
Hardware resource utilization optimization in FPGA-based
Heterogeneous MPSoC architectures q

Bouthaina Dammak a,⇑, Mouna Baklouti b, Rachid Benmansour a, Smail Niar a, Mohamed Abid b

a University of Valenciennes and Hainaut Cambrésis, 59300 Valenciennes, France
b National School of Engineers of Sfax, 3042 Sfax, Tunisia

a r t i c l e i n f o

Article history:
Received 30 December 2014
Revised 7 April 2015
Accepted 5 May 2015
Available online xxxx

Keywords:
FPGA
MPSoC
Hardware accelerators
MIP model

a b s t r a c t

Next generation FPGA circuits will allow the integration of dozens of hard and soft cores as well as ded-
icated accelerators in the same chip. These Heterogeneous Multiprocessor System-on-Chip (Ht-MPSoC)
architectures will allow the design of very complex System-on-Chips (SoC) on a single FPGA chip and will
fulfill modern application requirements, in terms of performance/energy consumption ratio. In this
paper, we extend existing FPGA-based Ht-MPSoC architectures by considering sharing hardware acceler-
ators among the cores. In these architectures, cores on the FPGA may have different resources that can be
shared in different manners. To explore the large space of possible configurations of Ht-MPSoC on FPGA,
designer needs a fast and accurate exploration tool. For this reason, a Mixed Integer Programming (MIP)
model is also proposed to determine the Ht-MPSoC configuration that consumes the least HW resources
while respecting the application execution time constraints. Using our MIP model, the design space of
several hundreds of private and shared HW accelerators can be explored in a reasonable time with high
accuracy.

! 2015 Elsevier B.V. All rights reserved.

1. Introduction

The increase in HW resources in the latest FPGA generation,
makes it possible to implement extremely complex Heterogeneous
Multi-Processor System-on-Chip (Ht-MPSoC) architectures. These
architectures combine hardware and/or software cores,
application-specific HW accelerators and communication units.
The Xilinx Zynq 7000 Extensible Processing Platform (EPP) is an
example of such architectures embedding a dual core ARM
Cortex A9 processor and tens of thousands of programmable gate
arrays [1]. Cyclone V from Altera [2] and SmartFusion2 from
Micro-Semi [3] are other examples of Ht-MPSoC. These architec-
tures include one or more hard-cores and up to 500 K of reconfig-
urable logic elements to build computational accelerators (Fig. 1).

Thanks to this reconfigurable area, it is possible to design either
a Symmetric Ht-MPSoC (SHt-MPSoC), in which all the processors
have the same number of private and shared HW accelerators, or
an Asymmetric architectures (AHt-MPSoC) where HW accelerators

attached to the different processors differ from one processor to
the other. Figs. 2 and 3, show two examples of Ht-MPSoC with 4
processors (P1 to P4). Fig. 2 highlights a 4-core SHt-MPSoC archi-
tecture, in which the processors have the same type and number
of HW accelerators. In Fig. 2, each processor has one and the same
HW accelerator (named Pr) and share m accelerators with the
other processors. Fig. 3 gives an example of an AHt-MPSoC. In this
architecture P1, P3 and P4 have each one a private accelerator
(named Pr i). These private accelerators can be similar or different.
P2 has no private accelerator. P1 and P2 share the same accelerator,
named ‘‘Sh 1’’ in Fig. 3, whereas P2, P3 and P4 share another HW
accelerator, named ‘‘Sh 2’’. In an AHt-MPSoC, critical applications
(or tasks for a multitasked system) are executed by cores with a
large number of private accelerators. At the opposite, applications
that are not critical are run by cores with small number (or not at
all) private HW accelerators.

We think that AHt-MPSoC is a very promising class of architec-
tures as it allows an efficient utilization of HW resources and pro-
vides high performances with less energy consumption [5].
However, their utilization increases even more the size of the
design space of configurations to explore. Thus, it is necessary to
provide to the designer a Design Space Exploration (DSE) tool to
determine the best architectural configuration for a given set of
concurrent applications. In addition, this tool plays an important
role in the design flow of Ht-MPSoC architectures as it allows to

http://dx.doi.org/10.1016/j.micpro.2015.05.006
0141-9331/! 2015 Elsevier B.V. All rights reserved.

q The work was done as part of a Franco-Tunisian project.
⇑ Corresponding author.

