
SIViP
DOI 10.1007/s11760-014-0633-8

ORIGINAL PAPER

Scalable row-based parallel H.264 decoder on embedded
multicore processors

Elias Baaklini · Santhosh Rethinagiri · Hassan Sbeity ·
Smail Niar

Received: 29 April 2013 / Revised: 4 March 2014 / Accepted: 6 March 2014
© Springer-Verlag London 2014

Abstract Multimedia applications are present in most
mobile hand-held devices, which are still equipped with lim-
ited battery resources. The H.264 standard is currently domi-
nating the video compression world. H.264 has high compu-
tational requirements in terms of memory, energy, and time.
Many techniques emerged that optimize parallel task granu-
larity on multicore systems ranging from groups of pictures
until the smallest block of pixels. A scalable parallel tech-
nique for the motion compensation phase is proposed in this
research that is based on processing of groups of macroblock
rows. Moreover, a light dependency detection algorithm is
added to the prediction phase that enables parallel execu-
tion and minimizes synchronization stall time. Furthermore,
a parallel implementation of the deblocking filter is also
implemented. The overall result is an efficient and highly
scalable parallel H.264 decoder that is evaluated on a real-
board platform composed of an ARM Cortex-A9 MPCore
with four processors. Various low- and high-definition video
sequences are used in experiments. Results show that execu-
tion time reaches a speedup of 3.3× for motion compensation
stage and an overall speedup of 2.3× on 4 cores including
communication and synchronization overhead. Energy con-

E. Baaklini (B) · S. Niar
University of Valenciennes, Valenciennes, France
e-mail: elias.baaklini@univ-valenciennes.fr

S. Niar
e-mail: smail.niar@univ-valenciennes.fr

S. Rethinagiri
Microsoft Research Center, Barcelona Supercomputing
Center (BSC), Barcelona, Spain
e-mail: santhosh.rethinagiri@bsc.es

H. Sbeity
Arab Open University, Beirut, Lebanon
e-mail: hsbeity@aou.edu.lb

sumption decreases up to 63 % for the whole application exe-
cution.

Keywords Multimedia · H.264/AVC standard ·
Video compression · Optimization · Parallel computing ·
Embedded systems · Multicore processors

1 Introduction

Mobile devices supporting multimedia applications are
nowadays considered pervasive in our modern world soci-
eties. Smartphones and tablet devices are equipped with high-
resolution screens and fast multicore embedded processors.
Video players, digital cameras, televisions, and phones sup-
port high resolutions such as HD and Full-HD. However,
few multimedia applications benefit from the computational
potentials that multicore processors offer in these emerg-
ing powerful embedded devices. Furthermore, video cod-
ing standards such as H.264/AVC [8] and HEVC [20] are
adopting complex algorithms like context-adaptive binary
arithmetic coding (CABAC) and in-loop deblocking filter in
order to achieve better compression and to lower transmission
bitrates. However, the additional complexity of these algo-
rithms has negative impacts on execution time and energy
consumption.

H.264/AVC [8] is currently one of the most widely used
video compression standards for recording, compressing, and
distributing high-definition (HD) videos. The standard’s first
draft was released in 2003 and its latest version in 2012
[8]. Most HD video streaming websites like YouTube cur-
rently support H.264 as their default video codec [26]. H.264
is a high computational video compression standard that
emerged as a result of the joint effort for Moving Picture
Experts Group (MPEG) and the Video Coding Experts Group

123



SIViP

(VCEG). The H.264 standard offers better compression and
higher quality compared to other standards like MPEG-2
[22]. This increase in compression results is the cost of high
computational blocks like Deblocking Filters (DF) and com-
plex Entropy Decoding techniques (CABAC and CAVLC).

Nowadays, most system-on-chip (SoC) platforms have
multicore processors. Dual and quad cores are found in recent
smartphones and tablet devices like Samsung and Apple
phones [1,16]. ARM Cortex-A9 processors can have up to
4 cores per chip [2]. Cortex-A15 processors can have up
to 8 cores per chip (each chip can contain 2 clusters where
each cluster can have up to 4 cores) [3]. On the other hand,
applications do not benefit automatically from these power-
ful top-of-the-line processors. Even with new cutting-edge
processors, video resolutions are increasing rapidly which
require more processing time and consequently more energy
consumption. Operating systems simply map independent
applications, or multiple threads within an application, on
different cores. Therefore, one application alone may not
benefit from the additional resources available unless it is
designed to execute in parallel. Thus, sequential applica-
tions need to be redesigned and recompiled in order to sup-
port parallelism. The process of parallelization faces many
challenges such as dependencies, synchronization, and data
coherency. In our research, we choose the H.264/AVC video
decoder [8] as a high computational multimedia application
to be parallelized. We solve the problem of high complexity
of the H.264 decoder using parallel execution on multicore
embedded processors.

Many parallel implementations exist ranging from paral-
lel decoding of macroblocks (fine-grain implementations)
till parallel decoding of groups of pictures (coarse-grain
implementations). A macroblock is a 16 × 16 square pixel
component of an image in a video sequence. Moreover, a
macroblock can also be divided into subblocks of smaller
size. Macroblock parallel decoding is highly scalable since
many independent macroblocks can be processed in parallel.
However, dependencies and huge overheads are created as
a result of memory communication and execution synchro-
nization between macroblocks. On the other hand, parallel
decoding of groups of pictures requires large memory, espe-
cially for high-definition video sequences. In addition, they
have a lower scalability than parallel macroblock decoding
because of the small number of groups of frames that can
be decoded in parallel. In our approach, we process rows
of independent macroblocks in parallel using a new algo-
rithm that eliminates dependencies between macroblocks and
minimizes synchronization overhead. This level of parallel
execution may be considered between the coarse-grain and
the fine-grain parallel approaches, thus, offering a balance
between large overheads and high scalability.

Our main contribution in this paper is the design and
implementation of a new algorithm for processing mac-

roblock rows of the H.264 decoder in parallel. In addition, a
small footprint data dependency detection algorithm that iso-
lates intra-prediction macroblocks (I-MBs) is implemented
and executed on macroblocks of the same slice of a video
frame. Experiments are conducted by executing our scalable
parallel decoder on a Cuda Development Kit platform [13]
with an ARM Cortex-A9 processor including 4 cores [2].
Execution time and energy consumption statistics are col-
lected by running the application on the real-board platform.
For HD and Full-HD resolutions, video sequences bench-
marks reach their maximum throughput using 4 threads on 4
cores with a speedup of 3.3× for motion compensation and
an overall speedup of 2.3× in terms of execution time and
with an energy saving percentage of 63 %.

The remainder of the paper is organized as follows. In
Sect. 2, we present the related work concerning H.264 par-
allel implementations. In Sect. 3, we describe background
info related to H.264 decoding. In Sect. 4, we describe our
approach for parallelizing the motion compensation phase
and the deblocking filter. In Sect. 5, we present our real-board
experimental results for execution time and energy consump-
tion. We also discuss and analyze simulated executions and
the theoretical scalability of our algorithm. Conclusion and
future work are given in Sect. 6.

