example. Each array element holds a value. This value is the access step each
instruction is scheduled. For example, instructions S 1,1, S 11,1 and S 12,1 are accessed at
step 1. Instructions S 2,1, S 3,1 and S 20,1 are accessed at step 2. A solution is feasible if
it does not violate any rescheduling logic rules given in Definition 2.

Fitness Function: The fitness function of a chromosome is identical to the objec-
tive function of the solution. The objective is to minimize the maximum number of
instructions as given in Equation (11). All the reordering have to satisfy data depen-
dencies and rescheduling logic rules. Otherwise the solution is checked to be infea-
sible. The number of access steps are fixed at the analysis step. Hence, reordering
instructions to different access steps improves resource usage by reducing maximum
parallelism given in Equation (1) but average parallelism given in Equation (4) is not
altered. Thus, fitter chromosomes use lower number of ports but guarantee the same
performance.

Generating New Members: A new member is generated by crossover method
from two parents that are chosen randomly from the population pool. The crossover
happens from a randomly chosen point of the genes. Nevertheless, the crossover point
should not violate any data dependencies and rescheduling logic rules. In that case,
a new point is chosen and this continues until a valid crossover is achieved. We also
apply single point mutation. A random gene is selected and scheduled to an available
location randomly. This improves diversity among children. Nevertheless, we have
observed that, the rate of mutation should be kept minimum due to data spatiality rule.
Due to spatial locality, scheduling a single gene to a different access step might generate
worse schedules repeatedly.

Population Size: There is a trade-off in evolutionary algorithm design. Large pop-
ulation size provides more diversity but increases processing time whereas small pop-
ulation size allows to process more generations but may not generate enough diversity.
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The population size is designed with two important criteria:

1. Our algorithm always operates in an evaluation window and we allow only fea-
sible solutions in the population. Therefore data dependency and rescheduling
logic rules must be applied to each solution and these operations are compute
intensive

2. Let c denote the number of access steps higher than pave and the value of c is less
than the evaluation window. Therefore, c

α is always less than 1

Based on given criteria, the formula for determining the population size is:

p(c,α) = max {2, ln(α) ∗ c} (12)

Figure 6 shows the increase in population size with respect to α of example in
Figure 4. It is assumed that c

α is the same in all evaluation windows. In the example,
we can observe from Figure 4 (b) that c

α =
2
6 . Initial population is generated randomly

until the population size is met.
Replacement: We admit a chromosome into the population if it is distinct and

fitter than the least fit chromosome. The worst member is discarded. This improves the
average fitness value of the population gradually while maintaining genetic diversity.

Termination: The algorithm terminates after
√
α ∗ c successive iterations where

the best objective value has not changed. From the example in Figure 4, Figure 6 shows
the change in number of successive iterations for termination criteria with respect to α
when c

α is fixed. The formula allows GA to converge to population’s best result in a
reasonable time.

Algorithm 2: Bypass Extraction Algorithm
Input: Instruction schedule produced by Maximum ILP optimization heuristic

and Control Flow Graph
Output: New Instruction schedule and bypass logic block connection list

1 Bypass_block_list, a list that holds the connections between execution units,
initially empty;

2 foreach Two consecutive instruction bundles in a basic block identified from
control flow graph do

3 if there are load and store operations between same or another execution
unit then

4 replace load and store operations with local register read/writes ;
5 add the source and destination execution units to the Bypass_block_list
6 end
7 end

3.3.3. Bypass logic extraction
Bypass logic extraction algorithm replaces redundant load/store operations in basic

blocks. Inside a basic block, two consecutive load/store instructions that transfer data
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between same or different execution units are replaced by bypass instructions and by-
pass blocks. Furthermore, during the execution of two consecutive VLIW instructions,
data is transferred between execution units through bypass blocks instead of through
memory with load/store instructions. Hence, this mechanism reduces the number of
memory accesses. Bypass blocks consist of a register and a multiplexer as explained in
Section 2. Bypass blocks are placed along the data paths of execution units as shown
in Figure 1, thus the latency of the bypass blocks do not take part on the critical path.

Algorithm 2 shows the bypass logic extraction algorithm. The algorithm processes
the final rescheduled trace file which is produced by the maximum ILP optimization
heuristic. Bypass logic extraction algorithm processes instructions in basic blocks iden-
tified by the control flow graph. In the algorithm, each basic block is traversed and
consecutive instructions with load/store operations to memory are identified. Identified
load/store operations are replaced with bypass instructions and execution units that ex-
ecute the bypass instructions are determined for insertion of bypass blocks between
these units.