E-mail addresses: bouthaina.dammak@univ-valenciennes.fr (B. Dammak),
mouna.baklouti@enis.rnu.tn (M. Baklouti), rachid.benmansour@univ-valenciennes.
fr (R. Benmansour), smail.niar@univ-valenciennes.fr (S. Niar), mohamed.abid@enis.
rnu.tn (M. Abid).

Microprocessors and Microsystems xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

Please cite this article in press as: B. Dammak et al., Hardware resource utilization optimization in FPGA-based Heterogeneous MPSoC architectures, Micro-
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.05.006

determine the most efficient Ht-MPSoC configuration in a reduced
time. This configuration is the one that requires the least FPGA
resources and gives a reduced execution time and energy budget.

In the literature, very few works have been devoted to DSE tool
for AHt-MPSoC. This is due to the fact that previous and current
generation of FPGA circuits offer relatively few resources, in terms

of logic elements, compared to ASICs. Thus, it was possible to
explore the entire design space in relatively short time interval
either by simulation or by simple analytical models. In other stud-
ies, the authors only consider SHt-MPSoC architectures in which all
processors have the same number and type of accelerators. This
approach limits the application of Ht-MPSoC and cannot effectively
operate for high complex reconfigurable systems.

In the solution that we propose in this paper, we target next
generation FPGA circuits with a high number of reconfigurable
logic elements and their utilization in AHt-MPSoC architectures.
In these architectures, the number of HW accelerators and their
type may vary from one processor to another. Furthermore in
our model, the applications executed by the processors may differ
from one processor to another. Our solution is based on Mixed
Integer Linear Programming (MIP) formulation to explore the very
large space of possible configurations. Due to the complexity of
finding an optimal enumerative solution, the proposed mathemat-
ical model allows the identification of a global minimum (i.e. area
usage) in a reasonable time. This model was solved, after a process
of constraints linearization, using CPLEX linear program solver.

The paper consists of 6 sections. In the next section, a survey on
existing approaches in Ht-MPSoC is presented. In Section 3, we
detail AHt-MPSoC architectures and discuss their benefits. In
Section 4, we develop our MIP-based Design Space Exploration

Fig. 1. Increase in the number of logic cells for Xilinx FPGAs (on the right axis) for
different semiconductor device fabrication node (on the left axis) [4].

Fig. 2. Example of a SHt-MPSoC architecture with 4 processors. Each processor has one private HW accelerator (Pr i) and share m accelerators (Sh i) with the other processors.

Fig. 3. Example of an AHt-MPSoC architecture with 4 processors. P1 and P2 share one accelerator (Sh 1) and P2, P3 and P4 share another accelerator (Sh 2). P2 has no private
accelerator.

2 B. Dammak et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx

Please cite this article in press as: B. Dammak et al., Hardware resource utilization optimization in FPGA-based Heterogeneous MPSoC architectures, Micro-
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.05.006

(DSE) for AHt-MPSoC. The next section presents the experimental
results and the obtained performances of our AHt-MPSoC for real
and synthetic benchmarks. Finally in Section 6, we give a conclu-
sion and some possible extensions to make AHt-MPSoC more
efficient.

2. Related works

The integration of custom instruction in FPGA-based MPSoC
increases the performance gain by incorporating hardware compo-
nents to handle computational tasks [6–9]. Modern platforms,
including FPGAs and ASICs support different couplings of hardware
components with the processor. In [10], couplings schemes are
classified into two principal modes: Closely coupled mode and
Loosely coupled mode (Fig. 4).

In the first mode, the hardware accelerator is part of the proces-
sor data path and has direct access to the processor memory. At the
opposite, in the second mode, the accelerator is placed outside the
processor on a dedicated bus [8,10,11]. A group of closely coupled
hardware components operates at a single clock cycle fixed by the
slower components. At the opposite, each loosely coupled hard-
ware component runs at its fastest possible individual frequency.
Loosely coupled mode is quite popular in multi-media applications
like image encoding/decoding applications. Nomadik [12],
Freescale i-Mx35 [13] and S3C6400 [14] are examples of
multi-media architectures designed with loosely coupled accelera-
tors. These platforms embed on the same die an ARM [15] proces-
sor and different multi-media accelerators for video, audio,
imaging, and graphics processing.

For recent multi-media applications, a large number of custom
instructions can be identified to be executed in hardware compo-
nents. In order to avoid an excessive area usage of hardware
components, previous works propose to identify and exploit com-
monality between identified custom instructions and to share
hardware resources. In [16], the authors propose a polynomial-
time heuristic that uses resource sharing to minimize the area
required to synthesize a Set of custom Instruction Extension
(ISEs). Their resource sharing approach transforms the set of ISEs
into a single hardware data path. Nevertheless, their proposed
heuristic minimizes the ISEs area usage without a control on
latency constraint.

