
1943-0663 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LES.2015.2461626, IEEE Embedded Systems Letters

Framework for a selection of custom instructions for
Ht-MPSoC in area-performance aware manner

Bouthaina Dammak⇤, Mouna Baklouti†, Rachid Benmansour⇤, Smail Niar⇤, Mohamed Abid†
⇤University of Valenciennes and Hainaut Cambrésis, 59300 Valenciennes, France

{bouthaina.dammak, rachid.benmansour, smail.niar}@univ-valenciennes.fr
†National School of Engineers of Sfax, 3042 Sfax, Tunisia

{mouna.baklouti, mohamed.abid}@enis.rnu.tn

Abstract—Using application-specific instructions for Hetero-
geneous MPSoC allows to find a good performance/energy trade-
off. For MPSoC architecture executing different multimedia
applications, we expect a large number of potential custom
instructions. In order to explore the potential of all these instruc-
tions, we propose to identify the similar critical computations to
be executed on hardware accelerators (HWA) shared between
processors. Depending on the running applications in one side
and their needs in performance and area usage on the other
side, private and shared hardware accelerators are attached to
the different cores. This leads to a large architectural space
exploration. In this paper we propose an FPGA-based framework
capable of identifying the configuration of HWA targeted to an
MPSoC architecture. Our framework incorporates a hardware
accelerators sharing methodology to optimize area/performance
trade-off. The comparison of framework-estimated results and
real measurements proves the efficiency of our framework.

I. INTRODUCTION

Heterogeneous Multiprocessor System-on-Chip (Ht-
MPSoC) architectures have been emerged in recent years
as an important class of very large scale integration (VLSI)
systems. An Ht-MPSoC architecture combines a set of
embedded processors, several accelerators (audio,video,
etc.), memory peripherals, peripherals and interconnection
networks. The complexity and heterogeneity of Ht-MPSoC
have made them a suitable platform for new multi-media
embedded applications. Designing such complex architecture
in ASICs was always an efficient solution for optimising
system performance. In fact, the maximum complexity of
modern ASICs has grown from 5,000 gates to over 100
million. However, the major drawbacks of using ASICs are
the typically higher ASIC unit costs and NREs (non-recurring
engineering) costs. In addition, ASIC is specific to the
application for which it has been designed. This means that
modified version of the application will no longer be able to
be implemented on the ASIC. The ability to update circuit
functionality is achieved by FPGA (Field Programmable Gate
Array) technologies. Cyclone V from Altera, Zynq from
Xilinx and SmartFusion2 from Micro-Semi are examples of
FPGA-based Ht-MPSoC. These architectures include one
or more hard-cores and/or soft-cores and up to 500K of
reconfigurable Functional Units.

In typical modern Ht-MPSoC, a large number of
identical or different applications are simultaneously running
on the different processors. For these applications, several
computational tasks are candidates to be implemented as
Hardware Accelerators (HWA) and invoked by application-

specific instructions. The primary problem to integrate the
entire number of HWA is the incurred area overhead. As
the total FPGA available resources is limited, designer may
not be able to exploit the full potential of all HWA for the
running applications. For this reason, it is important to use
our proposed HWA sharing methodology for Ht-MPSoC
architectures. Our methodology consists in finding common
computational tasks (patterns) between the concurrent tasks
of the applications executed by the various processors.
These patterns are then implemented on the FPGA by a
reduced number of HWA shared between processors. In the
proposed solution, the HWA customization and the HWA
sharing degree results in a large design space. In this paper,
we propose a framework that identifies common tasks that
are candidates to be customized on HWA. Various works
proposed resource sharing for custom instructions such as
the works presented in [1] and [2]. Our work differentiates
itself in many aspects. First, these works treat the selection
of fine-grained hardware modules for custom instructions
implementation whereas our work focuses on selecting
coarse-grained hardware accelerators. Second, unlike the
cited, according to the required performance, we consider
the implementation of each custom instruction on HWA
with or without hardware resource sharing. Third, as we
are targeting multimedia applications, where multiprocessors
architectures are the most suited platforms in this context, we
consider the custom instruction selection for a multiprocessor
architecture. In contrast, the mentioned works consider only
single processor architecture.
In order to explore the large space of HWA and HWA
sharing degrees, our framework integrates a Mixed Integer
Linear Programming model (MILP) to identify the HWA
configuration of each pattern. This allows designers to come
up, in short time, with optimal configuration for an optimised
area usage and a fixed performance gain. This is performed
via estimating the area usage and performance gain of
different possible configurations of the space of solutions in
order to find the optimal one. To reduce the time to search
the optimal (local optimum) solution, the framework is based
on an iterative approach. Such process stops when it is able
to find a good solution. Thus, the generated solution is a local
optimum MPSoC configuration that satisfies the required
performance. In our experiments, we have reinforced the
efficiency and the accuracy of the framework by employing a
real application.