2 Related work

Ever since the H.264/AVC standard [8] was published in
2003, researchers started to solve the high complexity issue
of the new standard mainly using parallelism. Several modifi-
cations were suggested for the H.264 encoders and decoders
to improve the performance in terms of execution time and
memory usage. Parallel decoding techniques of H.264 start
from the highest level, which is the group of frames or pic-
tures (GOP), coarse-grain level, till the lowest level which is
the block inside a macroblock, fine-grain level.

Kannangara et al. [9] reduced the complexity of the H.264
decoder (19–65 %) by predicting the SKIP macroblocks
using an estimation based on a Lagrangian rate-distortion
cost function. Our experimental results show a better over-
all speedup (230 %) and a better parallel scalability relative
to the number of cores in a multicore processor. Gurhanli
et al. [6] suggested a parallel approach by decoding inde-
pendent groups of frames on different cores. The speedup
is conditioned with the modification of the encoder in order
to omit the start-code scanner process. Any modification to
the encoder will require the exclusion of previously encoded
video sequences, which will need to be re-encoded in order
to benefit from the proposed approach. In our parallel imple-
mentation, we only modify the decoder, which support all
previously encoded video sequences. Nishihara et al. [12]
proposed a load balancing mechanism among cores where

123



SIViP

partitions sizes are adjusted at runtime. The authors also
reduced the memory access contention based on execution
time prediction. Among frame-level and MB-level paral-
lelization, Zhao et al. [27] proposed a wavefront algorithm
for processing independent macroblocks within the same
frame and among different frames. This method for paral-
lel processing of macroblocks does not equally distribute
workload of different cores as the number of independent
macroblocks varies with time. Mesa et al. [11] proposed a
similar approach, the 2D-wave, which decodes independent
macroblocks in parallel on different cores. A good scalabil-
ity is proved for high resolutions. Moreover, an advanced
parallel technique that is based on the 2D-wave algorithm,
the dynamic 3D-wave approach, is proposed by Meender-
inck et al. [10]. The dynamic 3D-wave algorithm, which
combines spatial and temporal MB-level parallelism, uses
a dynamic scheduler that assigns independent macroblocks
to parallel threads. The dynamic scheduler minimizes the dif-
ferences in workload on different threads, and thus, it opti-
mizes the parallel execution of independent macroblocks on
parallel threads. Chong et al. [4] added a preparsing stage in
order to resolve control dependencies for macroblock-level
parallelism. Vandertol et al. [24] mapped video sequences
data over multiple processors providing better performance
over functional parallel algorithms. The authors group mac-
roblocks in a frame with minimal dependency between cores.
Horowitz et al. [7] compared different H.264 implementa-
tions including FFmpeg [5] and the H.264 reference software
JM [19]. The authors also analyzed the complexity of the
H.264 decoder subsystems. Sihn et al. [18] proposed a mul-
ticore pipeline for the deblocking filter based on the group
of pictures data level partitioning. He also suggested soft-
ware memory throttling and fair load balancing techniques
in order to improve multicore processors performance when
several cores are used.

Among the literature that already exists for parallel
deblocking filter, Wang et al. [25] partitions a slice into inde-
pendent rectangles with arbitrary granularity. These inde-
pendent regions are identified by examining the influence of
vertical and horizontal lines of pixels. Parallel deblocking
of these regions has good scalability, minimal synchroniza-
tion overhead, and good cache utilization. However, a small
number of pixels will have erroneous output without affect-
ing the overall deblocking filter process with what they refer
to as the Limited Error Propagation Effect. For an optimized
deblocking filter, a speedup of 95 and 224 % is achieved on 2
and 4 cores, respectively. For an H.264 decoder, the overall
speedups are 21 % on 2 cores and 34 % on 4 cores. Pieters et
al. [15] proposed a macroblock partitioning algorithm that is
based on a parallel version described by Wang et al. [25] with
the avoidance of the Limited Error Propagation Effect. The
proposed algorithm filters the pixels of macroblocks concur-
rently. The parallel technique is also tested on GPU plat-

forms. The parallel implementation outperforms both CPU-
based and GPU-based implementations by a factor up to 10.2
and 19.5, respectively.

In our research, we optimize the H.264 decoder knowing
that our approach is also applicable to the H.264 encoder. We
focus on improving the efficiency of the H.264 decoder using
multicore processors. We decode groups of rows of mac-
roblocks in parallel where each group is mapped to one core.
Dependencies between macroblocks are avoided by decod-
ing intra-prediction macroblocks sequentially at the end of
the decoding stage. We prove that our approach has a bet-
ter load balancing on multiple cores in addition to lower
synchronization overhead than other approaches. With these
advantages, we eventually reach higher theoretical and real-
istic speedups. We evaluate our approach on a real platform
equipped with a quad core processor. Execution time and
energy consumption statistics are gathered and analyzed. As
of our knowledge, our results are more realistic compared
with other work carried out in the same literature.

In the following section, we briefly describe the H.264
decoder process. We also discuss the decoder’s decomposi-
tion and its parallel execution possibilities.

3 H.264 background

In this section, we provide brief background information
about H.264 video coding standard. We also introduce our
parallel decoding approach for the standard.

3.1 H.264 features and tools

The H.264/AVC standard was designed for high compression
efficiency, reliability, and flexibility, so that it could support
a wide variety of applications and different types of commu-
nication such as wired and wireless networks.

3.1.1 Layer structure

The H.264 standard consists of various features and coding
tools that contribute to the high compression efficiency, flex-
ibility, and robustness. To achieve the flexibility, the standard
was designed to contain two layers:

1. The Video Coding Layer (VCL) represents the video
encoding process and the coded bits.

2. The Network Abstraction Layer (NAL) handles the trans-
portation of VCL data and other header information by
encapsulating them in NAL units.

The separation of video coding and transportation into two
layers ensures that the video coding layer provides an effi-
cient and adaptable representation of video content.

123



SIViP

3.1.2 Profiles and levels

Profiles are used to specify the tools and capabilities of the
decoder that is needed to support different applications. Each
profile is designed to have particular coding tools to support
various coding requirements. The H.264/AVC standard orig-
inally specified the following three basic profiles:

1. Baseline: low-latency, low-complexity, error resilience
and robustness. Applications: video conferencing.

2. Main: high compression efficiency. Applications: video
storage and broadcasting

3. Extended: superset of the baseline profile with enhanced
error resilience and video stream switching capabilities.
Applications: internet video streaming.

Levels provide inter-operability between different decoder
implementations. They are defined as performance limits for
decoders supporting each profile. Performance limits gener-
ally apply to processor load, memory capabilities, and the
maximum bit rates supported by a decoder.

3.1.3 Picture structure

The source video is coded as a stream of pictures. The small-
est coding unit in a picture is a Macroblock (MB). A mac-
roblock contains data belonging to a region of 16 × 16 luma
samples, Y (brightness), along with the associated chroma
component samples, Cr (red) and Cb (blue).

A picture consists of one or more slices. Each slice con-
tains an integral number of macroblocks, which should be
processed in raster scan order. H.264 has the following slice
types:

– I-Slices: all the macroblocks in the slice are coded using
intra-prediction (using data already coded within the same
slice).

– P-Slices: contains inter-coded macroblocks using one ref-
erence picture and intra-coded macroblocks (Predictive).

– B-Slices: contains inter-coded macroblocks using two ref-
erence pictures as well as macroblock types in P-slices
(Bi-predictive).

