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Abstract This paper deals with the mathematical modelling of a schedul-
ing problem in a heterogeneous CPU/FPGA architecture with heterogeneous
Communication delays in order to minimize the makespan, Cmax. This study
was motivated by the quality of the available solvers for Mixed Integer Pro-
gram. The proposed model includes the Communication delays constraints in
a heterogeneous case, depending on both tasks and computing units. These
constraints are linearized without adding any extra variables and the obtained
linear model is reduced to speed-up the solving with CPLEX up to 60 times.
Computational results show that the proposed model is promising. For an av-
erage sized problem up to 50 tasks and 5 computing units the solving time
under CPLEX is about few seconds.

Keywords Heterogeneous System · Task Scheduling · CPU/FPGA ·
Communication delays · Mixed Integer Program · CPLEX

1 Introduction

Real-time computing systems are increasingly used in several industrial do-
mains such as aerospace, avionic, rail, and automotive. During the manufac-
turing process, designers need development tools for the Verification and the
Validation (V&V) of modern and complex systems. Today, the simulation
phase is considered as an unavoidable part of the V&V cycle. In order to meet
the application requirements in terms of increasing computation rate and real-
time, the behavior of the system has to be validated first at the simulation
level before integrating the functionality into the real system.
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Due to the ever-changing face of technology, we lead in collaboration with
Airbus Helicopters1 research department the development of innovative sim-
ulation systems. The objective of this project is to bring reliability and com-
petitiveness to the avionic industry. The efficient way to achieve a real-time
capabilities and a high level of performance needed for these simulations is
to distribute computations over a cluster of heterogeneous architectures (see
[1]) with a combination of general CPUs (Central Processing Unit) and re-
configurable fabrics provided by standard FPGAs (Field-Programmable Gate
Array) circuit. In such systems, the multi-core CPUs provide raw computa-
tion rates and ease of programming while the reconfigurable logic offers high
performance per watt and adaptability to the application constraints.

Designers could exploit the existing partitioning in the application (i.e.
hardware-software and parallel-sequential hardware) which leads to several fea-
sible implementations whose performances vary with the chosen partitioning.
With the management of the parallelism intrinsic in the application, FPGA
technology could offer better performances comparing to CPUs up to 10x
[1] at lower frequencies. Using heterogeneous CPU/FPGA systems allows to
adapt the architecture according to the application constraints and thus to
optimize hardware resources. All these benefits emphasize hardware designers
to redirect their efforts on CPU/FPGA architecture. This heterogeneous ar-
chitecture offers the ability to address specific application constraints (timing
deadlines, power consumption, etc.) and leads to get the maximum benefits of
the performance of each part of the designed system.

The main challenge faced by developers using these architectures relates to
the mapping of the application tasks onto these resources (CPU and FPGA).
They need methods and tools that help to perform this mapping efficiently
while considering real-time constraints. This challenge involves the static and
the run-time task mapping. As highlighted in [2], the problem is how to assign
tasks to the available resources in order to optimize some performance criterion
such as the makespan, the load balance, etc.

From the computing point of view and considering that processors will
carry out various tasks with different data, our case is of MIMD (Multiple In-
structions Multiple Data) architecture according to Flynn’s taxonomy (which
is a classification of computer architectures, based on the number of streams of
instructions and data) [4]. From the operation research view and according to
El-Rewini [5], who made a classification of different scheduling problems, we
could say that our research focuses on scheduling problem with precedence and
heterogeneous communication delays. In this paper, we consider the determin-
istic case, where the task graph topology, the execution and communication
costs are known prior to execution.

Several researchers consider scheduling and load balancing problems in
different areas [8,18] such as flow-shop [20], job-shop [10,22], scheduling in
parallel and distributed systems [13,3], resource-constrained project problem

1 Airbus Helicopters is the leader in civil and military helicopter manufacturing.
http://www.airbushelicopters.com
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[9,21], [15,24], assembly line balancing problem [16], [17], process planning [26,
27], and simulation in a distributed environment [12,3].

