Journal of Systems Architecture Xxx (2013) XXX-XXX

Contents lists available at SciVerse ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Two-level caches tuning technique for energy consumption
in reconfigurable embedded MPSoC

A. Bengueddach #®, B. Senouci®, S. Niar ™*, B. Beldjilali

2 University of Oran, Department of Computer Science, BP 1524, EI-M’'Naouer, Algeria
b University of Valenciennes Hainaut-Cambrésis, ISTV2 - Le Mont Houy, LAMIH-CNRS UMR, 59313 Valenciennes Cedex 9, France

ARTICLE INFO ABSTRACT

Article history:

Received 1 May 2013

Received in revised form 20 May 2013
Accepted 26 May 2013

Available online xxxx

In order to meet the ever-increasing computing requirement in the embedded market, multiprocessor
chips were proposed as the best way out. In this work we investigate the energy consumption in these
embedded MPSoC systems. One of the efficient solutions to reduce the energy consumption is to recon-
figure the cache memories. This approach was applied for one cache level/one processor architecture, but
has not yet been investigated for multiprocessor architecture with two level caches. The main contribu-
tion of this paper is to explore two level caches (L1/L2) multiprocessor architecture by estimating the

légl‘:é ‘:jrg::j svstem energy consumption. Using a simulation platform, we first built a multiprocessor architecture, and then
MPSoC 4 we propose a new algorithm that tunes the two-level cache memory hierarchy (L1 and L2). The tuning

caches approach is based on three parameters: cache size, line size, and associativity. To find the best
cache configuration, the application is divided into several execution intervals. And then, for each inter-
val, we generate the best cache configuration. Finally, the approach is validated using a set of open source
benchmarks; Spec 2006, Splash-2, MediaBench and we discuss the performance in terms of speedup and

Cache memories
Reconfigurable architecture
Energy consumption
Optimization

energy reduction.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In order to meet the ever-increasing computing requirement in
the embedded market, and in particular multimedia market; mul-
tiprocessor chips (MPSoC - Multiprocessor System on Chip) were
proposed as the best way out. Game consoles and smart-phones
are a typical example of these embedded MPSoC systems.

Several functionalities are integrated in such systems (e.g. voice
communication, audio-video encoding, web browsing, exchange
message, gaming, etc.). Thus, those functionalities need for a long
lifetime battery and an effective power management on-chip
technique.

In order to fill the gap between the CPUs speed and the global
memory system, MPSoC architectures implements hierarchical
memory structures (or caches). These memory hierarchies contrib-
ute largely in the energy consumption of the overall hardware/
software architecture. Multilevel caches are responsible for a sig-
nificant part. Over 50% of the total energy consumption system is
due to its large on-chip area and high access frequency [1,2].

Customizing the memory hierarchy for a given application by
reconfiguring the caches dynamically is being introduced as an

* Corresponding author. Tel.: +33 688496057.
E-mail addresses: smail.niar@univ-valenciennes.fr, smniar@gmail.com (S. Niar).

1383-7621/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.05.018

efficient solution to save energy use in many processors based
architectures. On the other hand a cache is organized by three
parameters: the cache size (s), the cache line size (I), and the cache
associativity (a).

Tuning the three cache parameters during the execution time to
find the best cache configuration for a software task may consider-
ably save the whole energy consumption of the system.

Dynamic cache reconfiguration has been well studied for single
processor in both general-purpose computers as well as real-time
embedded systems [3-8].

Typically, L2 cache acts as a shared resource in MPSoC. Recent
research has shown that shared on-chip cache may become a per-
formance bottleneck for MPSoC because of contentions among par-
allel running tasks [1,9,10].

Therefore to resolve this problem, adjusting a cache memory for
a specific application implies to tune all these parameters for the
different level of cache hierarchy, cache level 1 (L1), and cache le-
vel two (L2), to find the best cache configuration.

In this paper, we present a new heuristic that combines optimi-
zation techniques and considers the relation between tuning L1
and L2 cache memories in an MPSoC. On one hand caches reconfig-
uration based approach seems to be an efficient solution to reduce
energy consumption in embedded MPSoC. On the other hand, it
presents several challenges:

Syst. Architect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.018

Please cite this article in press as: A. Bengueddach et al., Two-level caches tuning technique for energy consumption in reconfigurable embedded MPSoC, J.