– SP and SI-Slices: Special types of slices, Switching Pre-
dictive (SP) and Switching Intra (SI), for efficient switch-
ing between different video streams, random access and
error resilience.

The number of slices and the number of macroblocks in
each slice are flexible. Therefore, the encoder can decide on
an appropriate size depending on the coding requirements.
Slices are processed independently of each other. The inde-
pendent decoding of slices adds robustness against data loss
because the rest of the picture is not affected.

3.2 H.264 decomposition

The H.264 decoder can be divided into five main func-
tional phases: Entropy Decoder (ED), De-Quantization and
Inverse Transform (IQT), Motion Compensation (MC) and
Intra-Prediction (IP), and Deblocking Filter (DF). The H.264
decoder stages are illustrated in Fig. 1. The decoder process
starts by entropy decoding the input bitstream. Then, de-
quantization and inverse transformation are applied to the
resulting data. Afterward, in every slice of a frame, mac-
roblocks are processed in raster mode. Each macroblock is
intra- or inter-predicted (motion compensation) using the ref-
erence frames. The deblocking filter is applied at the end in
order to make the edges between macroblocks smooth and
invisible to human vision. Figure 2 illustrates the average
execution percentage of each main phase using the baseline
and the main profiles. De-quantization and inverse transform
phase can be grouped with the entropy decoder phase because
they have a small footprint on overall execution. Both predic-
tions phases, motion compensation and intra-prediction, are
also merged together into one phase. Our parallel algorithm
is applied to the prediction phase that ranges from 41 till 45 %
of the overall decoding process. The entropy decoder with
de-quantization and inverse transform is executed sequen-
tially with a percentage ranging from 14 till 19 %. We use

Fig. 1 H.264 decoding process

123



SIViP

Fig. 2 H.264 decoding stages
workload percentages. a
Baseline profile. b Main profile

the wavefront algorithm [27] for the deblocking filter of the
H.264 decoder. The deblocking filter has a huge impact on
the overall performance of the decoder that is 45 % for the
baseline profile and 36 % for the main profile.

3.3 H.264 macroblocks

Each slice of a picture frame is partitioned into square blocks
of 16 × 16 pixels called Macroblock (MB). The number of
horizontal and vertical macroblocks varies with the resolu-
tion of the frame. A macroblock can be divided into subblocks
of 16×8, 8×8, 8×4, and 4×4 pixels. The encoder chooses
the subblocks sizes depending on the amount of details (com-
plexity) for specific parts of an image frame. An image, or
part of an image, is considered complex when it contains
objects with tiny details. For example, in a video of a fly-
ing bird with a consistent blue background, the encoder will
divide the macroblocks in the region displaying the bird into
subblocks smaller than 16×16, and the blue sky macroblocks
will remain with the same of size of 16 × 16. The motion
compensation stage uses a reference buffer in order to cal-
culate the values of macroblocks in the current frame. The
reference buffer contains a list of previously decoded frames.
Macroblocks that are inter-predicted and motion compen-
sated from previously decoded frames are either of type P or
B (P-MBs and B-MBs). P-MBs depend on macroblocks in a
previously decoded frame. B-MPs are calculated using mac-
roblocks in two reference frames. Macroblocks that depend
on other macroblocks in the current frame (called I-MBs) are
intra-predicted. Finally, deblocking filtering is applied at the
end of the decoding process in order to reduce the edging
effect between macroblock borders.

In the following section, we describe in detail our parallel
implementation of the H.264 decoder.

4 H.264 parallel implementation

In this section, we elaborate on our parallel implementation
of the H.264 video decoder. We explain how we apply paral-

lelism to the motion compensation and the deblocking filter
stages of the decoder. We also discuss macroblocks partition-
ing and their dependencies.

4.1 Parallel motion compensation

The H.264 reference implementation, JM [19], is the refer-
ence implementation for the H.264 standard. In our research,
we modified the JM [19] source code of the H.264 decoder
in order to decode rows of macroblocks in parallel using the
PThread library of the POSIX standards in C programming
language.

A thread is created for every group of macroblock rows.
Each thread is mapped to a core. The number of thread is
specified by the user or the application. If the number of
threads is greater than the number of cores, then the scheduler
will assign more than one thread for one core. As shown in
Fig. 3, each thread handles the motion compensation stage for
a group of macroblocks rows. All threads should complete
their task before moving on to the next phase, which is intra-
predication for I-MBs.

The maximum number of parallel decoding blocks is
equal to the number of macroblock rows. This level of par-
allel decoding of macroblock rows may be considered in

Fig. 3 Decoding groups of macroblock rows in parallel using N threads

123



SIViP

between coarse-grain and fine-grain approaches. Coarse-
grain approaches process multiple slices or frames in par-
allel. These high-level methods, like [6,9,12,18], need high
memory usage in order to decode multiple frames in parallel
because of the required size to store and to transfer data of
several frames. Fine-grain approaches decode macroblocks
or blocks inside a macroblock in parallel. These low-level
methods, like [4,24,27], cause an enormous synchronization
overhead affecting deeply the speedup for the reason of the
large number of macroblocks in every frame. The balance
between both approaches is also reflected on synchroniza-
tion overheads and data communication requirements.

Our approach is aimed to benefit from the balance between
both advantages and disadvantages. Macroblock rows require
less memory than a frame and more than one macroblock.
In fact, our approach is scalable up to the macroblock level.
Such granularity will create a huge overhead of parallelism on
current multicore architectures. On the other hand, the num-
ber of macroblock rows is much less than the total number of
macroblocks. For example, in HD resolution (1,280 × 720),
each frame has 3,600 macroblocks, 80 horizontal MBs, and
45 vertical MBs. Thus, the number of macroblocks rows is
less by a factor of 80 than the total number of macroblocks.
As a result, the overhead for synchronization and communi-
cations between cores is also reduced by a factor of 80.

4.2 Dependencies between macroblocks

In H.264, there are 4 types of macroblocks: I, P, B, and SKIP.
Figure 4 illustrates the dependencies between macroblocks
of types I and P. I-MBs depend on other macroblocks in the
same slice of a frame as shown in Fig. 4-a where the mac-
roblock pointed at by the arrows may be dependent on one
or more macroblocks. P-MBs depend on macroblocks from
previously decoded frames as shown in Fig. 4-b where the
origin of the arrow is a macroblock in a previously decoded
frame. Motion vectors info is required for P-MBs in order
to reconstruct the coded macroblocks. B-MBs depend on
past and future reference frames. They are available in B-

Frames, and they can have one or two motion vectors. The
SKIP macroblock data remain the same when it is compared
with another macroblock in a previously decoded frame. So
the motion vector differences are zero, and therefore, the
prediction macroblock is simply copied as the reconstructed
macroblock.

In a frame, all macroblocks can be processed in parallel
except I-MBs because they depend on macroblocks, which
are being decoded in the same slice. So a dependency identifi-
cation procedure is needed to satisfy intra-prediction depen-
dencies. In order to overcome this constraint, we start by
decoding all macroblocks of type P, B, and SKIP in parallel.
During this step, we skip all I-MBs and we save a reference
to the skipped macroblocks for future processing. When this
stage is completed, the remaining I-MBs macroblocks in the
current slice are decoded sequentially as illustrated in Fig. 3.
Among the remaining I-MBs, independent macroblocks can
be processed in parallel as they depend on macroblocks in
the same slice that are already processed. For simplicity
and because of their small number in each frame (except
I-Frames), we process I-MBs sequentially in our algorithm.