4. Experimental Results

In this section, we present the results of our experiments. The results are obtained
by our trace based simulator [21]. Our dynamic profiler software tool uses PIN [22]
binary instrumentation library in order to capture execution traces, thus all the traces
consist of x86 instructions. However, our tool is built to work with different binary
instrumentation libraries. In order to show our method’s versatility, we have applied
our VLIW customization on FPGA and ASIC technologies, and for each technology,
we use two different algorithms from different domains.

For each technology, our simulator requires the area and execution costs for each
instruction. Table 3 presents the hardware costs of a single execution unit in Zynq
FPGA [23] and ASIC implementation. For FPGA, we rely on our FPGA database
which we hand coded in VHDL, synthesized, placed and mapped for Zynq FPGAs
[3]. All units are synthesized using Xilinx Vivado 2014.4 for Kintex-7 series which
is available on the Zynq FPGA and clock period is 10ns. The dynamic power of ex-
ecution unit is estimated with Vivado Power Measurement Tool. For ASIC, we have
modified CACTI [24] for estimating the area of data memories in ASICs. CACTI [24]
memory area estimations use following parameters, Block size 64 bytes, total size 4
GB, technology 32 nm, page size 8192 bits, burst length 8, internal prefetch width 8,
input/output bus width 64, operating temperature 350 K and no selected optimizations.
The area and dynamic power of non-memory operations are estimated via modifying
the ARM RISC model in McPAT [25] to include the components that we use in Table
3. The RISC model is configured with 1Ghz and uses 32nm settings of McPAT. In
order to calculate the costs of multiple execution units, the cost of a single execution
unit is aggregated. The interconnection network costs are omitted. The FPGA clock
period and RISC clock frequency figures are obtained from Zynq FPGA specifications
[23].

In our simulator, the performance costs are measured in terms of execution cycles.
However, the clock period is defined as a parametrizable input variable since hardware
fabrication metrics might substantially affect the clock period of the system. Thus, our
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simulator can report both the execution cycle and overall execution time depending on
the designer’s choice. In our previous work [3], we have investigated the change of
memory access speed with respect to the number of ports for our multi-port memory
implementation [18] in the Zynq FPGA platform. In all our simulations, the memory
instructions are assumed to take one clock cycle. The non-memory operation perfor-
mance costs are taken from [26, 27] for ASIC and FPGA execution units. Since, our
dynamic profiler tool uses PIN binary instrumentation library [22], our traces are ob-
tained by running the algorithms on an x86 machine.

Memory port customization is crucial because it is an upper bound for the number
of execution units. If there is not enough memory bandwidth for execution units, they
become redundant for VLIW. Thus, higher number of memory ports creates bigger data
path with higher number of execution units. This increases area-delay product which
indicates that the VLIW implementation may get more inefficient than the RISC coun-
terpart. On FPGAs, we have already shown that the effect of the number of read/write
ports on the memory access times is not uniform [3]. We also showed that increasing
number of ports degrades memory access times, and increasing the number of write
ports degrades the memory performance more than increasing the number of read ports
[3]. This is due to the fact that, in order to realize multiple write ports, extra memory
banks are required. The data in the banks are connected with multiplexers that increase
the delay as the number of banks increases, thus lowering the access speeds.

We have applied our VLIW customization method on two different algorithms.
These are string matching and BLAS algorithms [28]. Our dynamic profiling tool
explained in Section 3.1 has generated the traces. String matching has been studied
extensively and a significant amount of algorithms has already been proposed [29].
Benchmark algorithms are shown in Table 4, which also shows the main search method
of each string matching algorithm. Although, there are different methods, all of them
are highly memory intensive [29]. Input set of string matching algorithms contains one
centimorgan DNA base pairs which is approximately one million characters of text. In
this text string, we search for a pattern with a length of ten thousand characters and
each character is one byte, hence a pattern is 10kB long. The text alphabet size is four.

BLAS [30] benchmarks have been one of de facto benchmarks from high perfor-
mance computing to embedded systems. BLAS benchmarks include numerical, linear,
scalar, vector, vector-vector, matrix-vector and matrix-matrix operations. Today, differ-
ent application domains necessitate execution of complicated linear algebra programs
which make use of a few different low level operations. Hence, every improvement
in those low level operations make significant impact on the overall application perfor-
mance. BLAS algorithms are more compute-intensive than string matching operations.
Therefore, wider parallelism will require more complicated ALU units which are suit-
able for experimenting on ASIC technologies. BLAS input data has the following
properties. We set the size of input matrices to 100 in all matrix-matrix operations,
200x100 to matrix-vector operations. Rest of the arrays are modified to 1000 elements
and benchmarks with scalars are modified to iterate 1000 times. Input data is assumed
to fit in the memory.