Zuluaga et al. [17] introduce latency constraints in the merging
process of the ISEs to control the performance improvement. Their

proposed parametric algorithm combines a path-based resource
sharing algorithm, similar to the ones presented in [16], with a
timing budget management scheme.

More recently, the work presented by Stojilovic̀ et al. [18] aims
at a pragmatic increase in flexibility to integrate different ISEs from
different applications. This work is motivated by data path based
algorithm. While [16] aims at minimizing the area cost, [18]
increases HW accelerators flexibility for a moderate cost. Their
approach ensures that all instruction set extensions (ISEs) from
an application domain map on the same proposed domain-
specific coarse-grained array. The architectures proposed in these
papers belong to loosely coupled application-specific architectures.
The work we present in this paper differs from [16–18] at various
levels. First, they consider the sharing of fine grained custom
instructions that are closely coupled to the processor pipeline. At
the opposite, we consider loosely coupled class application-
specific architectures. The sharing of coarse grained custom
instructions provides a better performance improvement.

In most of the cited works, the proposed approach is to share
HW logic between different custom instructions for several tasks
mapped on the same and single processor. Their proposed heuris-
tics select the custom instructions to be mapped on logic providing
a more area saving with operation sharing. Instead, we propose the
sharing of an entire custom instruction between different cores
and our MIP model explores the custom instructions to be mapped
on hardware and the sharing-degree of hardware to support the
ISE.

In [16–18], the proposed algorithms only focus on area reduc-
tion without taking into account the impact on performance.
Even if authors of [17] introduce the latency features, they did
not consider application-performance constraints. At the opposite,
our work explores all the possible sharing configurations that min-
imize the area usage and respect the desired application perfor-
mance constraints in term of execution time.

In [19], the authors present another approach to minimize run-
time reconfigurable area by resource sharing for closely coupled
application-specific architectures. In this paper, the authors pro-
pose to share at runtime reconfigurable area for multi-core archi-
tecture. They develop an algorithm to select the ISEs to be
mapped on the same fabric to optimize the fabric sharing between
cores leading to the best execution time.

In [20], the authors propose a pseudo-polynomial time algo-
rithm to explore the design space of Multi-Application Specific

Fig. 4. Hardware accelerator architectures classification: Closely coupled and loosely coupled.

B. Dammak et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx 3

Please cite this article in press as: B. Dammak et al., Hardware resource utilization optimization in FPGA-based Heterogeneous MPSoC architectures, Micro-
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.05.006

Instruction Processor (or M-ASIP). Their algorithm identifies the
appropriate application-partitions and identifies custom instruc-
tions satisfying the area-performance trade-off.

At the opposite of our work, [20] did not consider custom
instructions sharing. [19] consider the sharing of runtime reconfig-
urable fabric between processors for mapping different hardware
components executing different custom instructions, However,
we propose to share the hardware components between different
processors to execute different custom instructions.

[21] also targets FPGA area minimization by the utilization of
hardware sharing between different functional blocks. However,
the level of sharing proposed by the authors depends on functional
modules that constitute a particular design (fabric slices, dis-
tributed RAMs, DSP slices, block RAMs). As demonstrated by the
authors, their approach is less efficient in terms of fabric usage
and clock frequency than the designs they are derived from. In this
paper, the design space exploration of hardware sharing is not
automated. Moreover, the proposed sharing approach can be
applied only to uni-processor architecture design. In our paper,
we first consider MPSoC architectures and the sharing is done at
higher level. Our approach does not produce clock frequency
reduction or fabric usage overheads.

The approaches for design space exploration of hardware
resources sharing proposed in [16–18] focus on closely coupled
single architectures. In [20,19], the authors consider multiproces-
sor architectures but they did not consider coarse grain instruction
sharing. We think, in the context of FPGA based hybrid architec-
tures, coarse grain hardware accelerators are much more efficient
in terms of efficiency and power than fine grain hardware accelera-
tors due to communications overheads. Moreover, in [20,19], the fine
grained hardware accelerators are implemented on runtime recon-
figurable hardware resources. However, the primary drawback of
using runtime reconfiguration is the significant delay of reprogram-
ming the hardware. Thus, we think that the runtime reconfiguration
delay and the sharing delay will dominate the total execution time,
especially applications with a small amount of computation between
two consecutive hardware accelerators. For all these reasons, it is
difficult to compare the different approaches.