With this ordering mechanism, dependencies between
macroblocks in the same slice are satisfied. Table 1 lists the
percentages of I-MBs, P-MBs, and SKIP-MBs in the video
sequences that we use in our experiments. The average num-
ber of I-MBs for all video sequences is about 2 %. I-MBs also
exist in P-frames and B-Frames. The number of I-MBs in a
P-Frame or a B-Frame depends on objects with high detailed
and on objects rate of movements in the video sequences.
P-Frames and B-Frames are mostly composed of P-MBs and
SKIP-MBs with a small number of I-MBs. So the small num-
ber of I-MBs in P-Frames and B-Frames does not signifi-
cantly affect the overall speedup for the parallel decoding of
macroblocks.

4.3 IDR frame frequency

An encoded video always starts with an I-Frame (IDR),
which is composed completely for I-MBs. This type of

Fig. 4 Dependencies between
macroblocks. a Intra-prediction.
b Inter-prediction

123



SIViP

Table 1 Percentages of
different types of macroblocks
per video sequence

Name Resol. Fr. I P SKIP

Bus 352 × 288 150 1.70 79.20 19.10

Foreman 352 × 288 300 1.80 70.95 27.25

Waterfall 352 × 288 260 0.25 70.05 29.70

Johnny 854 × 480 600 0.10 22.35 77.55

Basketball 854 × 480 500 3.40 62.25 34.35

Cactus 854 × 480 500 1.50 42.30 56.20

Johnny 1,280 × 720 600 0.15 22.50 77.35

Basketball 1,280 × 720 500 3.95 58.50 37.55

Cactus 1,280 × 720 500 1.90 42.50 55.60

Basketball 1,920 × 1,088 500 4.95 55.30 39.75

Cactus 1,920 × 1,088 500 3.15 44.05 52.80

Terrace 1,920 × 1,088 600 0.80 56.50 42.70
Average 1.97 52.20 45.83

Table 2 Video sequences
resolution and frames types info

Name Resol. fps I P B Total

Bus 352 × 288 25 1 75 74 150

Foreman 352 × 288 25 2 161 137 300

Waterfall 352 × 288 25 2 116 142 260

Johnny 854 × 480 60 3 151 446 600

Basketball 854 × 480 50 2 250 248 500

Cactus 854 × 480 50 2 249 249 500

Johnny 1,280 × 720 60 3 151 446 600

Basketball 1,280 × 720 50 2 247 251 500

Cactus 1,280 × 720 50 2 244 254 500

Basketball 1,920 × 1,088 50 2 236 262 500

Cactus 1,920 × 1,088 50 2 181 317 500

Terrace 1,920 × 1,088 60 3 231 367 600

frames are available typically every 1 s in a video sequences
in order to overcome communication errors and their prop-
agation when data are lost during transmission. However,
a high number of IDR frames will significantly impact the
parallel efficiency and the scalability of our algorithm. The
minimum interval between IDR frames is typically equal to
the frame rate (as in the default settings of the x264 encoder
[14]). For example, an HD video sequence with a frame rate
of 60 frames per second (fps) will have an IDR frame every
60 frames (equivalent to 1 s). We can increase or decrease
the frequency of IDR frames in the encoder configuration.
However, a high frequency of IDR frames, for example one I-
frame every 10 frames, decreases the compression efficiency
of the encoder, and the visual results will not be noticeable
by the human vision. The default configuration for the IDR
period in the x264 [14] and the JM [19] H.264 encoders is
set to an adaptive decision, which basically inserts an IDR
whenever a scene changes. We use this feature in our experi-
ments in order to encode the video benchmarks. The numbers

of I-, P-, and B-frames are listed in Table 2 on page 10. The
IDR period for low frame rates (25 fps) is around 150 (6 s)
and for high frame rates (50–60 fps) is 200–250 (3–5 s).

4.4 Macroblock dependency check algorithm

The macroblock dependency check algorithm is straightfor-
ward and simple to implement. Given a list containing all
the macroblocks in a slice, a loop that iterates over all mac-
roblocks flags all I-MBs and assigns each remaining mac-
roblock to a group specific for an available core. Then, the
groups of macroblocks are decoded in parallel. When all
macroblock groups are processed, a loop iterates over all I-
MBs that were flagged initially. All the macroblocks in the
I-MBs list are decoded sequentially. I-MBs can be processed
in parallel if they are not neighbors, meaning they do not
have any dependencies between them. The number of I-
MBs is not significant in P-frames and B-frames as shown in
Table 1 on page 7. If we assign one macroblock to a different

123



SIViP

Fig. 5 Parallel decoding of
macroblocks mapped to a 4
cores and b 8 cores

core, the workload is not very important and synchroniza-
tion overhead will also be added. So we just execute them
sequentially in our experiments for the reasons of simplicity
and less communication overhead. With the previously men-
tioned steps, inter-prediction and intra-prediction stages are
completed. The output of this stage complies fully with the
H.264 standard [8], which means that the output is exactly
the same when sequential execution is performed. Decoded
macroblocks are then submitted to the deblocking filter in
order to make these edges between macroblocks smooth and
nearly invisible.

4.5 Macroblocks partitioning

In the parallel decoding algorithm described above, groups of
macroblocks are decoded in parallel. In this part, we explain
why we chose groups of macroblocks to be decoded in par-
allel. As explained above, while iterating over macroblocks
in a frame slice, we skip intra-prediction macroblocks (I-
MBs) and we decode inter-prediction macroblocks (P-MBs
and SKIP-MBs) in parallel on multiple cores. Depending on
the number of available cores, we group rows of macroblocks
in order to be decoded in parallel. The slice is divided by the
number of cores horizontally.

Seitner et al. [17] compare 6 parallel representations in
terms of stall time and core usage. Among the presented
data partitioning approaches, our partition is similar to the
slice-parallel splitting approach that is described in [17]. As
shown by the authors, this approach has significant stall time
overhead, which is caused by synchronization procedures in
order to satisfy macroblock dependencies. However, with our
approach for satisfying dependencies between macroblocks,
the stall time overhead does not apply. We chose this method
because of data locality and also due to minimal data transfer
initiation overhead. For example, in order to execute a slice
of 80 rows of macroblocks on 4 cores processor, each core
decode a chunk of 20 rows of macroblocks. Using this par-
tition method, data are only transferred 4 times to the local

cores caches. This number of transfers is minimal because
it is equal to the number of available cores. Communication
overhead between caches of different cores is required when
I-MBs depend on other macroblocks that are processed by
another core. In Fig. 5, we show an example of a frame of
size 8 × 8 MB (s64 × 64 pixels) mapped on 4 cores in 5-a
and on 8 cores in 5-b. The numbers inside the squares are the
numbers of cores. Macroblocks in Fig. 5 are assumed to be
all P-MBs or B-MBs. I-MBs are not displayed for illustration
purposes.