It is well known that the most of classical scheduling problems are NP-
hard problems ([6] and [14]). Moreover, in practice the scheduling problems
are harder since they incorporate additional side constraints and / or optimize
more than one objective. In this paper, we propose a mathematical formula-
tion for our scheduling problem with the communication constraints. Then we
propose a linear formulation and a preprocessing step to reduce the size of this
model.
Contributions. In this paper the following contributions may be observed:
(i) A mathematical model for an heterogeneous computing architecture
CPU/FPGA with a heterogeneous Communication delays; (ii) We linearize
the model without adding any extra variables; (iii) We reduce the size of the
model by eliminating some disjunctive constraints. This leads to a model that
may contain only O(n) variables for a fixed number of computing units in the
case of graphs with high density, greater than 50%; (iv) Extensive compara-
tive analyses on generated simulation project instances are performed. They
confirm the quality of the reduced model.
Outline. This paper is organized as follows. Section 2 introduces the problem
of the “Task Scheduling in a CPU/FPGA Architecture” illustrated by an
example. Section 3 gives an overview of the related works. Our mathematical
models are exposed in Section 4. In Section 5, we present several results on
different instances of our scheduling problem. Then we conclude this work in
Section 6.

2 Problem description

The problem is to map efficiently the application (simulation project) tasks
onto a heterogeneous CPU/FPGA architecture. Figure 1 gives an overview of
the problem. The upper part of this figure shows the task graph of the simula-
tion project to separate. The middle part illustrates the heterogeneous network
of computing units on which the application should be mapped. The lower part
of this figure gives an example of a solution to the presented problem.

A task is an abstract object that corresponds to a non-empty set of in-
structions, and that has the following attributes: name, identification number,
type of implementation and the number of elementary instructions. There are
four types of implementation:

– Type 1: software exclusive task; it should be planned only on a CPU.
– Type 2: hardware exclusive task; it should be planned only on a FPGA.
– Type 3: hardware or software exclusive task; it could be planned on a

FPGA or on a CPU but not splitted between them.
– Type 4: hardware or software splittable task; it could be planned on a

FPGA or on a CPU or splitted between them.

The presented problem in the upper part of the Figure 1 contains 5 tasks to
be executed on 3 CPUs and 1 FPGA. The first table in this upper part gives
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Fig. 1 General overview of the problem

the processing times of each task depending on the chosen computing unit.
Precedence structure given in the tasks graph indicates that task 1 and task 3
has no predecessors, while tasks 4 and 5 have no successors. The edge weight
indicates the amount of exchanged data. In this example, the link from task
1 to task 2 indicates that task 2 needs a data of size 10 to be received from
task 1, before starting the execution. The time cost to exchange this amount
of data depends on the link between the processing units to whom the tasks
were assigned.

As shown in the middle part of Figure 1, the heterogeneous computing
system is composed by a set of cores and a set of FPGAs. They are linked by
different communication mediums (In Figure 1, the CPU cores are linked by a
shared memory and the FPGA communicates with the CPU cores via a bus).
The two tables in this middle part, give the communication rate (number
of exchanged data unit per unit of time) between the processing units and
the access cost, the fixed amount of time needed to start communication.
This network impacts the scheduling problem. For instance, if two tasks are
related by a precedence constraint, the communication delay between their
execution will depend on the link between the two processing units, to which
they are assigned. To clarify this point, the lower part of Figure 1 presents
a solution of this problem as a Gantt diagram. We highlight in this diagram
the communication effect on the scheduling solution. We could notice in this
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diagram, that the delay to send the 10 data units from task 1 to task 2 on the
FPGA is 0 + 0.5× 10 = 5 time units.

The scheduling and load balancing problem is a very generic problem,
which involves several fields such as: industry, project management and com-
puter science. The problem is to assign each operation (task) to a ma-
chine (CPU or FPGA) and to sequence the operations on the machines
(CPUs/FPGAs), such that a criterion is optimized, for instance the maxi-
mal completion time (makespan) of all operations (tasks) is minimized. More
precisely, we have to assign a set of tasks to a set of heterogeneous processing
units such that each task respects the precedence and communication con-
straints to guarantee that the semantics of the original program are preserved.
Therefore, for each task, we need to decide the time at which its execution will
start and the processing unit that is responsible for its execution. Each task
must be executed and the whole computation project should be planned on
the available resources. Note that a task can be executed on a given processor
only when all data from its predecessors become available to that processor.
There is no overlapping between tasks assigned to the same processing unit.
Each processing unit could execute only one task at a time. The preemption
is not allowed in our case. In practice, there are also some preferences to take
into account such as some tasks could be only executed on a certain group of
resources (see type of implementation of a task).