2 A. Bengueddach et al./Journal of Systems Architecture xxx (2013) XXx—xXX

o The three factors that affect the cache energy consumption and
miss rates for a given application are the cache size, line size,
and associatively [11,12]. The designer has to find the right
cache configuration by setting these parameters, and reduce
the energy consumption without affecting the system
performance.

Since the affiliation between L1 and L2 cache is central, the
exploration process of two level caches should not be done sep-
arately. For example, a high L1 associativity decreases misses
and thus reduces the need for large L2.

By tuning cache parameters, L1 and L2 caches can be adjusted
for a particular application. However, no unique cache configu-
ration would be ideal for the whole application in term of
energy consumption, since that the application can pass by dif-
ferent execution phases during its running lifetime. On one
hand, to be efficient, the application should be divided into sev-
eral execution intervals. On the other hand, predetermining real
time operations for each interval becomes a hard issue to
handle.

Reconfiguring two level caches for a specific application by tun-
ing different parameters (size, line, associativity), produce a
huge design space exploration.

In this work we use the dynamic reconfiguration approach for
the two caches (L1 and L2) to reduce the energy consumption in
a multiprocessor architecture. We first build a symmetric multi-
processor architecture with a shared L2 cache. Once the architec-
ture is built, we propose a new algorithm to find the best cache
configurations for the target application regarding energy con-
sumption without greatly impacting the execution time.

The rest of the paper is organized as follows: Section 2 gives an
overview of related works. Section 3 gives an insight of cache
reconfiguration methodology. Section 4 describes the experimen-
tations and presents some results. Section 5 concludes the paper.

2. Related work

Reconfigurable computing is considered as a solution for HW/
SW systems design in order to reduce the power consumption in
such systems.

Malik et al. [2] introduce caches reconfiguration approach. They
present MeCORE M340 processor, which contains an 8-Kbyte, 4-
way set-associative unified L1 cache with 16-byte line size. The
cache sub-system supports programmable modes, which allow
certain features of the cache to be enabled/disabled for power
and performance tuning.

In [5] authors proposed a configurable cache when the number
of configurations is small. Exhaustive search methods may be used
to find optimal cache configurations, but the time required for an
exhaustive search could be very important for complex and mod-
ern MPSoC.

Several tools were developed for assisting designers in tuning a
single level cache. Platune [13] is a framework for adjusting config-
urable SoC. It utilizes the exhaustive search method for only one-
level cache; due to the exploration space, which is very large.

The same work, as [13], is presented by Palesi et al. in [15] with
the possibility to reduce the configuration space by using a genetic
algorithm.

Zhang’s configuration method in [11,12,16] is based on the
importance of the cache parameters: cache size, line size and asso-
ciativity. In this approach, they tune two of the cache parameters
and fixed the third one. Each configuration is analyzed in terms
of miss rates and energy consumption.

The proposed method considers only one-level cache. A.
Gordon-Ross extended the initial heuristic, producing the Two-Level
Cache Tuner (TCaT) heuristic [6]. It consists in exploring a small per-
centage of the configuration space, taking into account a two-level
cache hierarchy. The methodology analyzes also the impact of each
parameter in terms of energy and number of cycles spent for a given
application. The methodology analyzes also the impact of each
parameter in terms of energy and number of cycles spent for a given
application. However, the heuristic consider only single processor
architecture. The Two-level Cache Exploration Heuristic considering
CYCLES (TECH-CYCLES) heuristic [8] considers the impact of energy
consumption to determine if a solution is better than another, it also
considers the execution time of an application. In practical terms,
the exploration of a given cache parameter in TECH-CYCLES
continues while it is possible to optimize energy consumption and
execution time.

Ref. [1] presents a novel energy optimization technique for mul-
tiprocessor system, which efficiently integrates dynamic reconfig-
uration of private caches and partitioning of the shared L2 cache in
the granularity of ways. Each core is assigned a limited number of
ways in the cache and will only access that portion in all cache sets.
In Table 1 we summarize the key differences between the existed
configuration techniques and our approach.