In our simulator, we have assumed that loading data from external memory to
FPGA memory is handled by a separate buffering mechanism, which controls a multi-
paged memory architecture. When one page is consumed, data handling mechanism
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switches to the other page which is already loaded with data. Thus, memory references
take constant amount of cycles. Xilinx Zynq family has up to 3020kB of memory [23],
therefore our paged memory architecture can load multiple pages which will hide the
latency of loading patterns from BRAMs. The amount of buffer pages can be allocated
according to the requirements of the input data and available memory aside from the
processor implementation.

We have evaluated the performance and efficiency of our tool in two sets of ex-
periments. In the first set, we compared our method with a recent graph-based force-
directed parallelism estimation method of Jordan et at. (JPE) [16]. This evaluation
is explained in Section 4.1. In the second set, we compare the performance of our
customized VLIW processor model with a RISC processor model. RISC processors
are widely used in embedded systems and they are freely available on FPGA systems.
Altera Nios-II [31] and Xilinx Microblaze [32] are two of the most important soft
RISC processors. Both of them can be customized in order to have different sizes of
caches, arithmetic units and etc. In maximum customizations, they are connected to
the true dual ports of block rams (BRAMs) inside the FPGAs. Thus, our customized
VLIW is compared with a RISC processor model which is the de facto baseline archi-
tecture. This is explained in Sections 4.2 and 4.3. We do not generate any code for
the customized VLIW, therefore comparing our reference VLIW model with a VLIW
processor is out of scope of this paper. Our VLIW customization can be used as the
starting point for customizable VLIW processors.

4.1. A Comparative Study of VLIW Customization
We have extracted the longest basic block traces in string matching and BLAS

algorithms because the JPE algorithm only works with basic blocks. Since in [16],
authors have explained that the selection of scheduling algorithm is independent from
parallelism estimation method, we have used our rescheduling logic rules given in
Section 3.1 so as to make an objective comparison between estimation methods. If we
had used another scheduling algorithm, we would not be able to understand whether
the improvement is due to the estimation method or the scheduling method. We apply
JPE and our algorithm to selected applications. Then, we extract the required number
of read/write ports and execution units calculated by both algorithms.

In Tables 5 and 6, we compare the best memory configurations, hardware usage
and power consumption of execution units when both deliver the same performance in
the selected benchmarks that are shown in Figures 7 and 9. Thus, in order to provide
same execution performance, JPE requires more components in the execution units
and higher number of memory ports. Table 5 also presents the number of memory
ports and the number of nodes in the basic blocks (BB) for clarity. Higher number of
ports increases both the FPGA/ASIC memory area and power consumption. Selected
test cases from string matching and BLAS show that our method can suggest better or
the same configurations than JPE in all test cases. In most of the benchmarks, we have
observed that when our method decreases the number of ports compared JPE, these
reductions of memory ports correspond to LD/ST or BR units in the execution units.

Table 7 compares the solution finding times of JPE algorithm and ours. We have
observed that our algorithm can converge to a solution faster than JPE, because our GA
method can explore and rule out worse schedules with the help of mutation operator.
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However, for graphs with very large number of basic block nodes, our algorithm spends
more time due to increased population size and termination criteria of the GA.

4.2. Results of VLIW Customization of String Matching Algorithms with FPGA Tech-
nology Parameters

All our multi-port and true dual port (TDP) memory configurations have 32 bits
word size and depth is 4096. With the given memory configuration and development
platform, 2R 1W true dual port memory consumes 16 BRAMs and 1 LUT on Xilinx
FPGAs. Table 8 presents the TDP RISC processor model components that we have
used in the simulator. RISC model has been simulated with the perfect cache behavior.
Our VLIW has performed much better with cache misses enabled in our simulator.
Therefore, we have opted to present the worst case improvements of our VLIW versus
all RISC core configurations.

We present the experimental results of string matching algorithms in Figure 7 and
Figure 8. Our custom VLIW model runs 3x faster on average than the RISC model.
Given our dataset, one of bit-parallel string matching algorithms, FSBNDM has one
of the best performance among all the algorithms. Bit-parallel string matching algo-
rithms have exploited the multi-port very efficiently and executed much faster than
comparison and automata based algorithms. This is because the dominant operators
in bit-parallel algorithms are shift-and operations. Moreover, their implementations
allow full utilization of memory bandwidth in most of the algorithms’ running time.
In contrast, automata algorithms heavily use branch logic and comparison algorithms
use multiple cycle operators such as multiplication and division. These two reasons
prevent automata and comparison based algorithms from achieving high speed ups.

Figure 8 also presents the area-delay product of customized VLIW multi-port con-
figurations which are normalized to RISC with True Dual Port memory (RISC TDP).
Results show that majority of multi-port configurations are more efficient than RISC
TDP implementations. However, algorithms with multiple write ports can get ineffi-
cient due to the excessive usage of BRAM and LUT. Table 5 presents the consumption
of BRAM and LUT blocks of VLIW data memory. Number of BRAMS and LUTs
increase with increasing read and write ports. Figure 7 also shows the reduction of
memory operations after bypass extraction algorithm is applied. The algorithm has
managed to reduce load/store operations between 5% to 10%.