3 Related works

Rayward-Smith [38] was the first to address the Communication delays case
in solving Multiprocessors Scheduling Problem (MSP). He studied the case
with a unit Communication delays, prove that it is NP-hard and propose a
generalized list schedule. Chrétienne and Picouleau [25] did a survey for the
general case with communication delays. They presented a list of existing
variants on Multiprocessors Scheduling Problem with Communication Delays
(MSPCD) and give an overview of their complexity and solution methods. For
each class, they described the current knowledge regarding the edge between
easy and difficult problems.

The majority of the related works deals with a meta-heuristic based so-
lution techniques, since the MSPCD problems are NP-hard (see e.g. [6,14]).
Moreover, the practical scheduling problems are even harder since they incor-
porate additional side constraints and/or optimize more than one objective.
Hwang et al. [32] present a comparison of algorithms for the case of iden-
tical processors with communication cost. Luo et al. [35] review 20 greedy
algorithms for cases without communication. The m-machines problem with
communication delays has been proven to be NP-complete for arbitrary prece-
dence relations even for two processors in [37]. Nevertheless, there are some
special classes for which the polynomial time algorithms may be constructed
[19,33,37].



6 A. Ait El Cadi, O. Souissi, R. Ben Atitallah, N. Belanger, A. Artiba

Even though, prior to developing an effective heuristic, researchers usually
start with a mathematical programming formulation of the scheduling problem
under study. Although several mathematical programming models have been
developed, they typically do not perform very well for practically motivated
problem instances due to model formulation and/or computational difficulties
[40]. Unlu and Mason [40] give an overview of the different mathematical pro-
gramming formulations for the case without communication. They document
four different Mixed Integer Programming (MIP) formulations based on four
different types of decision variables: Assignment and positional date variables
[28], Linear ordering variables [36], Time indexed variables [39] and Network
variables [23]. We enumerate in our review three approaches that take into
account the communication delays: Davidović et al. [29,30] and Venugopalan
and Sinnen [41]. In these approaches, the suggested linearization increases the
size of the problem significantly. For example, linearized models contained
variables with up to 4 indices. We also noted that the introduced variables
allow some events to be over defined. For example, one set of variables assigns
tasks to processors and another set is used to store for each task the assigned
processor index. It is clear that the same information is coded twice.

4 Mathematical models

In this section, we aim to build a mathematical model for our scheduling
problem. Initially it deals with a simulation project – formed by several tasks
– to separate and to schedule within a given number of CPUs and FPGAs.
We propose here to model the problem described in Section 2. The notations
are described as follows:

– N : Set of n tasks;
– M : Set of m processing units (CPUs/FPGAs);
– G = (N,A): a given directed acyclic graph, where N is the set of tasks and
A is the set of arcs representing the precedence between tasks, i.e. (i, j) in
A means that task i must be performed before the task j.

– Pred(i): Set of tasks that precede task i;
– tik: Processing time of task i on processing unit k;
– cik,jl: The cost of direct communication between task i on processing unit
k and the task j on processing unit l;

– Fk : Set of tasks that should not be assigned to the processing unit k.

Communications depend on the architecture of the hardware used, such
as shared memory, Ethernet links, and so on. The network architecture (for
example full connected, ring, hypercube and star) also has an impact on the
communication. Generally, the communication cost is nonlinear, the commu-
nication cost function is defined as cik,jl = akl +

dij

rkl
, where akl is the fixed

communication cost between processing units k and l, dij is the size of data
sent from task i to task j, and rkl is the communication rate between the two
processors k and l. We assume that rkl = rlk and akl = alk.
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4.1 Non-linear mathematical model

There are many examples of an integer linear program models for solving
scheduling problems. But they do not take into account all the constraints.
For example, in assembly line balancing, Urban [16] build a model that mini-
mizes a number of used machines with a respect of precedence constraint. But
this model could not fit to our communication problem. In parallel computing,
Darte [7] gives another linear program but with no respect of communication
constraints. Also Chen and Lin [11] make a non-linear program which mini-
mizes the communication costs under a computing capacity constraints.