In a sequential implementation, macroblocks are proces-
sed in raster scan mode, starting from top to bottom rows and
for each row from left to right macroblock. All independent
macroblocks in a slice can be processed at the same time.
However, the level of parallelism is limited by the number of
available cores. In our parallel implementation, we choose
to group macroblocks in rows because it offers a good load
balance on different cores. In addition, this level of paral-
lelism has a low synchronization overhead between cores,
and it can be considered simple to implement and to manage.
Moreover, decoding independent macrobocks vertically or
diagonally did not show any significant difference with hor-
izontal decoding because all these macroblocks depend on
previously decoded macroblocks. Further studies will be per-
formed in order to group macroblocks based on their depen-
dencies to previously decoded macroblocks. In this paper,
we limit our study to the row-based algorithm that is tested
on a embedded multicore processor.

4.6 Scalability of parallel motion compensation

In our approach, the highest scalability level is the maximum
number of independents macroblocks in a frame slice. Once
the dependency detection algorithm isolates the I-MBs, all
remaining macroblocks can be processed at the same time.
However, the level of parallelism is limited by the available
cores in a multiprocessor chip. The optimal speedup will
always be when all the macroblocks are assigned to the avail-

123



SIViP

able parallel cores. This will eliminate the context switch-
ing overhead, which affects the performance in general. For
many-core processors, an important limitation that remains
unsolved is the huge data communication overhead between
cores. For vector processors or general-purpose graphical
processing units (GPGPUs) which offer a very high level of
parallelism, great potentials exist that may also benefit from
the high scalability of our approach. In this paper, we limit
our experiments and results to embedded multicore proces-
sors.

4.7 Parallel deblocking filter

The deblocking filter, last stage of the H.264 decoder,
makes the edges between macroblocks smoother, and thus, it
decreases the artifacts that appear when a slice is partitioned
into macroblocks. This final stage of the decoder that consists
of 41–45 % of the total decoding time as illustrated in Fig. 2
on page 5 is also modified to execute in parallel on differ-
ent cores. However, dependencies between macroblocks in
this stage are different than the dependencies of motion com-
pensation and intra-prediction. During the deblocking filter
stage, each macroblock requires that the top and the left mac-
roblocks are already filtered. Figure 6 illustrates the sequen-
tial (a) and the parallel (b) filtering modes that are applied
on macroblocks in a slice. Both scanning modes satisfy the
dependencies requirements of the deblocking filter stage. In
Fig. 6a, one marcoblock is filtered at a time. In Fig. 6b,
macroblocks colored in dark gray are processed on differ-
ent cores in parallel. This method, also known as wavefront
scheduling, is considered as a commonly used approach for
processing independent macroblocks. It can be applied at the
intra-prediction, the motion compensation, and the deblock-
ing filter stages as proposed and explained by Zhao et al.
[27].

We implement the wavefront parallel method for the
deblocking filter stage only. This method satisfies the depen-
dencies requirements of the deblocking filter process as
illustrated in Fig. 6b. We implement this parallel process-

ing approach in order to complement our proposed parallel
motion compensation algorithm. Both stages process inde-
pendent macroblocks in parallel. In the following section,
experimental results will be provided for the complete par-
allel implementation of the motion compensation and the
deblocking filter stages.

5 Experimental results

In this section, we evaluate our H.264 parallel implemen-
tation on a multicore embedded processor. We describe the
configuration environment for the real-time execution and
the tools that were used to collect all execution information.
We gather real-board execution time and energy consumption
statistics. We also compare our results with similar literature
for parallel H.264 implementations.

5.1 Parallel execution

Parallel execution is considered as a major potential solu-
tion for complex applications where sequential execution
bounds the performance of these applications. Most proces-
sors that are currently available in the market have multi-
ple cores. Applications with high computational complex-
ity may benefit from potential speedup from multiple cores
when data or functional parallelism is applicable. Even opti-
mized implementations can still take advantage from paral-
lel techniques. In our research, we choose the H.264/AVC
video decoder as our multimedia application benchmark
for which we provide a parallel implementation using our
innovative approach. We further gather execution statistics
and compare results to other relatively similar implemen-
tations. In our H.264 parallel implementation, the motion
compensation (MC) stage for each row of inter-prediction
macroblocks (P-MB) is executed in parallel on different
cores. We experiment our parallel implementation using
video sequences with CIF (352×288), WVGA (854×280),
HD (1,280 × 720), and FHD (1,920 × 1,080) resolutions on

Fig. 6 Sequential and parallel
deblocking filter of macroblocks
in the H.264 decoder. a
Sequential. b Parallel

123



SIViP

an embedded multicore processor. Macroblock dependen-
cies in the same picture slice are avoided by decoding intra-
prediction macroblocks (I-MBs) when all other macroblocks
of the same slice are already decoded. Overheads emerged
as a result of shared memory communications and synchro-
nization between cores. We collect execution time and energy
consumption statistics using experiments on a real board with
an embedded multicore processor. A virtual threshold for the
speedup to the number of cores ratio is identified when large
numbers of threads are used.

5.2 Environment and configurations

Our H.264 parallel implementation described in Sect. 4 is
executed and tested on a Cuda Development Kit platform
[13] with an ARM Cortex-A9 processor with 4 cores [2].
The processor has a memory size of 2 GB and an L2 cache
size of 1MB. L1 instruction and data caches both have the
size of 32 KB. The maximum frequency is 1.3 GHz when
4 cores are used. This high-end and low-power proces-
sor is currently available in many portable devices such as
smartphones, tablets, and notebooks. We execute our parallel
H.264 decoder using 2, 4, 6, 8, 12, and 16 threads. Each thread
is mapped automatically by the operating system (Ubuntu in
our case) to a different core. When the number of threads is
more than 4, context switching is required to run all threads
that are created by the application. We gather statistics using 4
different resolutions: CIF, WGVA, HD, and FHD. With each
resolution, we use 3 different video sequences with different
image complexities in terms of movement speed and number
of objects. Table 2 lists all the video benchmarks that were
used in our experiments. The information in Table 2 includes
the resolution, the rate of frames per second, the number of I-
frames, the number of P-frames, the number of B-frames, and
the total number of frames. Real-time execution for all the
above video sequences is performed. Execution time is sim-
ply calculated by the application and the operating system.
Energy statistics are collected by a power measuring instru-
ment, the Agilent LXI digitizer [21]. The digitizer accurately
measures the static and dynamic current consumption across
the resistors place. The Agilent Technologies L4532A [21] is
a high-resolution, standalone LXI digitizer. It offers 2 chan-
nels of simultaneous sampling at up to 20 mega samples per
second (MSa/s), with 16 bits of resolution. Inputs are isolated
and can measure up to 250 volts to handle the most demand-
ing applications. Time and energy results are illustrated and
analyzed in the following subsections.

5.3 Results for parallel motion compensation

Experiments are preformed on the videos sequences listed
in Table 2. The number of parallel rows of macroblocks
increases with the video resolution. Thus, high resolutions

Fig. 7 Speedup of H.264 parallel execution of the motion compensa-
tion stage

scale better than low resolutions with the number of core
due to higher number of macroblocks in each frame. Experi-
ments are conducted using 2, 4, 6, 8, 12, and 16 threads on an
ARM Cortex-A9 with 4 cores [2]. Figure 7 shows the average
speedup of the motion compensation stage for every resolu-
tion for different number of threads. For the CIF resolution,
the maximum speedup of 1.7 is attained using 4 threads. The
speedup decreases as the number of threads increases due
to large data communication overhead. HD and FHD video
sequences have a speedup higher than 3 with 4 threads where
each thread is mapped to different core. The best speedup
to the number of threads ratio is when 4 threads are used.
The ratio of speedup to number of threads for high-definition
resolutions is around 0.8 when 4 threads are used. Doubling
the number of threads drops the ratio to 0.6 which cannot
be considered as efficient as expected when running a par-
allel application on a multicore processor. Using a number
of threads that are more than the number of cores causes
the scheduler to assign more than one thread for one core.
Thus, the resulted context switching does not increase the
efficiency of the application as shown in our results.