Figure 8 shows the VLIW memory configurations. We have observed that read-
/write port numbers and average parallelism of an algorithm do not necessarily provide
the performance hint. For example, FSBNDM algorithm has the least average paral-
lelism among all algorithms. TVSBS has one of the largest number of read/write ports
and highest average parallelism. However, it is much slower than FSBNDM. This is
due to the fact that FSBNDM implementation is more efficient in TVSBS algorithm.
The main reason is TVSBS employs integer division operation and this slows down its
performance.

When we compare the average power consumptions of RISC and VLIW, Figure 8
shows that VLIW is more power hungry. The amount of work performed by VLIW
is more than the RISC counterpart. To reduce the power consumption, one can reduce
the clock frequency of the VLIW system implementation which will reduce the power
consumption.
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4.3. Results of VLIW Customization of BLAS Algorithms with ASIC Technology Pa-
rameters

BLAS results are shown in Figure 9 and Figure 10. Table 9 presents the TDP RISC
processor model components that we have used in the simulator. Experiments have
shown that benchmarks that are inherently parallel are parallelized eminently. We have
observed that significant performance gains are observed when either given algorithm’s
average parallelism is high or dominant operation of the algorithm is a costly operation
such as division operation.

Exploiting available parallelism with available memory ports provides performance
advantage over RISC. Another advantage occurs when dominant operation is a costly
operations because multiple Execution Units of the VLIW can instantiate this opera-
tion.

Figure 9 also presents the area-delay product of the multi-port configuration which
are normalized to dual port configurations. All of the benchmarks except two are more
efficient than dual port configuration. Unlike string matching algorithms on FPGA,
algorithms with multiple write ports on ASIC are more efficient. This is because addi-
tional logic introduced by multiple write ports are handled more effectively and inher-
ent speed of ASICs are more than FPGAs. In the area-delay product measurements,
we have not not included the areas of execution units because it has prevented to ob-
serve the change in performance when memory area differs. Similarly, we have not
included the instruction memory in this work because instruction memory can also
depend mostly the instruction selection during the compile time.

The number of ports hints the success of our method in extracting performance
compared to RISC. From the Figure 10, ICAMAX and DGEMM can be identified as
two of the least port consuming algorithms. Nevertheless, they improve the execution
time 4x on average compared to RISC model.

Figure 10 shows that DGEMV, DTRMV and SCASUM benchmarks have gener-
ated much higher number of port sizes than the average parallelism value. This could
be overcome by increasing the evaluation windows size, α. Yet, larger evaluation win-
dow increases the design space and solution finding time drastically.

It is also shown in Figure 10 that CSWAP, ICAMAX and CCOPY have memory
configurations which are less than the average parallelism. In these benchmarks, GA
has found suitable schedules where Signature Removal Rule explained in Definition 3
is applied. Therefore, unnecessary memory read instructions are deleted, hence better
memory configurations are produced.

Bypass logic has managed to reduce load/store operations up to 11% among BLAS
algorithms. For algorithms which have higher parallelism in memory instructions get
significant advantages, because multiple bypass logic blocks could be placed, when
multiple data forwarding is detected. This has allowed to create an extra slot for
scheduling multiple operations.

Average power consumption drastically increases when VLIW exploits the paral-
lelism in the algorithms as shown in Figure 9. Algorithms which are inherently parallel
like CCOPY also consume a lot of power due to increasing capacitance of larger mem-
ory and execution units. Reducing the number of memory ports and execution units
can decrease the power consumption.
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As an example, one of the customized VLIW reference model is shown in Figure
11. It is the output of FSBNDM string matching algorithm. It has three read ports and
one write port. There are three execution units. Functional Units 1 and 2 are exactly
the same. Each FU consists of an ALU, Branch Logic and Load/Store Unit. Functional
Unit 3 has only one ALU. Bypass logic connects the output of Functional Unit 1 to the
input of Functional Unit 2.

5. Related Work

For the last three decades, several studies have been performed on VLIW cus-
tomization. Exploring available ILP from a given program has been crucial for appli-
cation specific VLIW processors in order to reduce compiler effort and prevent redun-
dant hardware. State of the art ILP extraction algorithms are based on either instruction
traces [33, 6, 4, 33, 5, 34, 35, 36, 37] or dependency graphs [38, 39, 15, 40, 41, 42].

The most important distinctions between compile time methods and our method
are twofold. First of all at the compile time, the compiler needs the details of the mem-
ory and execution units such as the number of memory ports and the composition of
execution units in order to apply scheduling heuristics such as list scheduling. Hence,
this is the reason why the state-of-the-art study from Jordan et al. [16] uses distribution
graphs to have a priority resource constraint for their list scheduling algorithm. Sec-
ondly, at the compile time data dependencies are not extracted fully. For this reason,
many compute intensive data dependency analysis methods were suggested.