3. AHt-MPSoC based on hardware sharing

Application-specific instructions are an effective way of
improving the performance of processors. In these processors,
the execution time of the critical computations is reduced by the
utilization of new instructions executed on HW accelerators.
These HW accelerators can be either loosely coupled to the proces-
sor via system bus, or memory controller, or closely coupled to the
instruction pipeline. Within this work, the HW accelerators are
implemented as hardware modules executing application-specific
instructions, and are loosely coupled to the processor.

In this section, we first discuss the benefits of sharing HW accel-
erators in a multiprocessor architecture, then we propose our
AHt-MPSoC architecture.

3.1. Proposed hardware sharing approach

A Ht-MPSoC, running N applications on the different processors,
cannot implement all the HW accelerators. Due to hardware
resources constraints, the HW accelerators integration for
Ht-MPSoC architecture cannot be fully exploited. Most of existing
embedded applications, such as multimedia, telecommunication
or automotive applications, use the same set of kernel functions.
Matrix operations, convolutions and filters are frequently used in
such applications. For an Ht-MPSoC, that does not use
hardware-sharing, separate custom private accelerators are
needed for different custom instructions to provide the same

computation power. The proposed sharing approach enables to
share a range of specific instructions among different tasks and dif-
ferent computational tasks can share several HW accelerators. It is
expected that this optimization will extenuate the area and power
consumption and will preserve performance. We call a shared pat-
tern the computational task existing on different applications. The
shared pattern identification offers a range of possible optimiza-
tion. In Fig. 5, different applications have the same computational
patterns that can be executed on different and private HW acceler-
ators. However based on our proposed technique of sharing accel-
erators, only one accelerator for each identified pattern can be
implemented and shared among the processors. Currently, in the
work we implemented so far, the identification of common pat-
terns is done manually. This solution is feasible for small applica-
tions or when the number of parallel applications is reduced. For
complex applications and/or a large number of concurrent applica-
tions, we need to do such identification automatically. We can use
existing approaches such those proposed in [22].

The sharing degree defines the number of processors sharing the
same accelerator. In Fig. 5, a 3-shared degree HW accelerator for
T3, can be shared between P2, P3 and P4 processors. For seek of
clarity, in this figure we consider simple patterns. In our bench-
marks, patterns contain more instructions. The accelerator sharing
and the sharing degree between processors provide a large archi-
tectural space exploration. The next paragraph gives an overview
of the proposed hardware AHt-MPSoC architecture.

3.2. AHt-MPSoC architecture

The AHt-MPSoC architecture class, proposed in this paper, uses
HW accelerators that execute application-specific instructions and
are loosely coupled to processor via shared bus. Bus-bridges are
used to communicate between the processor and the shared accel-
erators. Fig. 3 illustrates 4-processor AHt-MPSoC where each pro-
cessor has private accelerator as well as shared accelerators. The
latter are activated by application-specific instructions.

The synchronization between processors, having shared HW
accelerators, is established through a lock/barrier mechanism
implemented in hardware. When a processor Pj tries to use a
shared accelerator, which is already locked by another processor
Pi, it is put in a waiting state until Pi unlocks the shared accelerator.
The lock/barrier mechanism follows the ‘‘First In First Out’’ fashion.
Fig. 6 details the synchronisation process between two processors.
In the next Section, a Mixed Integer Linear Programming (MIP)
model is presented for identifying the shared optimal resource
allocation architecture respecting a required performance.

Fig. 5. An example of 4 parallel programs with different patterns that could be
executed in HW accelerators. Patterns are represented by circles with different
colors. Patterns with the same color are similar.

4 B. Dammak et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx

Please cite this article in press as: B. Dammak et al., Hardware resource utilization optimization in FPGA-based Heterogeneous MPSoC architectures, Micro-
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.05.006

4. Mixed integer linear programming model

Our space exploration addresses the way to merge the compu-
tational patterns, existing on the different applications, to reduce
the overall area usage while respecting applications-performance
constraints. Increasing the sharing degree reduces the area usage,
but may increase the delay of each processor to access shared
accelerators and therefore the required performance will not be
met. This situation cannot be accepted for hard and soft real time
applications. Thus, the goal of our MIP model is to have minimum
area usage, while keeping the execution time of each application
under a required limit.