In this section, we propose a non-linear model with the communication
delay. For the decision variables, we use assignment and positional date vari-
ables:

xik =

{
1 if task i is assigned to the processor k;
0 else.

si - the starting time of task i.
We choose these variables since this choice reduces the number of variables,
used in [29] and [41].

The mathematical model can be formulated as follows:

minCmax (1)

subject to:

m∑
k=1

xik = 1 ∀i ∈ N (2)

si +

m∑
k=1

tikxik ≤ Cmax ∀i ∈ N (3)

si +

m∑
k=1

tikxik +

m∑
k=1

m∑
l=1

cik,jlxjlxik ≤ sj ∀j ∈ N, ∀i ∈ Pred(j) (4)si + tik − sj ≤ B(1− xikxjk)
or

sj + tjk − si ≤ B(1− xikxjk)
∀i, j ∈ N, ∀k ∈M (5)

xik = 0 ∀i ∈ Fk,∀k ∈M (6)

xik ∈ {0, 1}; si ∈ R+ ∀i ∈ N, ∀k ∈M (7)

The objective function (1) minimizes the makespan. The set of constraints
(2) means that each task must be assigned to one and only one processing unit.
The set of constraints (3) expresses that the Cmax (the makespan) corresponds
to the total length of the schedule (i.e. the maximum of time when the tasks
have finished processing). The set of precedence constraints (4) describes that
each task j which succeeds a task i must be carried out after the starting time
of task i, plus the processing time of its task and time of communications.
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The set of disjunctive constraints (5) asserts that two tasks assigned to the
same processing unit must not overlap. In these constraints we use B, a big
value such that the constraints hold only for the tasks assigned to the same
computing unit, i.e. xik = xjk = 1. The set of constraints (6) is aimed to avoid
the forbidden assignments.

4.2 A linear mathematical model

The constraints (4) and (5) are quadratic but the objective function and all
the other constraints are linear which made our program as Mixed Integer
Quadratic Constrained Program (MIQCP). In this section we propose a linear
mixed integer program.

The communication and precedence constraints (4) could be linearized, in
our case, without adding any extra variables. These constraints are equivalent
to:
si+tikxik+cik,jl(xjl+xik−1) ≤ sj ∀k, l ∈M ;∀j ∈ N, ∀i ∈ Pred(j) (4a)

To justify the equivalence between the constraints (4) and (4a), let
i and j two tasks such as i is a predecessor of j, i.e. i ∈ Pred(j).
Since each task i ∈ N is assigned to exactly one and only one proces-

sor CPU or FPGA (i.e.
m∑

k=1

xik = 1), the two sums u =
m∑

k=1

tikxik and

w =
m∑

k=1

m∑
l=1

cik,jlxjlxik contain only one term different from zero. In fact

u = tik∗ and w =
m∑

k=1

xik(
m∑
l=1

cik,jlxjl) = cik∗,jl∗ , where xik∗ = xjl∗ = 1.

Hence, the constraints (4) are equivalent to the following constraints:
si + tikxik + cik,jlxjlxik ≤ sj ,∀k, l ∈M (4b)

The preceding constraints (4b) can be explicitly described by one of the
following three constraints:

si + tik∗ + cik∗,jl∗ ≤ sj ,
si + tik∗ ≤ sj ,

si ≤ sj .

These constraints are dominated by the following constraint:

si + tik∗ + cik∗,jl∗ ≤ sj .

Moreover, the constraints (4a) can be explicitly described by one of the
following four constraints:

si + tik∗ + cik∗,jl∗ ≤ sj ,
si + tik∗ ≤ sj ,

si ≤ sj ,
si − cik,jl ≤ sj .
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Again, these preceding constraints are dominated by the following constraint:

si + tik∗ + cik∗,jl∗ ≤ sj .