In more detail, in order to apply dependency checking and structural hazards at the
compile time, compilers apply several optimizations. All the hazards must be figured
out at the compile time. Software pipelining, trace scheduling, predicated execution
and speculative execution have been major compiler optimization for improving ILP.
Trace scheduling [43] required additional code when operations are reordered. Specu-
lative execution [44] helps the reduction of compensation code and moves instructions
over the branches. The speculatively executed code should not produce any stalls to the
processor pipeline when it is not needed. Speculative execution can be implemented
as hardware or software. Software pipelining [45] aims at compacting loop kernels by
minimizing initiation intervals. Hierarchical reduction [45] is the method to simplify
scheduling process by compacting and representing scheduled program components
as a single component. These scheduled components preserve and expose scheduling
constraints to the compiler and continues until all components are reduced to a single
program node. Approaches that extract ILP parallelism that do not work with execu-
tion traces require memory data dependency analysis methods such as Omega test [46],
GCD test [47] and points-to-analysis [48] which are computationally expensive.

In contrary to previous compile time methods, our Genetic Algorithm (GA) that is
explained in Section 3.3.2 analyzes execution traces where all the address and register
dependencies are followed from real memory addresses and registers. Therefore, all of
the data dependency and structural hazards can be solved. Moreover, by the time our
algorithms execute, the information such as the number of memory ports and execution
units are unknown. Nevertheless, our method is designed to generate aforementioned
information.
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Previous works on VLIW customization have discussed that due to large design
exploration space, parallelism information should only be used on the most relevant
parameters of VLIWs. Therefore, traditionally, data path customization of VLIWs
has been studied extensively [42]. A meager number of studies has also investigated
the cache geometries which is essentially the generic cache organization problem that
is coinciding with general purpose superscalar processor cache design [49, 50, 40].
Instead, we tackle both tackle VLIW data path by deciding the number and composition
of execution units and the number of memory ports which provide sufficient memory
bandwidth to execution units.

Recent work [51] considers finding the efficient number of VLIW execution clus-
ters while keeping memory and register file topology unchanged. The memory band-
width which is consumed by selected execution units are assumed to be supported by
available memory topology, thus the number of memory ports are fixed. In contrast,
our method finds the required memory number of memory ports which guarantees the
memory bandwidth and the combination of functional units. Therefore, the data path,
namely the number and composition of execution units and their compositions guaran-
tee not to exceed the available memory bandwidth.

Trace based design space exploration in [52] extracts and schedules only non-
memory instructions from a given architecture. Thus, the scheduler must be provided
with the number of memory ports and number of functional units as templates. How-
ever, our method do not need templates. It can generate any combination of execu-
tion units and number of memory ports from the application. Our default exploration
method is bounded ILP extraction. However, an upper bound on number of execution
units and memory ports can be given.

Moon and Ebcioglu [36] have performed an empirical study characterizing suitable
memory ports in VLIW processors. They have identified several VLIW templates of
ALU, memory configurations. They measure ILP and execution speed up. Neverthe-
less, selected templates are not tailored for a given application and the composition of
execution units is not selected. Execution units are identical ALU units. In addition,
memory ports are selected based on maximum parallelism extracted from the given
trace. However, coarse grain execution unit selection and maximum parallelism based
VLIW designs result in poor memory utilization when the number of memory ports
increase [53]. Our method uses average parallelism and maximum parallelism, tai-
lors the composition of execution units and the number of memory ports for a given
application. Thus, our approach yield better memory utilization.

A recent study has presented a modified list scheduling to extract parallelism for
sharing VLIW register ports [54]. Authors have focused on adding more constraints to
list scheduling algorithm for preventing resource contentions between different execu-
tion units while keeping performance degradation at low levels. However, unlike our
work memory operations and non-memory operations haven’t been treated separately
which can relax constraints significantly.

Jordans et al. [16] have studied different parallelism estimation methods. When ap-
plied on a modified version of list scheduling algorithm, force based parallelism have
provided more accurate estimation of ILP than maximum and average paralellism when
they are coupled with binary search based estimation strategies. Our method extracts
parallelism information from dynamically profiled execution traces as opposed to static
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profiling, therefore it does not require further estimation strategies because all the con-
trol flow is extracted from the trace. Similarly, when working with traces, calculating
distribution graph based parallelism estimation methods add extra computation cost.
Therefore, average parallelism estimation methods tend to be more suitable.