Finally, the tuning heuristic Conditional Parameter Adjustment
Cache Tuner (CPACT) presented in [14] explores level one data
cache (L1) in a heterogeneous dual-core system, where each data
cache can have a different configuration. However, this approach
didn’t consider the configuration of second level cache.

Ref. [17] presents a L1 data cache tuning heuristic for a hetero-
geneous multi-core system, which classifies applications based on
data sharing and cache behavior, and uses this classification to
guide cache tuning and reduce the number of cores that need to
be tuned. However both [14] and [17] explore the design space
without considering L1/L2 dependency. Thus, cache tuning reveals
substantial energy savings for single processor with two level
cache, and multiprocessor with one level cache, but has not yet
be investigated for multiprocessor architecture with two level
cache, which is the aim of this paper.

3. Caches reconfiguration methodology

In this section, we present the different steps of our methodol-
ogy of adjusting caches for a specific MPSoC application illustrated
by Fig. 1.

Based on the Multi2Sim framework [18], we first built a multi-
processor architecture with two levels of cache memories. This

Table 1
Comparison techniques.
Techniques Principle Constraints Fast Complexity
DCR + CP algorithm [1] Reconfiguring L1 with partitioning L2 + multiprocessor Energy + cycles ++ ++
TCaT [6] 2 Level cache + single processor Energy + cycles ++
TECH-cycles [8] 2 Level cache hierarchy + single processor Energy + cycles ++ ++
Zhang'’s heuristic [11] Only one level cache + one processor Energy +++ +
CPACT [14] 1 Level cache + multiprocessor Energy +++ +++
Our approach 2 Level cache + multiprocessor Energy + cycles e+ ++

Syst. Architect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.018

Please cite this article in press as: A. Bengueddach et al., Two-level caches tuning technique for energy consumption in reconfigurable embedded MPSoC, J.

A. Bengueddach et al./Journal of Systems Architecture xxx (2013) XXx—xXx 3

Multi2Sim
Specif Benchmark
File c

Architecture Mode

2
> i Load Program H CPU Running le—,

CPU Cores Model
Memory Model

CPU Simulation Loop

Comm Network

Multi2Sim Platform

1)

ICTT Algorithm

Multi2Sim
Statistics Tool
Report

'

Energy Estimator

(McPAT)

3
Energy, Cycles

Exploration Phase

Fig. 1. Cache Reconfiguration Flow Diagram. Step 1: Input Multi2Sim: Specification File + Benchmark C. Step 2: Statistic report generating. Step 3: Estimation of the energy
consumption by MCPAT tool. Step 4: Exploration using modified ICTT algorithm, and automatic generation of the best cache configuration.

step consists mainly in writing the Multi2Sim specification file and
developing applications to run on the simulator.

The second step is to determine the best hardware configura-
tion with the best size, line, and associativity for a given architec-
ture. This step generates also a statistic report after a simulation
loop of several cache configurations that will be the entry point
of the McPAT energy estimation tool [19].

Then, the Interval Caches Tuning Technique (ICTT) algorithm ex-
plores the design space of configurations in order to find the best
and the appropriate cache size, line size, and associativity in term
of execution time and energy consumption for the given applica-
tion. Details about these steps are given in the following
paragraphs.

3.1. Hardware simulated architecture model

Multi2Sim is a simulation platform for HW/SW systems. It al-
lows an easy definition of parameterized system architecture. Sev-
eral hardware components are described in the Multi2Sim library.
In such platform, three main parts of the architecture are defined:
the processor(s)/core(s), the memory hierarchy (caches and main
memory), and the interconnection network.

The inputs of Multi2Sim are the application benchmark written
in C and a specification file for the hardware architecture. In our
case the specification file includes dual-core architecture.

Fig. 2 shows a typical architecture with private L1 cache
instruction il1 and data cache dI1 with a shared L2 cache. Those ca-
ches are highly reconfigurable in terms of cache size, line size and
associativity. Our architecture model is based on the multithread-
ing using an internal system scheduling allowed by the Multi2Sim.
The scheduler maps the software threads on the processing nodes.

Fig. 3 summarizes the specification of the Multi2Sim based
architecture. The sections [CacheGeometry<name>] define cache
geometries that is, a set of characteristics used to create the L1
and L2 caches, respectively.