4.1. Problem formulation

The architecture is a MPSoC with n processors running n appli-
cations. These applications can be similar, i.e. Single Program
Multiple Data model, or different, i.e. Multiple Program
Single/Multiple Data. We define pattern as a time consuming
task-kernel existing in one or different tasks. Based on the
expected acceleration, we select the sequence of the most compu-
tational patterns executed on the n processors. These patterns are
candidates to hardware implementations that may fulfill the
desired performance. Let {T1; T2,. . ., Tm} denotes this sequence
and fP1; P2; . . . ; Png the sequence of n homogeneous processors.
Finally we define N and M as, respectively, the set of processor
N ¼ f1;2; . . . ;ng and the set of patterns M ¼ f1;2; . . . ;mg.

Each consuming pattern Tj, is assigned a predefined area con-
stant aj. The value aj represents the number of FPGA area units
required by Tj to be implemented as HW accelerator. In addition,
we define two continuous constants tsji and teji respectively for
the start-time and the end-time of execution time of the pattern
Tj on processor Pi.

The implementation of Tj in private way provides a defined
acceleration taccj. For each processor Pi, an acceleration constant
limiti is set as a constraint for the total processor acceleration acci.

Our problem definition can be formally declared as follows:
Given a number of m patterns executed on n homogeneous proces-
sors, we look for the number of processors sharing each pattern
(sharing degree) so that the maximum execution time of each pro-
cessor is under the time-constraint and the total used area is
minimized.

4.2. Objective function

In this section, we present a MIP formulation of the problem so
that we can obtain an optimal solution with the help of a commer-
cial optimization solver for mixed integer linear programming.

Let xj; j 2 M, be a binary variable that denotes whether the pat-
tern Tj is implemented on Hardware (HW) for processor Pi or not.

xj ¼
1 if Tj is implemented on HW;

0 otherwise:

!
ð1Þ

Let yjik; j 2 M; i 2 N; k 2 N, be a binary variable that denotes whether
the HW accelerator of task Tj is shared between processors Pi and Pk

or not.

yjik ¼
1 if Acc of Tj is shared between Pi and Pk;

0 otherwise:

!
ð2Þ

We assume that yjii ¼ 1, this leads to the following equation:

Xn

i¼1

Xn

k¼1

yjik P 1 ð3Þ

Our objective function aims at minimizing the total area
required to implement the m patterns.

Total Area ¼
Xm

j¼1

Xn

i¼1

xj
ajPn

k¼1yjik
ð4Þ

In the Total_Area equation, we have implicitly defined the sharing
degree of a processor Pi for the task Tj. This sharing degree will be
denoted by shij and is equal to

P
k2Nyjik.

Fig. 7 shows an example of a matrix Yj ¼ yjik for the Tj pattern
implemented on a 8-processor architecture. Each row i (respectively
column k) in the matrix corresponds to processor i (respectively pro-
cessor k) in the MPSoC. The variable on row i and column k corre-
sponds to yjik variable and determines if processors Pi and Pk share
the same accelerator for Tj. For example, in Fig. 7, from the first three
rows (blue1 region), we deduce that the same HW Accelerator for Tj is
shared between P1; P2 and P3. For this region, for each row, the area
consumed has been reduced by a factor of 3 and is equal to aj/shi-
j = aj/3. Likewise, for the green region, a 4-shared HW accelerator is
shared between P5; P6; P7 and P8. Each row j in this region needs
aj/4 area units. The 4th row of the matrix shows that P4 has a private
HW Accelerator for Tj and consumes aj area units.

In our problem, the objective function is the ratio of two linear
terms. In order to linearize this function, (i) we define new contin-
uous variables zij;wij, and hijk:

zij ¼
1

shij
¼ 1Pn

k¼1yjik
ð5Þ

wij ¼ zijxj ð6Þ

hijk ¼ zijyjik ð7Þ

Fig. 6. Synchronised access to shared Hw Acc.

Fig. 7. yjik variables for a Tj pattern.

1 For interpretation of color in Fig. 7, the reader is referred to the web version of
this article.

B. Dammak et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx 5

Please cite this article in press as: B. Dammak et al., Hardware resource utilization optimization in FPGA-based Heterogeneous MPSoC architectures, Micro-
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.05.006

and (ii) we add the following constraints to our model:

zij

Xn

k¼1

yjik ¼ 1 ð8Þ

Xn

k¼1

hijk ¼ 1 ð9Þ

The objective function (Eq. (4)) can be re-written as:

Total Area ¼
Xm

j¼1

Xn

i¼1

ajwij ð10Þ

4.3. Performance constraint

The performance constraint is based on the following principle:
the total acceleration for each processor i provided by the mapping
of the different tasks on HW accelerators needs to be upper a per-
formance limit (limiti). Regarding the sharing degree of Hw accel-
erator, each processor has a delay Rji to access this shared HW
accelerator.