Nicolau and Fisher have showed the capabilities of VLIW hardware by measuring
available (ILP) and applied trace scheduling [4][5]. They measured execution traces
and show speedups of 1000 for an ideal machine which has infinite hardware resources,
perfect branch prediction, perfect address disambiguation. Similarly, Liao and Wolfe
[6] has studied how VLIWs are suitable in video applications domain. They have have
used trace driven simulation to evaluate video applications. Traces are scheduled and
average parallelism is measured under ideal machine conditions and all operations are
single cycle operations. On the other hand, our method does not require that "ideal
machine" to perform. Our ILP extraction method works with instruction traces which
are profiled from any given machine architecture.

There have been studies to extract ILP from a program for a given VLIW architec-
ture. The authors in [35] explored ILP for an 8-way VLIW with different execution unit
templates. Instruction traces are scheduled in order to extract basic block and branch
statistics, data sizes, working set sizes, and average parallelism. Authors have found
that block level scheduling has not provided enough parallelism for 8-issue parallelism.
Similarly, the results in [34] present that scheduling beyond basic blocks can support
performance which is more than two instructions per cycle on average. Nevertheless,
this performance is only possible if necessary memory bandwidth is provided. Authors
have used average parallelism for their parallelism metrics. On the contrary, we apply
global instruction scheduling. Our method extracts and schedules memory and non-
memory operations separately. In the beginning, memory instructions are scheduled
without any resource constraints. In this way, maximal memory bandwidth is extracted
and the number of memory ports are chosen. Then, the number of memory ports is used
as a constraint and non-memory operations are scheduled. Hence, the overall schedule
of non-memory operations provide the necessary functional units.

Smoothability metric presented by Theobald et al. presents a metric for how evenly
the parallel portions of applications are distributed [33]. Their work has shown that
smoothability can be achieved by either the given application’s parallelism is evenly
distributed or the underlying architecture and the scheduler can provide enough paral-
lelism to increase performance by scheduling parallel instructions. However, they do
not consider how memory operations and non-memory operations are distributed over
applications. Detection for smoothability requires multiple runs, because it is architec-
ture specific. Different architectures or data inputs yield different results. Our method
utilizes maximum parallelism, average parallelism and memory utilization metrics in
order to characterize the given application.

Lam and Wilson’s study of instruction traces which consist of many branches has
showed that parallelism could be seriously limited by memory address ambiguity and
control dependency during compile time [37]. Similarly Fisher et al. have showed that
ILP extraction with global scheduling can provide significant performance improve-
ments over superscalar RISC [43][45]. Hence, software pipelining and trace schedul-
ing have become the major compiler optimizations for VLIWs. Software pipelining
[45][55] aims at compacting loop kernels by minimizing initiation intervals. Trace
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scheduling [43] extracted and scheduled highly probable traces beyond basic blocks.
As opposed to ILP extraction for code generation methods, our method works pro-
vides a fast way to obtain a single design point for VLIW customization. Thus, it can
easily be coupled with existing design space exploration frameworks for finding the
pareto-design curve of underlying architecture [40, 41].

6. Conclusion

In this paper, a method for VLIW customization was presented. The success of a
VLIW customization method is dependent on its capability of extracting the existing
ILP from a given algorithm. Hence, while designing our VLIW customization method,
we have made three design decisions for maximizing ILP extraction. First of all, we
have chosen to work with execution traces that have allowed us to capture the exact
data flow and control flow of the given algorithm. Second, we have differentiated mem-
ory instructions and non-memory instructions because customizing VLIW multi-port
memory from memory operations have provided better memory utilization. Moreover,
processing non-memory operations for data path exploration has allowed us to increase
performance and memory efficiency. Lastly, we have designed a genetic algorithm that
processes execution traces in evaluation windows to cope with large design exploration
spaces. Our method based on the aforementioned design decisions has similar or more
compact customized VLIW processor configurations than the state-of-the-art method
on selected benchmarks. In addition, performance, power consumption and area-delay
product metrics have showed that our customized VLIW models are faster and more
efficient than RISC processor models.
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FIGURES 27

Figure 1: VLIW Architecture with Functional Units and Multi-port Memory



  

FIGURES 28

Figure 2: Blocks of Functional Unit



  

FIGURES 29

Figure 3: VLIW Instruction Word Array



  

FIGURES 30

Figure 4: Memory port size optimization example by using memory instruction traces
(a) Extracted memory trace file from a sample sequential code (b) Maximum paral-
lelism obtained after Maximum ILP Extraction Algorithm is executed. Issue slot size
= 5, Memory ports = 5R 2W, (c) Optimized parallelism with minimum memory port
size after executing Maximum ILP optimization heuristic. Issue slot size = 3, Memory
ports = 3R 1W



  

FIGURES 31

Figure 5: Data dependencies between memory instructions are shown with edges be-
tween vertices, vertices can also have dependencies with registers instead of memory
address



  