This justifies the linearization of constraints (4) by (4a).
The disjunctive constraints (5) could be linearized in two steps. First we

replace B(1− xikxjk) by B(2− xik − xjk):

(5)↔

si + tik − sj ≤ B(2− xik − xjk)
or ∀i, j ∈ N, ∀k ∈M.

sj + tjk − si ≤ B(2− xik − xjk)
Second, we introduce another set of binary decision variables δij . These

new variables could be seen as the decision that either we chose to execute
task i before j (δij = 1) or the opposite (δij = 0). The disjunctive constraints
become:

(5)↔

si + tik − sj ≤ B(2− xik − xjk) +B(1− δij)
and ∀i, j ∈ N, ∀k ∈M.

sj + tjk − si ≤ B(2− xik − xjk) +Bδij

(5)↔

si + tik − sj ≤ B(3− xik − xjk − δij)
and ∀i, j ∈ N, ∀k ∈M.

sj + tjk − si ≤ B(2− xik − xjk + δij)
And the model becomes a Mixed Integer Linear Program (MILP). The new

model is as follow:

minCmax (8)

subject to:

m∑
k=1

xik = 1 ∀i ∈ N (9)

si +

m∑
k=1

tikxik ≤ Cmax ∀i ∈ N (10)

si + tikxik + cik,jl(xjl + xik − 1) ≤ sj ∀k, l ∈M∀j ∈ N, ∀i ∈ Pred(j) (11)

si + tik − sj ≤ B(3− xik − xjk − δij) ∀i, j ∈ N, ∀k ∈M (12)

sj + tjk − si ≤ B(2− xik − xjk + δij) ∀i, j ∈ N, ∀k ∈M (13)

xik = 0 ∀i ∈ Fk,∀k ∈M (14)

xik ∈ {0, 1}; si ∈ R+ ∀i ∈ N, ∀k ∈M (15)

4.3 Reduction of the size of the linear mathematical model

In the previous MILP all the constraints are not necessary. For example, it is
not necessary to define the constraints (11) if either task i belongs to the set
Fk or task j belongs to the set Fl. Moreover, the constraints (12) and (13) are
defined only if the two tasks i and j are not linked with a path of the graph.

To reduce also the number of binary variables we do not use xik for any i
belonging to Fk (i.e. any task i that should not be assigned to the computing
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unit k). This will also allow us to remove constraints (14). Furthermore, the
variable δij will not be used for any pair (i, j) such that i and j belong to the
same path.

For the new model we use the following additional notations:

– N+: Set of tasks with no successors.
– P (i): Set of tasks j such that i and j belong to the same path.

For pruning the model, we compute the set P (i) of tasks j sharing the same
path with i in G as a pre-processing phase. It is based on the breadth-first
search (BFS) [34] method. Therefore, the reduced linear model is as follows:

minCmax (16)

subject to: ∑
k∈{l∈M/i∈Fl}

xik = 1 ∀i ∈ N (17)

si +

m∑
k=1

tikxik ≤ Cmax ∀i ∈ N+ (18)

si + tikxik + cik,jl(xjl + xik − 1) ≤ sj ∀k, l ∈M,∀j ∈ N\Fl,

∀i ∈ Pred(j)\Fk (19)

si + tik − sj ≤ B(3− xik − xjk − δij) ∀k ∈M,∀i ∈ N\Fk,

∀j ∈ N\(P (i) ∪ Fk) (20)

sj + tjk − si ≤ B(2− xik − xjk + δij) ∀k ∈M,∀i ∈ N\Fk,

∀j ∈ N\(P (i) ∪ Fk) (21)

xik ∈ {0, 1}; si ∈ R+ ∀k ∈M,∀i ∈ N\Fk (22)

To characterize the reduction of the model we need the definition of the
set AH (see [31]). It is the edge set of the complement graph of the undirected
graph associated with the nth power Gn of graph G. Where the power Gn of
graph G is a graph with the same vertices as G and an arc is drawn between
two vertices i and j in Gn if there is a path, of length less or equal to n, from
i to j in G.