Results for high resolutions in general have better speed-
ups. This is mainly due to greater workload for each core than
smaller resolutions. A larger workload reduces the impact
of synchronization and data transfer between cores. One of
the reasons is less dependencies between macroblocks being
processed on different cores. Another reason is the data trans-
fer overhead, which is required for sending data to different
cores. Synchronization also adds an overhead, which is inde-
pendent of the video resolution. Thus, speedup will be much
more efficient for higher resolutions.

5.4 Comparison with related work

For the 2D-wave approach described in [11], the speedup
using 4 cores is 2.6 and the highest speedup is around 9.5

123



SIViP

Table 3 Comparison of macroblock parallelism scalability with
dynamic 3D-wave in [10]

Res. Tot. MBs 3D-MBs Par-MBs Diff. (%)

SD 1,620 1,288 1,592 +23.6

HD 3,600 2,886 3,528 +22.3

FHD 8,160 5,819 7,917 +36.1

using 24 cores. Our results have a better ratio between the
speedup and the number of cores; however, we can only com-
pare the speedup up to 4 cores. In addition, our approach has
a higher theoretical speedup as the number of independent
macroblocks that can be processed at the same time is higher.
When processing macroblocks simultaneously, workload on
different cores is almost equal. On the other side, when apply-
ing the wavefront approach in [11] and [27], the number of
independent macroblocks reaches its maximum only when
almost half of all macroblocks of the current slice are already
decoded. Furthermore, the experimental environment is not
the same. We are testing our parallel implementation on a real
platform; on the other side, most results in other researches,
like [17] and [11], use simulators. In following sections, we
will show simulated results for the overall execution of the
parallel H.264 decoder.

Exact comparisons with related work cannot be accurate
for several reasons like decoder implementation, processor
configurations, and video resolutions. However, a compari-
son of the macroblock scalability between our approach and
the dynamic 3D-wave [10] is shown in Table 3. The 3D-
wave paper [10] performed a detailed analysis of the parallel
scalability of macroblocks. We intend to compare the maxi-
mum number of macroblocks that can be processed in parallel
between our approach and the dynamic 3D-wave approach.
Three video resolutions are being compared. SD resolution
(720×576) is compared to WVGA (854×480) because it has
the same total number of macroblocks per frame. The remain-
ing resolutions being compared are HD and FHD. The second
column lists the total number of macroblocks per frame for
each video resolution. The third column displays the average
of the maximum number of parallel macroblocks of the four
video benchmarks listed in Table 4 in [10]. The fourth col-
umn shows the total number of macroblocks per frame that
can be processed in parallel using our parallel motion com-
pensation algorithm. Finally, the last column is the difference
of the level of parallel macroblock scalability between both
approaches. A difference of 22 till 36 % is calculated in favor
of our approach. In addition, all parallel macroblocks using
our approach are in the same frame. Whereas, in the 3D-
wave approach [10], parallel macroblocks are from several
frames that are being processed concurrently. We note that the
numbers in Table 3 are maximum values which, in practice,
cannot be effectively executed in parallel using today’s many-

Table 4 Speedup of video sequences executed with multiple threads
on multicore processors

Seq/Threads 2 4 6 8 12 16

CIF-Bus 0.94 1.40 1.34 1.23 1.12 1.09

CIF-Foreman 0.85 1.30 1.35 1.10 1.13 1.01

CIF-Waterfall 0.82 1.58 1.40 1.27 1.12 1.08

WVGA-John. 1.06 2.15 1.74 1.65 1.26 1.05

WVGA-Bask. 1.13 1.92 1.68 1.62 1.35 1.14

WVGA-Cact. 1.07 1.81 1.62 1.56 1.29 1.10

HD-Johnny 1.27 2.42 1.91 1.93 1.60 1.36

HD-Basket 1.28 2.14 1.81 1.81 1.58 1.39

HD-Cactus 1.26 2.09 1.78 1.78 1.55 1.34

FHD-Basket 1.40 2.26 1.93 1.89 1.68 1.52

FHD-Cactus 1.42 2.28 1.93 1.86 1.68 1.51

FHD-Terrace 1.44 2.33 1.97 1.93 1.72 1.53

core systems. We choose the group parallel macroblocks in
groups of rows depending on the number of available cores
in a multicore architecture.

5.5 Results for parallel deblocking filter

Similarly, to the motion compensation experiments, we
gather statistics results of our parallel implementation of
the deblocking filter using the wavefront algorithm. For the
deblocking filter, the wavefront algorithm is the best known
parallel algorithm that satisfies the dependency constraints
of this stage. The same videos sequences that are listed in
Table 2 are used. As described previously, the wavefront
algorithm reaches the highest number of independent mac-
roblocks that can be filtered in parallel when the diagonal
divides the slice into almost two equal partitions. Parallel
deblocking achieves a speedup of 1.44 using 4 threads for
CIF resolution and a speedup of 2.6 using 4 threads for Full-
HD resolution. Figure 8 displays the average speedup results

Fig. 8 Speedup of H.264 parallel execution of the deblocking filter

123



SIViP

for different resolutions and different number of threads. As
mentioned earlier, the scalability of the wavefront algorithm
is not as high as our parallel decoding algorithm for motion
compensation and intra-prediction stages. In addition, the
workload for every core using the wavefront algorithm is
only one macroblock, whereas the workload of the motion
compensation algorithm is composed of many macroblocks
depending on the number of available cores. A smaller work-
load also adds more synchronization overhead. Thus, the
speedups of the parallel deblocking filter are lower than the
motion compensation speedups displayed in the previous
subsection.

5.6 Results for overall H.264 execution

Our main goal is to optimize all the stages the H.264 decoder.
We apply parallel techniques for the motion compensation
and the deblocking filter stages. On the other hand, the
entropy decoder stage is inherently sequential. Thus, par-
allel techniques are very hard to apply or sometimes impos-
sible due to its specification requirements. We collect execu-
tion time and energy consumption statistics for the proposed
H.264 parallel implementation. The fractions of the differ-
ent stages vary among different video sequences. As a result,
the overall performance is considered as a weighted aver-
age of all speedups based on the average percentage of each
phase.

Figure 9 illustrates the overall speedups attained for the
complete execution of the decoder with the described opti-
mization techniques. The total speedups of 1.4, 2.0, 2.2, and

2.3 are reached using 4 threads on 4 cores for the resolu-
tions CIF, WVGA, HD, and FHD, respectively. The detailed
results for every video sequence are listed in Table 4. The
sequential execution of the entropy decoding stage which
is about 14–19 % of the overall decoding scales down sig-
nificantly the overall speedup. This stage may be enhanced
by implementing a hardware version of the entropy decoder.
FHD resolutions have the highest speedup because of their
large frame sizes. All maximum speedups are attained using
4 threads on 4 cores. This is mainly due to the absence of
context switching where each thread is mapped to one core.
Using more than 4 threads will require the operating sys-
tem to assign more than one thread to a core causing context
switching, and as a result, more overhead and stall time will
be added to the overall execution. Only CIF video sequences
have speedups less than 2 when 4 threads are mapped onto 4
cores. The ratio of speedup to the number of cores is therefore
around 0.6. This leads us to conclude that high resolution ben-
efits more from multicore processors than lower resolutions.
So Full-HD resolutions have the best speedup with higher
number of cores. 4K resolution appeared recently in high-
end TVs and in movies theaters. These high resolutions will
further benefit from many-core processors as huge amounts
of data will require more processing power.