FIGURES 32

Figure 6: The graphs show the increase in population size and the number of iterations
for termination criteria for the given example in Figure 4



  

FIGURES 33

Figure 7: Custom VLIW compared to RISC core with FPGA cost parameters for string
matching algorithms



  

FIGURES 34

Figure 8: Number of ports of the multi port memory for string matching algorithms



  

FIGURES 35

Figure 9: Custom VLIW compared to RISC core with ASIC cost parameters for BLAS
algorithms



  

FIGURES 36

Figure 10: Number of ports of the multi port memory for BLAS algorithms



  

FIGURES 37

Figure 11: Customized VLIW Architecture with three Execution Units and Composi-
tion of Each Functional Unit



  

TABLES 38

Decision Variable Definition

ri,t 1 if read operation i is executed at access step t, 0 otherwise
w j,t 1 if write operation j is executed at access step t, 0 otherwise

pmax,α Maximum parallelism within a window of α access steps

Table 1: Decision variables used in the model



  

TABLES 39

S1,1 S2,1 S3,1 S5,1 S6,1 S8,1 S11,1 S12,1 S15,1

1 2 2 3 3 4 1 1 4

S16,1 S17,1 S19,1 S20,1 S21,1 S24,1 S25,1 S1,2 S2,2

4 5 5 2 5 3 6 6 6

Table 2: Solution encoding of given example after recommendation step



  

TABLES 40

FPGA Resources ASIC Resources
Unit LUT FF Mux DSP48e Power (W) Area (mm2) Power (W)

Floating Point Unit 554 720 110 - 1.7 1.2 0.848
Arithmetic Logic Unit 80 350 - 1 0.971 0.25 0.04

Load/Store Unit 8 32 32 - 0.580 0.11 0.0024
Branch Unit 34 32 32 - 0.476 0.1 0.0022

Division 1250 3200 1100 - 8.5 0.32 0.08

Table 3: Resource usage and Power consumption estimations of the Execution Unit in
Zynq FPGA and ASIC



  

TABLES 41

Abbreviation Algorithm Type

FSBNDMQ
Forward Simplified Backward Nondeterministic

bit-parallel
DAWG Matching with q-grams

BMH-SBNDM
Backward Nondeterministic DAWG

bit-parallel
Matching with Horspool Shift

KBNDM
Factorized Backward Nondeterministic

bit-parallel
DAWG Matching

FAOSO Fast Average Optimal Shift Or bit-parallel

SEBOM Simplified Extended Backward Oracle Matching automata

FBOM Forward Backward Oracle Matching automata

SFBOM Simplified Forward Backward Oracle Matching automata

TVSBS
TVSBS: A Fast Exact Pattern Matching

comparison
Algorithm for Biological Sequences

FJS Franek Jennings Smyth String Matching comparison

GRASPM
Genomic Rapid Algorithm for

comparison
String Pattern Matching

Table 4: String Matching Algorithms and abbreviations



  

TABLES 42

Jordan et al. Ours

Mem. FPGA ASIC Mem. FPGA ASIC

Benchmark BB
R, W BRAM LUT

Power Area Power
R, W BRAM LUT

Power Area Power

Nodes W (mm2) W W (mm2) W

FSNBDM 28 4R, 1W 31 1 0.243 901 0.26 3R, 1W 24 1 0.220 621 0.13

SEBOM 31 3R, 1W 64 57 0.220 621 0.13 3R, 1W 64 57 0.220 621 0.13

FJS 63 4R, 2W 64 57 0.297 939 0.28 3R, 2W 48 49 0.275 801 0.21

FAOSO 113 3R, 1W 24 1 0.220 525 0.13 3R, 1W 24 1 0.220 621 0.13

TVSBS 124 4R, 2W 64 57 0.297 939 0.28 3R, 2W 48 49 0.275 801 0.21

BMH-SBNDM 36 5R, 2W 80 64 0.3200 1155 0.38 4R, 1W 31 1 0.243 901 0.26

CAXPY 48 3R, 3W 72 86 0.305 1003 0.26 3R, 2W 48 49 0.275 801 0.21

CCOPY 46 6R, 4W 192 174 0.401 2303 0.39 4R, 4W 127 98 0.356 1544 0.37

CSSCAL 16 3R, 2W 48 49 0.275 801 0.21 2R, 2W 31 23 0.215 572 0.18

DGEMM 60 4R, 1W 31 1 0.243 901 0.26 3R, 1W 24 1 0.220 621 0.13

DGER 46 3R, 1W 24 1 0.220 525 0.13 3R, 1W 24 1 0.220 621 0.13

SCASUM 19 8R, 2W 128 162 0.407 2633 0.30 8R, 1W 64 1 0.369 2279 0.23

CSROT 51 4R, 4W 127 98 0.357 1544 0.37 3R, 3W 72 86 0.305 1003 0.37

DTRSM 54 6R, 1W 56 1 0.289 1518 0.20 5R, 1W 48 1 0.266 1191 0.18

Table 5: Resource and power consumption of memories that are recommended by
Jordan et al. [16] and our method