The performance constraint can be imposed as follows:

acci ¼
Xm

j¼1

xjtaccj $ xjRji P limiti; ð11Þ

Rji variable is defined as the time interval between the end-time of
executing task Tj on processor Pk, where Pk (0 6 k 6 i$ 1) is the last
processor sharing Hw accelerator of Tj with Pi, and the start-time of
executing task Tj on processor Pi.

Rji ¼ teh
jk $ tsh

ji where k ¼ maxf0;1; . . . ; i$ 1g and yjik ¼ 1 ð12Þ

Rji ¼
Xi$1

k¼1

ujikðteh
jk $ tsh

jiÞ ð13Þ

where teh
jk and tsh

ji; j 2 M; i 2 N; k 2 f1;2; . . . ; ig, are continuous vari-
ables that define respectively the start-time and the end-time of
executing Tj on HW, respectively on processors Pk and Pi and are
calculated as follow:

tsh
ji ¼ tsji $

Xj$1

l¼1

ðaccl $ RliÞ ð14Þ

teh
jk ¼ tejk $

Xj

l¼1

ðaccl $ RlkÞ ð15Þ

and ujik; j 2 M; ði; kÞ 2 N2, is a binary variable defined as follow:

ujik ¼
1 if Pk is the last processor sharing Tj with Pi;

0 otherwise:

!
ð16Þ

Fig. 8 shows an example to calculate a delay of processors P2

and P3 to access a shared HW accelerator of task Tj.
Now the performance constraint can be re-written as:

acci ¼
Xm

j¼1

xjtaccj $ xj

Xi$1

k¼1

ujikðteh
jk $ tsh

jiÞP limiti ð17Þ

Our objective function is to minimize the total area:

Total Area ¼
Xm

i¼1

Xn

j¼1

aiwij

5. Experimental results

To evaluate the performance of the proposed AHt-MPSoC sys-
tem as well as to study the effectiveness of our MIP model, we

use synthetic and real applications. Our target platform is a
Xilinx virtex 5 FPGA. On this platform, several Microblaze softcores
running at 125 MHz can be mapped.

Performance measurement and area usage are presented
respectively in terms of clock cycles and area units. Power con-
sumption has been measured using the Xilinx Xpower tool.

5.1. Synthetic applications

In this section, we use synthetic applications that are produced
based on three computational patterns and non-computational
tasks implemented as loop iterations, as illustrated in Fig. 9. For
the different processors, we vary the number of iterations (i, j
and k) of the non-computational loops to obtain different applica-
tions and different delays between the computation tasks T1 to T3.
The three computational patterns consist on:

% T1 implements an inversion of a vector of 16 bits
% T2 implements 8 * 8 integer matrices multiplication and
% T3 implements search of a maximum value in a vector of 64

integers in memory

Table 1 summarizes the execution time and the area require-
ment for T1, T2 and T3 tasks. Note that the area requirement is pre-
sented in term of area unit. Here, an area unit corresponds to 150
slices. In these experiments only the additional area needed for
HW accelerator is given, as the number of soft-cores is constant
and has been fixed to 8.

Fig. 10 presents the logic area usage calculated based on our
proposed MIP model while varying the required speedup. For each
resolution, cplex requires 6 s to generate the optimal configuration.
In Fig. 10, for each required speedup, we calculate the different
limiti constraints for the different processors (Eq. (11)). The
required speedupi of each processor i is defined as follows:

speedupi ¼
Tswi

ðTswi $ limitiÞ
ð18Þ

where Tswi is the execution time of processor i without HW
Accelerator. In Fig. 10, the configurations given by the MIP model

Fig. 8. Example to compute delays for a 3-shared Hw accelerator for Tj pattern.

6 B. Dammak et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx

Please cite this article in press as: B. Dammak et al., Hardware resource utilization optimization in FPGA-based Heterogeneous MPSoC architectures, Micro-
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.05.006

to satisfy 1.007 and 1.014 speedups only consume 2 area units.
These solutions have only one shared HW accelerator for T1
(x1 ¼ 1 and y1ik ¼ 1), whereas T2 and T3 are executed in software
(x2 ¼ 0; x3 ¼ 0). In contrast, when the speedup is increased, the gen-
erated solutions integrate T2 and T3 on HW accelerators. In Fig. 10,

the solution given for a speedup of 2.15 consumes 25 additional
area units to implement HW accelerators. This solution represents
a configuration with HW accelerators for T1, T2 and T3
(x1 ¼ 1; x2 ¼ 1; x3 ¼ 1).