1943-0663 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LES.2015.2461626, IEEE Embedded Systems Letters

II. PROPOSED ACCELERATORS SHARING METHODOLOGY

A. Proposed Sharing Methodology and area saving

Figure 1 shows an example of 3-processors architecture
running different applications, each of which contains T1
and T2 as computational tasks (Figure 1.a). While the area
resources, named A in figure 1, are limited to 20 units (A=20),
only T1 or T2 could be integrated as private HWA for P1,
P2 and P3 processors (Figures 1.b). A HWA is in a private
configuration if it is coupled to only one processor.

Most of existing embedded applications, such as multime-
dia, telecommunication or automotive applications, use a same
set of critical tasks. Matrix operations, convolutions and filters
are frequently used in such applications. For Ht-MPSoC that
does not use hardware-sharing, private HWA are implemented
to execute the computation of different custom instructions.
The proposed sharing approach enables to share HWA of cus-
tom instructions performing similar computations. This means
that different processors can be coupled to the same HWA.
This optimization will avoid bloating the FPGA resources with
large number of HWA. We call a pattern the computational task
existing on different applications. The pattern identification
offers a range of possible sharing optimization.
In Figure1.a, the different applications have same heavy
computational tasks (T1 and T2). Based on our proposed
approach, a reduced number of HWA for each pattern can be
implemented and shared among the processors. The sharing
degree defines the number of processors sharing the same
HWA. Figure1.c is a possible shared configuration. For T1
pattern, the architecture has one private HWA coupled to P1
and 2-degree shared HWA coupled to P2 and P3. For T2,
a 3-degree shared HWA is used and shared between P1, P2
and P3 processors. This configuration consumes 16 area units
and provides a reduction of 52% when compared to a private
configuration.

B. Impact of Hardware Sharing on Performance

The HWA sharing reduces the area usage but might affect
the performance. In fact, as more the sharing degree is in-
creased, the delay to access the shared HWA may increase.
Depending on the sharing degree and the processors that
share the same HWA, the latency may improve or decline
performance improvement. In Figure2.b, sharing T1 between
P1, P2 and P3 results a high delay on P2 to execute the shared
HWA. This configuration minimizes the area usage but results
a higher execution time on P2. In Figure 2.c, the execution time
of T1 is enhanced on all processors. In this configuration, the
delay to access the shared HWA is negated by adding a private
HWA coupled to P1.
As we can see, a fully private configuration bloats the area
resources and an aggressive sharing may degrade the perfor-
mance. Between these two configurations, a very large space
of configurations has to be explored.

III. PROPOSED FRAMEWORK

In this section we present our proposed framework
(Figure3). The aim of our framework is summarized as fol-
lows:

• Consideration of different applications. All the pro-
cessors can execute the same application or different
applications.

• For each task, both software and hardware solutions
are considered.

• For each HWA, the space of exploration is bounded by
a fully private solution for each processor and a fully
shared solution between all the processors. According
to designer constraints, our framework generates the
local-optimal architecture.

• Estimation of area usage and performance gain for the
resulted architecture.

A. Applications profiling and Computational Tasks (CT) iden-
tification

Our proposed framework starts with compiling and profil-
ing the different applications of the Ht-MPSoC architecture.
Application profiling is an important step since it determines
the most computational tasks. Embedded system designers are
provided with different CAD profiling tools. These profiling
tools are classified into three main categories: software-based,
hardware-based and FPGA-based tools [3][4][5]. For FPGA-
based embedded systems, FPGA-based profiling (FPGA-BP)
tools have proved better results compared to the other profiling
tools [3] [4]. Thereby for our work we use (FPGA-BP) tools
to compile and profile applications.
To select the computational tasks to be candidate for custom in-
structions implementation and the configuration of their HWA,
our framework is based on an iterative approach. We used an it-
erative approach to save time and efforts by implementing only
a sufficient number of computational tasks as HWA, which
provide the required performance. In fact, the time needed to
design a computational task as HWA might differ depending
on the complexity of that task and can reach a couple of weeks.
After profiling the different applications running on multiple
processors, we have to identify the computational tasks. A task
is considered as computational if it consumes more than C% of
the overall application execution time. For the first iteration, we
compare the highest profiling percentage values of tasks from
one application to another. The least value will be considered
as the initial value of C. Each new iteration decreases the value
of C to the minimum percentage of execution of the next
less computational tasks. Thereby, each iteration adds more
computational tasks to be explored together with the previous
ones until the space exploration generates a feasible solution.