Now, the size of the Model given by (16)-(22) could be expressed as follows:

Number of variables = nm+ n+ 2|AH |
Number of constraints = n+ |N+|+m2|A|+ 2|AH |

where |AH | is the cardinality of AH .
In fact, in the reduced model, the number of variables and con-

straints are obviously nm + n +
∑n

i=1 |N\P (i)| and n + |N+| +
m2|A| +

∑n
i=1 |N\P (i)|, respectively. In order to get result, we just need

to show that
∑n

i=1 |N\P (i)| = 2|AH |. The sets P(i) could be characterized
as (see e.g. [31]): |P (i)| = 1 + d+Gn(i)+d−Gn(i),∀i ∈ N , where the d+Gn(i) and
d−Gn(i) denote, respectively, the out-degree and the in-degree of the vertex i in
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the nth power of graph G, i.e. Gn. Let H=(N,AH) be the complement graph
of the undirected graph associated with Gn, where AH represents the set of
the edges in the undirected graph H. Then we have:
|N\P (i)| = n− (1 + d+Gn(i) + d−Gn(i)) = (n− 1)− dGn(i) = dH(i),∀i ∈ N . �

This result corresponds to the general task graphs. For more specific
structure of task graph we derive the following obvious result: If the undi-
rected graph associated with G is a complete graph or if G is a chain, then
P (i) = N, ∀i ∈ N . Thus, the number of variables and constraints become
(nm+ n) and (2n+m2|A|) respectively.

Generally, if the inverse graph of the undirected graph associated with the
nth power graph is totally disconnected, the number of variables is (nm+ n)
and the problem is easy to solve. Also, the fact that the problem contains
disjunctive constraints could be known in advance by calculating |AH | from
the following equation:

|AH | =
∑

1≤i<n
i<j≤n

[
¬

(
n∨

i=1

Adji

)]
(i, j) =

∑
1≤i<n
i<j≤n

[¬ ((Adj + I)n)] (i, j) (23)

where Adj denotes the binary adjacency matrix associated with G. The equa-
tion (23) computes the number of edges in the graph H from the adjacency
matrix of G. Note that, in this equation, the power operation is a binary prod-
uct operation. If G has a high density, the equation (23) shows that |AH | is
almost zero. And implies that for high density graphs, the number of variables
and constraints are almost (nm+n) and (2n+m2|A|) respectively. This result
will be confirmed in the next section.

5 Computational results

The numerical results presented in this section illustrates, first the accuracy of
the proposed model, second the benefit of pruning the model (the CPU time
and the problem size are reduced) and third that our model performs very
well on average size problems.
Instances. In order to do the comparisons and prove the benefit of pruning
the model, we use two sets of data. The first set, described in Table 1, is used
to validate the linear model comparing to the non-linear one and to show the
benefit of reducing the size of the linear model. In this table, we have the
name and the description of each instance. m is the number of computing
units; n represents the number of tasks to schedule and |A(G)| is the number
of edges in the graph G. Also the sets have different graph topologies. All the
processing time and communication data are generated randomly.

The second group of sets is composed of 1160 instances and are generated
randomly with a number of computing units equal to 3 or 5 (2 CPUS and 1
FPGA or 4 CPUS and 1 FPGA), the number of tasks varies from 2 to 250
tasks and with different graph topologies. These sets of data are used to show
that our model, with the help of CPLEX, performs very well. They are also
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Table 1 First set of data used to compare the models.

Data set m n |A(G)|

Dataset 1 4 5 4

Dataset 2 4 20 29

Dataset 3 4 20 22

Dataset 4 4 20 24

Dataset 5 5 49 67

Dataset 6 5 49 67

used to show the effect of pruning on the running time and to prove empirically
that the size of the model, the number of variables, is almost O(n) for a fixed
number of computing units.