Energy measurements for the complete execution are dis-
played in Fig. 10. The best energy saving results correspond
to the FHD resolutions using 4 threads, which attain 63 %.
These results are also measured for the complete execution
of the optimized decoder. For 12 and 16 threads, energy con-
sumption will increase compared to sequential execution.

Fig. 9 Total speedup for the complete decoding process on multicore processor

123



SIViP

Fig. 10 Total energy saving for the complete decoding process on multicore processor

Thus, we conclude that energy saving does not scale linearly
with the number of threads or cores.

5.7 Simulated H.264 execution

As a complementary step to experiment our parallel H.264
algorithm, we execute our implementation on the multicore
simulator Multi2Sim [23]. Figure 11 shows the speedup of
our parallel H.264 implementation on 2, 4, 8, 16, and 32
cores. HD and FHD resolutions are used with the Baseline
and the Main profiles. These results display the average of
the three video sequences listed in Table 2. On 2 cores, the
speedup for Baseline profile is 1.7 and 1.5 for Main profile.
The speedup increases with the number of cores; however,
this increase is not linear. Using 32 cores, the speedup reaches
5.2 for the Baseline profile and 3.2 for the Main profile. The
difference between both profiles becomes more significant as
the number of cores increases. The time needed for motion
compensation and deblocking filtering in the Baseline profile
is higher than the Main profile. The entropy decoding exe-
cution time is less for the Baseline profile compared to the
Main profile. This is mainly due to the CABAC algorithm
for the entropy decoder, which is used in the Main profile.
CABAC has a better compression at the expense more com-
plexity. Thus, our parallel method is better exploited with the
Baseline profile where the entropy decoder, which is executed
sequentially, has less impact on the overall speedup. The par-
allel scalability of our H.264 decoder is significantly affected
by data communication between cores. The results are shown

Fig. 11 Speedup of H.264 parallel execution using the Multi2Sim
simulator

in Fig. 11 for 8 cores and more are far from the theoretical
speedup. If we calculate the ratio of speedup to the number
of cores, we can see that the ratio is 0.85 on 2 cores and 0.65
on 4 cores. For higher numbers of cores, the ratio is below
0.5, which is considered very inefficient and unworthy of par-
allel execution. Many-core processors with 8 or more cores
should have special memory architecture than dual and quad
cores processors. Thus, parallel algorithms, like our H.264
parallel implementation, should be adapted to benefit from
many-core processors and to minimize data communication
overhead imposed by a large number of parallel cores.

5.8 Theoretical speedup

Figure 12 shows the theoretical speedup that can be reached
for the overall execution of the H.264 parallel decoder. The

123



SIViP

Fig. 12 Theoretical speedup of H.264 parallel execution without data
communication overhead

differences with the simulated execution results displayed in
Fig. 11 are relatively small up to 8 cores. For 16 cores, the
speedup of our parallel H.264 algorithm should be around
12. The speedups keep increasing until 64 cores for HD res-
olutions and 128 cores for FHD resolutions. This thresh-
old appears when the number of cores will become more
than the number of macroblock rows. However, using our
algorithm for parallel motion compensation, the granularity
can become smaller so that we can benefit from additional
cores. If the number of cores is close to the number of par-
allel macroblocks that are listed in Table 3, then the speedup
would become much higher. In real many-core architecture,
this speedup comes with a huge memory communication
overhead that affects the speedup dramatically. New parallel
processing architectures should be used for such high levels
of parallelism. This issue is still a major bottleneck in the
computing industry. In our research, we also aim to explore
and to experiment new parallel architectures in order to show
to the full benefits of parallel computing.

6 Conclusion and future works

We have introduced a novel parallel technique for H.264
video decoder parallel optimization. Our approach decodes
groups of macroblock rows of the H.264 decoder in parallel
with an algorithm that detects dependencies on the fly based
on isolating intra-prediction macroblocks (I-MBs). Experi-
ments using low- and high-definition video sequences show
that high resolutions have a better performance when exe-
cuted in parallel. However, speedup and energy savings do
not scale with the number of cores. This limit is mainly due to
the increase in data transfer between cores. The best speedup
with the highest ratio to the number of cores of the motion
compensation parallel implementation is 3.3 for FHD resolu-
tions using 4 threads on 4 cores. A parallel macroblock-based
implementation of the deblocking filter is also implemented.
An overall speedup of 2.3 is attained for the complete H.264

parallel implementation. Our optimized decoder is tested on
a real device with an ARM Cortex-A9 processor with 4 cores.
Our parallel algorithm is also tested on a mutlicore simulator
in order to explore to scalability of our algorithm on multi-
processors up to 32 cores. We plan to test our H.264 parallel
implementation on more recent processors with larger num-
ber of cores as we will also explore more optimization tech-
niques for different multimedia applications. Future work
will also cover experiments on vector processors in order to
benefit from the high scalability levels and simplicity that
our approach offers.

References

1. Apple: iphone. http://www.apple.com/iphone/ (2013)
2. ARM-ltd.: Cortex-a9 processor. http://www.arm.com/products/

processors/cortex-a/cortex-a9.php (2012)
3. ARM-ltd.: Cortex-a15 processor. http://www.arm.com/products/

processors/cortex-a/cortex-a15.php (2013)
4. Chong, J., Satish, N., Catanzaro, B., Ravindran, K., Keutzer, K.:

Efficient parallelization of h.264 decoding with macro block level
scheduling. In: IEEE International Conference on Multimedia
and Expo 2007, pp. 1874–1877 (2007). doi:10.1109/ICME.2007.
4285040

5. FFmpeg: Ffmpeg Project. http://www.ffmpeg.org/ (2012)
6. Gurhanli, A., Chen, C.P., Hung, S.H.: Gop-level parallelization of

the h.264 decoder without a start-code scanner. In: 2010 2nd Inter-
national Conference on Signal Processing Systems (ICSPS), vol.
3, pp. V3-627–V3-630 (2010). doi:10.1109/ICSPS.2010.5555416

7. Horowitz, M., Joch, A., Kossentini, F., Hallapuro, A.: H.264/avc
baseline profile decoder complexity analysis. IEEE Trans. Circuits
Syst. Video Technol. 13(7), 704–716 (2003). doi:10.1109/TCSVT.
2003.814967

8. ITU-T, ISO/IEC: Advanced Video Coding for Generic Audiovisual
Services. ITU-T Rec. H.264 (2012)

9. Kannangara, C.S., Richardson, I.E.G., Bystrom, M., Solera, J.,
Zhao, Y., Maclennan, A.: Complexity reduction of h.264 using
lagrange optimization methods. In: IEE VIE 2005, Glasgow, UK
(2005)