  

TABLES 43

Jordan et al. [16] Ours JPE’s redundant HW

FSNBDM 3 * ALU, 2*BR, 3 * LD/ST 3 * ALU, 2 * BR, 2 * LD/ST 1 * LD/ST
SEBOM 3 * ALU, 2 * BR, 2 * LD/ST 3 * ALU, 2 * BR, 2 * LD/ST -

FJS 3 * ALU, 2 * BR, 4 * LD/ST 3 * ALU, 2 * BR, 3 * LD/ST 1 * LD/ST
FAOSO 3 * ALU, 2 * BR, 2 * LD/ST 3 * ALU, 2 * BR, 2 * LD/ST -
TVSBS 3 * ALU, 2 * BR, 4 * LD/ST 3 * ALU, 2 * BR, 3 * LD/ST 1 * LD/ST

BMH-SBNDM 4 * ALU, 3 * BR, 3 * LD/ST 3 * ALU, 2*BR, 3 * LD/ST 1 * ALU, 1 * BR
CAXPY 3 * FP, 3 * ALU, 3 * BR, 3 * LD/ST 3 * FP, 3 * ALU, 1 * BR, 2 * LD/ST 1 * BR
CCOPY 2 * ALU, 6*BR, 6 * LD/ST 2 * ALU, 4*BR, 4 * LD/ST 1 * BR , 1 * LD/ST
CSSCAL 3 * FP, 3 * ALU, 2 * BR, 3 * LD/ST 3 * FP, 3 * ALU, 2 * BR, 2 * LD/ST 1 * LD/ST
DGEMM 3 * FP, 3 * ALU, 2*BR, 3 * LD/ST 3 * FP, 3 * ALU, 2 * BR, 2 * LD/ST 1 * BR

DGER 3 * FP, 3 * ALU, 2 * BR, 2 * LD/ST 3 * FP, 3 * ALU, 2 * BR, 2 * LD/ST -
SCASUM 4 * FP, 4* ALU, 2*BR, 6 * LD/ST 3 * FP, 3* ALU, 2*BR, 6 * LD/ST 1 * FP, 1 * ALU
CSROT 4 * FP, 4* ALU, 2*BR, 4 * LD/ST 3 * FP, 3* ALU, 2*BR, 3 * LD/ST 1 * FP, 1 * ALU, 1 * LD/ST
DTRSM 2 * FP, 2* ALU, 2*BR, 4 * LD/ST 2 * FP, 2* ALU, 2*BR, 3 * LD/ST 1 * LD/ST

Table 6: Resource Consumption of Execution Units and Jordan et al.’s (JPE) redundant
hardware compared to ours



  

TABLES 44

Jordan et al. [16] Ours
Our Imp.

Benchmark Cycles Cycles
FSNBDM 27,520 4,320 6.3x
SEBOM 21,780 4,780 4.5x

FJS 40,810 103,000 -2.5x
FAOSO 128,150 1,107,020 -8.6x
TVSBS 260,360 1,317,250 -5x

BMH-SBNDM 80,640 20,130 4x
CAXPY 100,260 64,400 1.5x
CCOPY 45,960 31,040 1.5x
CSSCAL 16,820 1,330 12x
DGEMM 133,560 98,090 1.3x

DGER 130,390 31,040 4.2x
SCASUM 13,360 1,580 8.4x
CSROT 205,920 68,430 3x
DTRSM 76,280 72,840 1.05x

Table 7: Comparison of runtime of ours and Jordan et al. [16]



  

TABLES 45

Execution Unit Data Memory
Area (mm2)

Power (W)
Area (mm2)

Power (W)
1* FP, 1 * ALU, 1 * BR, 1 * LD/ST 2R, 1W

Without Division
676 * LUT, 1810 * FF,

3.7 16 * BRAM, 1 * LUT 0.198
174 * Mux, 1 * DSP48e

With Division
1926 * LUT, 5010 * FF,

12.2 16 * BRAM, 1 * LUT 0.198
1274 * Mux, 1 * DSP48e

Table 8: The area and power consumption of TDP RISC model used in our FPGA
simulations



  

TABLES 46

Execution Unit Data Memory
Area (mm2)

Power (W)
Area (mm2)

Power (W)
1* FP, 1 * ALU, 1 * BR, 1 * LD/ST 2R, 1W

Without Division 1.66 0.9 493 0.12
With Division 1.98 0.98 493 0.12

Table 9: The area and power consumption of TDP RISC model used in our ASIC
simulations
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