In the second group of data, the network is describe by two matrices
(m × m), as in the middle part of the Figure 1, they contain the values of
the communication rate and fixed cost. The instances are defined by three
matrices: (1) The first one is a n×m matrix for the processing time, as in the
upper part of the Figure 1. It gives for each task the processing time if exe-
cuted on a given processing unit. If the value is null this means that the task
could not be scheduled on the concerned unit. This characterizes to generate
the sets Fk. (2) The second one is the adjacency matrix, a n × n matrix. (3)
The third one is, also, a n × n matrix, it contains the amount of exchanged
data between each pair of tasks. The network description used is the same
for all instances. The task graph is generated randomly: For each number of
tasks (from 2 to 50, 100, 150, 200 and 250), we generate 10 different graphs
with different topologies (different densities, average outgoing degrees and av-
erage ingoing degrees) and generate the processing time and the exchanged
data. The average values, used in the generation process, are based on some
observation in our simulation project.

The entire tests are conducted on a laptop with 8 GB of RAM and an Intel
processor i7-3740QM with 8 cores. The operating system is a 64-bit Windows
7 professional. For solving the mathematical models, we use CPLEX 12.5x and
OPL scripting language.
General results. These experiments aim to validate the models and show
their performance. They are conducted on the first set of data.

Table 2 shows the results from comparing the non-linear model with the
linear one. The CPU time limit was set to 600 seconds. The Cmax column
is the makespan; the Time column shows the CPU time in seconds and the
gap column is the gap, in percentage, computed by CPLEX between the best
solution and the linear relaxation of the problem. This table shows that for
larger problems the non-linear model is unable to find an optimal solution
after 600 seconds meanwhile the linear one solves the instance in few seconds.

Table 3 compares the linear model and the reduced linear model in terms
of Cmax, Time and gap. In addition, it includes the nbvar that represents the
number of variables in the model and the nbconst that shows the number of
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Table 2 The results for comparing the non-linear and the linear models (time limit for the
solver: 600 sec).

Linear Model Non-linear Model

Data set Cmax T ime(sec) Gap(%) Cmax T ime(sec) Gap(%)

Dataset 1 35 0.561 0.00 35 0.265 0.00

Dataset 2 97.25 0.998 0.00 97.25 600.401 2.59

Dataset 3 76.00 5.819 0.00 91.56 619.137 24.12

Dataset 4 49.00 5.897 0.00 64.07 603.069 33.57

constraints in the model. These results substantiate the advantage of pruning
the model. The size of the problem is cut by half in almost all cases. The
solving time is reduced and even in the case of Dataset 6, CPLEX was unable
to solve the linear model within 3000 seconds, but the reduced one is solved
in 30 seconds. To emphasize the effect of the pruning on the model, we run
a comparative test between the linear model and the reduced one on some
instances from the second set. The Table 4 summarizes this effect. In this
table, we could notice that the size of the problem is cutted even by 4 for big
instances and that the solving time is 29 times shorter for the reduced model
in average. The speed-up factor increases for big instances and for graphs with
high density.

Table 3 The results for comparing the linear and the reduced models (time limit for the
solver: 3000 sec).

Linear Model

Data set Cmax T ime(sec) Gap(%) nbvar nbconst

Dataset 1 35 0.28 0.00 47 234

Dataset 2 97.25 1.00 0.00 482 3544

Dataset 3 76 5.82 0.00 482 3432

Dataset 4 49 5.90 0.00 482 3464

Dataset 5 152 3000.55 25.62 2648 25293

Dataset 6 191.5 3000.15 0.78 2648 25346

Reduced Model

Data set Cmax T ime(sec) Gap(%) nbvar nbconst

Dataset 1 35 0.23 0.00 32 111

Dataset 2 97.25 0.53 0.00 239 1589

Dataset 3 76 2.32 0.00 248 1544

Dataset 4 49 2.45 0.00 232 1446

Dataset 5 145 3000.41 15.63 1138 10145

Dataset 6 190 30.61 0.00 1051 6299
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Table 4 Effect of the reduction on the solving time and the size of the problem (for the
case with 2 CPUs, 1 FPGA and a time limit for the solver of 1200 sec).