The next two sections [Net<name>], not shown in Fig. 3, define
the interconnection networks. In this case, two of them are created,

Core 0 Core 1

Icache Dcache Icache Dcache

Cache Level 2

[System Network

]

Main
Memory

Fig. 2. Multi2Sim based MPSoC architecture.

called net-0 and net-1, respectively. Both interconnects are defined

[CacheGeometry I1] [Cache 12]
Sets = 128 Geometry = 12geo
Assoc =2 HiNet = net-0
BlockSize = 32 LoNet = net-1
Latency = 2 [Cache il1-0]
Policy = LRU Geometry =11

[CacheGeometry I2geo] LoNet = net-0
Sets = 512 [Cache il1-1]
Assoc = 4 Geometry =11
BlockSize = 32 LoNet = net-0
Latency = 20 [MainMemory]
[Net net-0] HiNet = net-1

BlockSize = 64
Latency = 200

[Node Node 0/0]
Core =0

Thread = 0
ICache =il1-0

Topology = Bus
LinkWidth = 32
[Net net-1]
Topology = BUS
LinkWidth = 32
[Cache dI1-0]

Geometry =11 DCache = dl1-0
LoNet = net-0 [Node Node 1/0]
[Cache dI1-1] Core =1
Geometry =1 Thread =0

LoNet = net-0 ICache = il1-1

DCache = dl1-1

Fig. 3. Multi2Sim specification file.

Syst. Architect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.018

Please cite this article in press as: A. Bengueddach et al., Two-level caches tuning technique for energy consumption in reconfigurable embedded MPSoC, J.

4 A. Bengueddach et al./Journal of Systems Architecture xxx (2013) XxXx—xXX

with a bus topology and a link width of 32 bytes.

The section entitled [Cache<name>] creates caches, and the sec-
tion [MainMemory] in the Multi2Sim specification file defines the
main memory parameters. The main memory is connected to net-
work net-1, and has 64-byte as block size.

Finally, section [Node<name>] defines the processing node. Each
node corresponds to thread executed on specific core; and caches
assigned by the variables DCache and ICache.

3.2. McPAT - Multi2Sim: automatic adaptation

Multi2Sim has been adapted to provide statistics that McPAT
requires in its input file. However, the models provided by McPAT
and Multi2Sim are different. Fig. 4 shows, the script written to
automate the edition of McPAT's input file (Fig. 5).

The code in Fig. 5 illustrates how an input file to McPAT is cre-
ated. As mentioned, data from the statistic report are stored into
the script to recuperate the number of each parameter in L1 data
cache.

3.3. Problem overview

We define the problem of reconfiguration of the caches regard-
ing energy consumption for a given application [20]. We distin-
guish two kinds of applications: Data-stream applications, such
as in multimedia, where the data arrive continually and the appli-
cation runs for a long period of time. And, Constant applications
that are executed for a known period of time and with a known
in advance number of instructions to execute. In the case of con-
stant applications, we divide the running applications into “n”
fixed intervals. Currently “n” is determined through experimenta-
tion. This value depends on the applications to be executed and
could be changed according to desired degree of reconfiguration.
We consider here the following variables:

e A={l}, I ... I,} where A is the application divided into “n” tun-
ing intervals with fixed number of instructions per interval.

e The architecture configuration set C={cy, 3 ... Cn}, Where “m”
is the number of possible configurations for L1 and L2 caches.

e The reconfiguration R is the consumed energy to switch from
the configuration Ck to any other configuration CI (k # 1). In this
paper, we assume that the reconfiguration time is constant
regardless Ck and CL

/*Start Energy Calculation Procedure*/
void energy estimation() {

/ *Variables Declaration*/

FILE* archi model, cpu report, caches_report, stat_report;
FILE* input mcpat, output_mcpat;

int cycles;

double power, energy;

/*Generate the report statistics™*/
concatenate (cpu_report, caches_report, stat_report) ;

/*Generate McPAT’s input file*/
input_mcpat = input mcpat(stat_report, archi_model);

/*Call for McPAT Tool*/
system(. / mcpat inputmcpat > mcpat_out);

[*Extracting Cycles and Power Output File*/
cycles = extract("Cycles", mcpat out);
power = extract ("RuntimeDynamic", mcpat_out);

/*Energy Calculation*/
energy = energy estimation(Cycles, power);
} I*End Energy Calculation Procedure*/

Fig. 4. Energy calculation procedure.