B. Pattern identifications and pattern library

We define a pattern, a computational task existing in
different applications. The pattern identification step of figure
3 consists on analysing the identified computational tasks
of the previous step to assign the different tasks of similar
computations to the same pattern. In each new iteration, the
new computational tasks are analysed to identify similarity
with the previous defined patterns and/or to add new patterns.
The new identified patterns are implemented as HWA in order
to determine their information (area usage, performance accel-
eration when implemented on a HWA). The pattern library is
updated in each iteration to include information of new patterns
and/or to update information of existing pattern re-identified



1943-0663 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LES.2015.2461626, IEEE Embedded Systems Letters

in new computational tasks . The pattern identification step is
currently a manual process, and will be automated in future
work.

C. Space exploration

This step finds out the configuration of the local-optimal
architecture satisfying the designer constraint. A MILP formu-
lation is proposed in [6] and aims to identify the Ht-MPSoC
architecture that minimizes the objective function (Equation
1) and satisfies the performance constraint (Equation2). Our
MILP model has as input the information stored in the pattern
library and looks for solutions that satisfy the required perfor-
mance and then it generates the optimal one. So, the optimal
solution is the configuration that implements the patterns that
provide the best area-performance trade-off.
The objective function is calculated based on the area usage
of each pattern if implemented on HWA (a

j

) and the area
overhead occurred when the pattern is implemented on shared
HWA (a

overhead

). For each processor, the acceleration of
Equation2 is calculated based on the acceleration of each
pattern T

j

executed on this processor when implemented on
HWA (tacc

j

) and the delays R

ji

and t

overhead

to access the
shared HWA of T

j

.

Total Area =
mX

j=1

nX

i=1

x

j

(
a

jP
n

k=1 yjik
+ ↵

j

a

overhead

) (1)

acc

i

=
mX

j=1

x

j

tacc

j

� x

j

(R
ji

+ ↵

j

t

overhead

) � limit

i

(2)

In Equation1, n denotes the number of processors and
m the number of patterns. We denote by N = 1, 2, ..., n
and M = 1, 2, ...m, respectively, the set of processors and
the set of patterns. For our MILP (Mmixed Intger Linear
Programming) model, x

j

is a binary decision variable that
denotes whether the pattern T

j

is implemented on HWA or
not. The y

jik

decision variable, j 2 M, i 2 N, k 2 N , is a
binary variable that denotes whether the HWA of pattern T

j

is
shared between processors P

i

and P

k

or not. ↵
j

, j 2 M , is a
binary variable that denotes if the pattern T

j

is implemented
on a shared HWA.
In Equation 2, acc

i

, i 2 N , is the execution time gain for
processor P

i

and R

ji

, j 2 M, i 2 N , is the delay of processor
P

i

to access HWA of T

j

. The outputs of cplex resolution
are the decision variables that determine the patterns to be
executed on software or private and/or shared HWA. Once the
optimal configuration is generated, the designer can identify
if a pattern would be integrated as custom instruction (x

j

variable) and the sharing degree of its HWA (y
jik

variable). If
the model exploration is unable to find a solution, the designer
has to decrease the C parameter in order to increase the number
of explored patterns. This step is repeated until the model
generates a feasible solution.