Solving time (sec) Number of variables

Linear Reduced Speed-up Linear Reduced Reduction

Nb Tasks model model factor model model factor

2-10 0.41 0.28 1 49.95 25.41 2

11-20 1.12 0.54 2 250.84 78.61 3

21-30 42.72 0.70 61 734.67 163.48 4

Average 14.63 0.51 29 346.82 89.75 4

Fig. 2 Solving time for instances with 3 computing units and number of tasks from 2 to 50

Results on average size problems. These experiments use the second set
of data for the cases with number of tasks going from 2 to 50 and the number
of computing unit is either equal to 3 or 5. These tests were carried out on
1078 cases. Table 5 summarizes the results about the solution time and the
number of solved instances within a limit of 1200 seconds. The time is the
average value of all the solved instances and it is presented in seconds and in
deterministic unit – ticks – used by CPLEX. Figures 2 and 3 plot the solution
time in seconds with respect to the number of tasks, respectively for 3 and 5
processing units. We notice, that we were able to solve 98% of all instances
and in almost all the cases, the solving time is about few seconds. This proves
that our model performs efficiently.

Table 5 Performance on average size instances with tasks from 2 to 50 - 1078 instances
(time limit for the solver: 1200 sec)

Average time on solved instances
Nb CPUs Nb FPGAs Nb solved / total Time(sec) Deterministic (ticks)

2 1 537 / 539 2.822 1507
4 1 515 / 539 26.786 13746
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Fig. 3 Solving time for instances with 5 computing units and number of tasks from 2 to 50

Results on large size problems. These experiments use the second set of
data for the cases with number of tasks going from 100 to 250 and the number
of computing unit is either equal to 3 or 5. These tests were conducted on
82 cases. Table 6 presents for these instances the number of solved instances
until the optimum and the average solution time for the solved one. Also,
this table provides the average gap for the non solved cases. The results are
presented depending on the density of the graph (number of edges divided
by (n(n− 1)/2), the maximum number of edges). For all these instances, the
solver was able to find a feasible solution but a small number is solved until
the optimum. For the other instances the gap is interesting especially for the
cases with high density.

Table 6 Performance on large size instances with tasks from 100 to 250 - 82 instances (time
limit for the solver: 1200 sec)

Average time on solved instances Gap on unsolved instances
Density Nb Time(sec) Deterministic (ticks) Nb Average gap (%)

High(≥ 50%) 9 272.66 108400 31 15.4%
Low(< 50%) 2 105.37 53309 40 25.4%

Empirical estimation on number of variables. These experiments use
the entire second set of data composed of 1160 instances.

To emphasize the benefit of the reduction procedure and prove that the
number of variables in the model is practically O(n) - for a fixed number of
computing units. We run the reduced model on all instances of the second
set and gather the information about the number of variables in the model.
Figure 4 shows the variation of the numbers of variable with respect to n for
graph with density higher than 50%. In addition to the plot, we add the trend
line (regression) that fit the most to our curve. The experimental results are
of good quality, the coefficient of determination R2 is almost equal to 1, which
prove the validity of the fitting curve. Thus, Figure 4 shows that the number
of variables is O(n) empirically for a given number of processing units.
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Fig. 4 Variations of the number of variables vs. number of tasks for graph with density
higher than 50%.

6 Conclusions

In this paper we propose mathematical models for a scheduling problem in
CPU/FPGA architecture with heterogeneous Communication delays. First,
we presents a model that takes into account the Communication delays in this
heterogeneous environment, i.e. the communication depends at the same time
on the tasks exchanging data and the computing units. The resulting model is
quadratic due to the communication and the disjunctive constraints. Second,
we linearize the model. The linearization of the communication constraints is
performed without any additional variables. It was achieved only by using the
particularities of our problem. Third, we reduce the linear model by exploiting
the precedence graph. The reduction proposed in that model reduces drasti-
cally the size of the model. The number of variables is almost O(n) for graphs
with higher density if we consider a fixed number of processing unit. The pro-
posed model is promising and could handle average problem with size up to 50
tasks and 5 CPU/FPGA units in few seconds. In our case, we use this model
to minimize the Cmax, but it could be easily adapted to other objectives.
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