To illustrate the impact on performance and area consumption
when HW accelerators are shared, we compare configurations of
different points in Fig. 10 consuming the same area. The points
1.6 and 1.75 need 30 additional area units but they correspond
to different configurations. In fact, for 1.6, the MIP model generates
an AHt-MPSOC architecture with two HW accelerators of T2, one
private for P1 and the second is shared between (P2, P3, P4, P5,
P6, P7, P8). Whereas the AHt-MPSOC architecture, which provides
a speedup equal to 1.75, has two HW accelerators of T2, the fist one
is shared between (P1, P2, P4) and the second one is shared
between (P3, P5, P6, P7, P8). We deduce that, different combina-
tions of processors sharing the same HW accelerator could impact
the performance of AHt-MPSoC architecture. Thus, for a fixed area
on the FPGA, the designer has several possible configurations and
he/she will choose the optimal hardware architecture configura-
tion that provides higher performances.

Fig. 10 also demonstrates that the maximum speedup is pro-
vided with a reduced area-usage configuration compared to the
configuration with only private HW accelerators. The 8-processor
architecture with private HW accelerators for T1, T2 and T3 pat-
terns provides a speedup equal to 2.6 and consumes 136 area units.
To guarantee the same speedup, our MIP model generates a config-
uration that consumes only 96 area units. The generated
AHt-MPSoC architecture integrates T1, T2 and T3 on HW accelera-
tors (x1 ¼ x2 ¼ x3 ¼ 1 as shown in Table 2). This architecture has 4
HW accelerators for T1, 4 HW accelerators for T2 and 7 HW accel-
erators for T3. In Table 2, y1ik vector indicates that for T1, proces-
sors (P1, P2, P3, P4) and (P5, P7) have two shared HW
accelerators and (P6) and (P8) have their private ones.

In Fig. 10, we also compare the area usage of the MIP-based gen-
erated results and the real results obtained with the implementa-
tion on the FPGA. From this figure, due to the extra consumed
logic-area needed by the Bus-bridges, we note a slight overhead
difference between real measurement and MIP estimations. The
area overhead depends on the number of implemented patterns
as shared HW accelerators and is comprised between 3% and 6%.
For a speedup equal to 1.6 only T2 is implemented as shared HW
accelerator, thus the area overhead is about 3%. While for a speed
up equal to 2.15, all patterns are mapped on shared HW accelerator

Fig. 9. Generation of different synthetic applications.

Table 1
T1, T2 and T3 Area and Execution time information.

Area usage
(area unit)

SW time
(cycles)

HW time
(cycles)

T1: Data inversion loop 2 440 222
T2: Loop multiplication 15 3815 213
T3: Search maximum 4 2000 1200

Fig. 10. Additional area usage (y-axis) of the HW accelerators for the generated configurations with different speedup (x-axis). In these experiments we use 8 processors and
we compare real measurement on the FPGA with results obtained with our MIP model.

B. Dammak et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx 7

Please cite this article in press as: B. Dammak et al., Hardware resource utilization optimization in FPGA-based Heterogeneous MPSoC architectures, Micro-
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.05.006

and the area overhead reaches 6%. These results demonstrate that
the proposed MIP model produces results close to those obtained
with real implementation. For the performance delay, we note that
the delay caused by bridges, used for shared HW accelerators con-
figuration varies according to the complexity of the pattern. For T2
pattern, the delay is about 4% of the total execution time while for
T3 pattern the delay reaches 15%.

5.2. Jpeg codec application

In this section, we give experimental results for a real Jpeg
codec application executed on a 8-processor MPSoC. Fig. 11 pre-
sents a general overview of the Jpeg codec. The image is decom-
posed into 8 * 8 blocks of pixels. Each block is compressed
through the encoder process. The array of compressed blocks is
stored or forwarded to transmission channels. The image is recon-
stituted through the decoder process. The c++ code of this codec is
provided in [23]. The encoder takes bmp images to encode them
into jpeg format. The decoder process decodes jpeg images into
bmp images. This codec considers luminance and chrominance
matrix, so it supports RGB images. The scale factor of this codec
is equal to 50.