IV. EXPERIMENTAL RESULTS

In this section, we describe results of applying the proposed
framework to an 8-Ht-MPSoC architecture executing jpeg-
codec application. We targeted synthesis to a Xilinx Virtex
V. Performance measurement and area usage are presented re-
spectively in terms of clock cycles and area units. Xilinx tools

provide all GNU/GCC tool chains to compile, link and profile
applications for Xilinx supported platforms. The inputs of our
framework are the jpeg-encoder and jpeg-decoder applications.
We start by compiling and profiling both applications on an 8-
microblaze architecture. in which four processors compute the
encoder application while the four others execute the decoder
application. The output of profiling step is a performance sum-
mary of functions that are executed on microblaze processors.
For this architecture, the required performance gain has been
fixed to 30%. In our framework, the space exploration process
searches the custom instructions that satisfy the performance
constraint while minimizing the logic area usage. During this
search phase, the HW accelerators sharing is considered. The
framework was able to generate a solution in the second
iteration. For the first iteration the value of C was set to 17% to
include the first most computational tasks of the encoder and
decoder applications (HDCT and IHDCT tasks). The HDCT
and IHDCT functions consist on multiplication of 1*8 matrix
with an 8*8 matrix. Thus, we associated one pattern for
HDCT and IHDCT tasks (noted HDCT/IHDCT pattern). For
this first iteration, cplex was not able to generate a solution
that satisfies the required performance. In the second iteration
the value of C was decreased to 15% to add the VDCT and
IVDCT tasks as computational tasks. Both tasks consist on
multiplication of 8*8 matrix with an 8*1 matrix. Thanks to
identified similarities, both tasks have been assigned to the
same pattern (VDCT/IVDCT pattern).
For each iteration, the identified patterns have been designed in
VHDL, implemented using Xilinx ISE (version 12.4), and inte-
grated on a microblaze-based architecture to obtain the library
information (area, start-time, end-time, performance gain). For
each iteration, cplex returns the result in approximately 4
seconds. In the second iteration, the generated AHt-MPSoC
configuration consumes 84 area units and satisfies the required
performance. Figure 4 presents the AHt-MPSoC architecture
of the generated solution. This architecture consists of 8 mi-
croblaze processors and two shared HWA for HDCT/IHDCT
pattern and a fully-shared HWA for VDCT/IVDCT pattern.
The first HWA of HDCT/IHDCT pattern is shared between five
processors (P0,P1, P2, P3, P4) and the second one is shared be-
tween P5, P6 and P7. These shared HWA are connected to bus
processors through bridges. This architecture is implemented
on Virtex V FPGA (XC5VFX70T) and obtained results for
area usage and speed up are in accordance to those obtained
by our framework. This comparison shows the efficiency and
accuracy of our framework .

V. CONCLUSION

A design space exploration framework for the rapid se-
lection of custom instructions for FPGA-based Ht-MPSoC
architecture has been proposed. The framework incorporates
a HWA sharing methodology to optimize area-performance
trade-off. Comparison of framework estimated results and real
measurements on FPGA show the accuracy and efficiency of
proposed framework.

VI. ACKNOWLEDGMENT

This work was supported by CMCU project, funded by the
Tunisian Ministry of Higher Education and Scientific Research
(MESRS) and the French Ministry of Foreign Affairs and
International Development



1943-0663 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/LES.2015.2461626, IEEE Embedded Systems Letters

REFERENCES

[1] K. Mehdi, Y. Amir, N. Hamid, A. Ali, and P. Massoud, “A new merit
function for custom instruction selection under an area budget constraint,”
Design Automation for Embedded Systems, 2013.

[2] Siew-Kei, T. Srikanthan, and C. Clarke, “Selecting profitable custom
instructions for areatime-efficient realization on reconfigurable architec-
tures,” IEEE Transactions on Industrial Electronics, 2009.

[3] J. G. Tong and M. A. S. Khalid, “Profiling cad tools: A proposed
classification,” in The 19th International Conference on Microelectronics,
December 2007.

[4] J. Tong and M. Khalid, “Profiling tools for fpga-based embedded
systems: Survey and quantitative comparison,” Journal of Computer, June
2008.

[5] R. Patel and A. Rajawat, “A survey of embedded software profiling
methodologies,” International Journal of Embedded Systems and Appli-
cations (IJESA), Decembre 2011.

[6] B. Damak, R. Benmansour, M. Baklouti, S. Niar, and M. Abid, “Design
space exploration for customized asymmetric heterogeneous mpsoc.” in
DSD, 2014, pp. 50–57.

Fig. 1. Illustrative example of benefits of HWA sharing. T1 and T2 are
computational tasks executed on P1, P2 and P3. The HWA of Tj(a) consumes
a area units in FPGA

Fig. 2. Different execution configurations for T1 pattern

Fig. 3. Proposed Framework

Fig. 4. The framework-based generated architecture for Jpeg encoder and
decoder applications.