10. Meenderinck, C., Azevedo, A., Juurlink, B., Alvarez Mesa,
M., Ramirez, A.: Parallel scalability of video decoders. J.
Signal Process. Syst. 57(2), 173–194 (2009). doi:10.1007/
s11265-008-0256-9

11. Mesa, M.A., Ramirez, A., Azevedo, A., Meenderinck, C., Juurlink,
B., Valero, M.: Scalability of macroblock-level parallelism for
h.264 decoding. In: Proceedings of the 2009 15th International
Conference on Parallel and Distributed Systems (ICPADS ’09), pp.
236–243. IEEE Computer Society, Washington, DC, USA (2009).
doi:10.1109/ICPADS.2009.124

12. Nishihara, K., Hatabu, A., Moriyoshi, T.: Parallelization of h.264
video decoder for embedded multicore processor. In: 2008 IEEE
International Conference on Multimedia and Expo, pp. 329–332
(2008). doi:10.1109/ICME.2008.4607438

13. nVIDIA: The Cuda Development Kit from Seco (2012). http://
www.nvidia.com/object/seco-dev-kit.html

14. Organization, V.: x264 Encoder (2013). http://www.videolan.org/
developers/x264.html

15. Pieters, B., Hollemeersch, C.F., De Cock, J., Lambert, P., De Neve,
W., Van De Walle, R.: Parallel deblocking filtering in mpeg-4
avc/h.264 on massively parallel architectures. IEEE Trans. Circuits

123

http://www.apple.com/iphone/
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://dx.doi.org/10.1109/ICME.2007.4285040
http://dx.doi.org/10.1109/ICME.2007.4285040
http://www.ffmpeg.org/
http://dx.doi.org/10.1109/ICSPS.2010.5555416
http://dx.doi.org/10.1109/TCSVT.2003.814967
http://dx.doi.org/10.1109/TCSVT.2003.814967
http://dx.doi.org/10.1007/s11265-008-0256-9
http://dx.doi.org/10.1007/s11265-008-0256-9
http://dx.doi.org/10.1109/ICPADS.2009.124
http://dx.doi.org/10.1109/ICME.2008.4607438
http://www.nvidia.com/object/seco-dev-kit.html
http://www.nvidia.com/object/seco-dev-kit.html
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html


SIViP

Syst. Video Technol. 21(1), 96–100 (2011). doi:10.1109/TCSVT.
2011.2105553

16. Samsung: Samsung Smartphones (2013). http://www.samsung.
com/fr/consumer/mobile-phones/smartphones/

17. Seitner, F.H., Bleyer, M., Gelautz, M., Beuschel, R.M.: Evaluation
of data-parallel h.264 decoding approaches for strongly resource-
restricted architectures. Multimed. Tools Appl. 53(2), 431–457
(2011). doi:10.1007/s11042-010-0501-7

18. Sihn, K.H., Baik, H., Kim, J.T., Bae, S., Song, H.J.: Novel
approaches to parallel h.264 decoder on symmetric multicore sys-
tems. In: Proceedings of the 2009 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP ’09),
pp. 2017–2020. IEEE Computer Society, Washington, DC, USA
(2009). doi:10.1109/ICASSP.2009.4960009

19. Suehring, K.: H.264 Reference Software (2012). http://bs.hhi.de/
suehring/tml/

20. Sullivan, G., Ohm, J., Han, W.J., Wiegand, T., Wiegand, T.:
Overview of the high efficiency video coding (hevc) standard. IEEE
Trans. Circuits Syst. for Video Technol. 22(12), 1649–1668 (2012).
doi:10.1109/TCSVT.2012.2221191

21. Technologies, A.: High-Resolution lxi Digitizers (2012). http://
www.home.agilent.com/en/pd-1445167-pn-L4532A/

22. Tudor, P.N.: Mpeg-2 video compression. Electron. Commun. Eng.
J. 7(6), 257–264 (1995). doi:10.1049/ecej:19950606

23. Ubal, R., Jang, B., Mistry, P., Schaa, D., Kaeli, D.: Multi2sim: a sim-
ulation framework for cpu-gpu computing. In: Proceedings of the
21st international conference on Parallel architectures and compi-
lation techniques (PACT ’12), pp. 335–344. ACM, New York, NY,
USA (2012). doi:10.1145/2370816.2370865

24. VanDerTol, E., Jaspers, E., Gelderblom, R.: Mapping of h.264
decoding on a multiprocessor architecture. In: Proceedings of
the SPIE Conference on Image and Video Communications and
Processing, pp. 707–718 (2003)

25. Wang, S.W., Yang, S.S., Chen, H.M., Yang, C.L., Wu, J.L.: A multi-
core architecture based parallel framework for h.264/avc deblock-
ing filters. J. Signal Process. Syst. 57(2), 195–211 (2009). doi:10.
1007/s11265-008-0321-4

26. YouTube: Youtube Advanced Encoding Settings (2013). https://
support.google.com/youtube/answer/1722171

27. Zhao, Z., Liang, P.: Data partition for wavefront paralleliza-
tion of h.264 video encoder. In: Proceedings. 2006 IEEE Inter-
national Symposium on Circuits and Systems, 2006 (ISCAS
2006), p. 4 (2006). http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?arnumber=1693173

123

http://dx.doi.org/10.1109/TCSVT.2011.2105553
http://dx.doi.org/10.1109/TCSVT.2011.2105553
http://www.samsung.com/fr/consumer/mobile-phones/smartphones/
http://www.samsung.com/fr/consumer/mobile-phones/smartphones/
http://dx.doi.org/10.1007/s11042-010-0501-7
http://dx.doi.org/10.1109/ICASSP.2009.4960009
http://bs.hhi.de/suehring/tml/
http://bs.hhi.de/suehring/tml/
http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://www.home.agilent.com/en/pd-1445167-pn-L4532A/
http://www.home.agilent.com/en/pd-1445167-pn-L4532A/
http://dx.doi.org/10.1049/ecej:19950606
http://dx.doi.org/10.1145/2370816.2370865
http://dx.doi.org/10.1007/s11265-008-0321-4
http://dx.doi.org/10.1007/s11265-008-0321-4
https://support.google.com/youtube/answer/1722171
https://support.google.com/youtube/answer/1722171
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1693173
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1693173

	Scalable row-based parallel H.264 decoder on embedded multicore processors
	Abstract 
	1 Introduction
	2 Related work
	3 H.264 background
	3.1 H.264 features and tools
	3.1.1 Layer structure
	3.1.2 Profiles and levels
	3.1.3 Picture structure

	3.2 H.264 decomposition
	3.3 H.264 macroblocks

	4 H.264 parallel implementation
	4.1 Parallel motion compensation
	4.2 Dependencies between macroblocks
	4.3 IDR frame frequency
	4.4 Macroblock dependency check algorithm
	4.5 Macroblocks partitioning
	4.6 Scalability of parallel motion compensation
	4.7 Parallel deblocking filter

	5 Experimental results
	5.1 Parallel execution
	5.2 Environment and configurations
	5.3 Results for parallel motion compensation
	5.4 Comparison with related work
	5.5 Results for parallel deblocking filter
	5.6 Results for overall H.264 execution
	5.7 Simulated H.264 execution
	5.8 Theoretical speedup

	6 Conclusion and future works
	References