In our experiments, we use a 10 kbyte image and we profile the
jpeg-encoder and the jpeg-decoder applications on a microblaze
processor. Profiling results show that DCT (respectively IDCT) is
the most time-consuming function for jpeg-encoder (respectively
jpeg-decoder) application. The DCT function is mainly composed
of two functions: horizontal DCT (noted HDCT) and vertical DCT
(noted VDCT). Each function consumes almost 20% of the whole

execution time. The IDCT function is composed of horizontal
IDCT (IHDCT) and vertical IDCT (IVDCT). Each function consumes
almost 15% of the jpeg-decoder execution time. The 2D-DCT and
2D-IDCT computations are detailed in Eqs. (19) and (21).

Fðu;vÞ ¼ 1ffiffiffiffiffiffiffi
2N
p & CðuÞ & CðvÞ

XN$1

y¼0

XN$1

x¼0

f ðx; yÞ& ð19Þ

cos
ð2xþ 1Þ & u & p

2N
& cos

ð2yþ 1Þ & v & p
2N

ð20Þ

f ðx; yÞ ¼ 1ffiffiffiffiffiffiffi
2N
p

XN$1

v¼0

XN$1

u¼0

CðuÞ & CðvÞFðu;vÞ& ð21Þ

cos
ð2xþ 1Þ & u & p

2N
& cos

ð2yþ 1Þ & v & p
2N

ð22Þ

where CðuÞ ¼
1ffiffiffiffiffi
2N
p ; if u ¼ 0
0; if u P 0

!

The 2D-DCT and 2D-IDCT are computed using the separability
property of this transform. This means that Fðu;vÞ and f ðx; yÞ can
be computed in two separate steps. Each 2-D transform (forward
or inverse) is divided in two 1-D transform. The separated transfor-
mations can also be expressed in matrix operations (Eqs. (23) and
(24)). Fig. 12 details DCT and IDCT computations.

F ¼ T & f & Tt ð23Þ

f ¼ Tt & F & T ð24Þ

Where

Ti;j ¼
1ffiffiffi
N
p ; if i ¼ 0
2ffiffiffi
N
p & cos ð2jþ1Þip

2N ; if i > 0

(
ð25Þ

For each function of Fig. 12, the computational parts are high-
lighted to be implemented as custom instructions. For each com-
putational part, the matrix M is the matrix of DCT coefficient and
it is represented in Q12 format of the T matrix (Eq. (25)). The
HDCT and IHDCT parts consist on a multiplication of 1 * 8 integer
matrix with an 8 * 8 integer matrix while the VDCT and IVDCT
parts consist on a multiplication of 8 * 8 integer matrix with an
8 * 1 integer matrix. Thus, we observe that we can only associate
one pattern for HDCT and IHDCT tasks and another pattern for
VDCT and IVDCT tasks.

The HDCT/IHDCT and VDCT/IVDCT patterns consume respec-
tively 28 and 26 area units when implemented on a dedicated
Hw Accelerator. In these experiments an area unit corresponds to
70 slices on the FPGA.

The jpeg encoder/decoder applications will be explored on a
8-processor MPSoC architecture, in which four processors compute
the encoder application while the four others execute the decoder
application. The optimal AHt-MPSoC configuration will be selected
through the MIP-based exploration process. The exploration finds

Table 2
MILP model outputs for a speedup constraint equal to 2.6.

Model
variables

Variables value

Model inputs
N 8
M 3
acc[M] 200 3375 1000
a[M] 2 15 4
te[M][N] 440 670 910 1150 1240 1360 1470 1680

4255 4485 4725 4965 5055 5175 5245 5495
6255 6485 6725 6965 7055 7175 7245 7495

8
<

:

9
=

;

limit[N] 4150 4100 4200 4280 4300 4350 4500 4575

Model outputs
xj 1 1 1
y1ik 1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1

8
>>>>>>>>>><

>>>>>>>>>>:

9
>>>>>>>>>>=

>>>>>>>>>>;

Rji 0 10 10 0 0 0 10 0
0 200 0 170 0 0 0 0
0 0 120 0 0 0 0 0

8
<

:

9
=

;

Fig. 11. Jpeg encoder and decoder tasks.

8 B. Dammak et al. / Microprocessors and Microsystems xxx (2015) xxx–xxx

Please cite this article in press as: B. Dammak et al., Hardware resource utilization optimization in FPGA-based Heterogeneous MPSoC architectures, Micro-
process. Microsyst. (2015), http://dx.doi.org/10.1016/j.micpro.2015.05.006