[*Start Data Cache Specification*/

<component id="system.core0O.dcache" name="dcache">

[*Cache geometry and cache controller buffer sizes*/

<param name="dcache config"
value="8192,16,4,1,1,3,16,0"/>
<param name="buffer sizes" value="16, 16, 16, 16"/>

/*Read accesses, read misses, and cache line conflicts carried out
previously on the top of Multi2Sim */

<stat name="read_accesses" value="200000"/>
<stat name="write_ accesses" value="27276"/>
<stat name="read misses" value="1632"/>
<stat name="write misses" value="183"/>

</component> /*End Data Cache Specification*/

Fig. 5. McPAT input file.

e The execution consists of a sequence of intervals S, such as
S=<I, I, I3, 14, Is, Is,...>. Where S[k] is the interval tuning at
position “k” in the sequence S. In the above sequence, S[1] is
I1, S[2] is I, and S[3] is I5.

The total energy consumption E of the application depends
on the interval’s energy consumption with the corresponding con-
figuration (see Eq. 1), and the time needed for the design space
reconfiguration.

Eww = »_Eli such as Ii € A(1) (1)

i=1

In order to reduce the total energy consumption, one of the
difficult assignments is to find the best configuration for every
application’s interval. We also define the architecture reconfigu-
ration problem for data stream applications, which processes
data as soon as they arrived. In our approach, tuning interval
is based on current and past, but not future application behavior.
In this case the number of tuning intervals varies, and when
the final configuration is determined, the application is executed
in that final configuration for the rest of the application’s
execution.

3.4. Energy model

The energy consumption for multi-level cache sub-system is
modeled as the sum of energy consumption of the L1 cache and
the shared L2 cache, denoted by E;(s1, [;, a;) and E;x(s,, b, az)
respectively as shown in Eq. 2:

Ei =En(s1,h,a1) + Ea(S2, b, a2) (2)

Our goal is to find the cache parameters “s”, “I” and “a” such
that the overall energy consumption E;., of the cache subsystem
is minimized. Let P;; denote the power consumption of cache L1,
and P, denote the power consumption of cache L2. E;; and E,
are simply computed using (3), respectively as:

{ E(L1) = P(L1) % Cycles

E(L2) = P(L2) = Cycles 3)

where Cycles represent the execution time required for one interval
executed with two level caches L1 and L2. The value of P;; and P,
are calculated using CACTI tool [19], and based on Eq. (4).

Syst. Architect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.018

Please cite this article in press as: A. Bengueddach et al., Two-level caches tuning technique for energy consumption in reconfigurable embedded MPSoC, J.

A. Bengueddach et al./Journal of Systems Architecture xxx (2013) xXX-Xxx 5

(4)

IP (1) = Ppynamic(t1) + Pshort_circuit1) + Preakage(L1)
P12y = Ppynamic(t2) + Pshort_circuit(L2) + PLeakage(12)

The first term is the dynamic power, used up by the capacitive
loads when the circuit switches states. The second term represent
the short-circuit power consumed when both the pull-up and pull-
down devices in a CMOS circuit are partially on. The third term is
the static power consumed by the transistors.

3.5. Approach and methodology

In this work we use the dynamic reconfiguration approach for
two-level caches in multiprocessor architecture. Based on a soft-
ware platform, we first build a multiprocessor architecture with
two processor-cache levels. Once the architecture is built, we de-
fine three parameters for cache reconfiguration (cache size, line
size, and associativity), and then we develop a new algorithm to
generate the suitable cache configuration for the target application
considering energy reduction. Our dynamic approach solves the
problem of reconfiguration of the caches for an embedded
application.

We combine two approaches: CPACT and TECH-Cycles. The first
one considers L1 for two processors; and the second one explores
the two levels for one processor. The following paragraphs describe
the different steps of our heuristic.

So, the ICTT heuristic described considers two level caches hier-
archy with several parameters (s,: level two cache size, s;: level
one cache size, I,: level two cache line size, [;: level one cache line
size, a,: level two cache associativity and a;: level one cache asso-
ciativity). Minimum and maximum values (MIN, MAX) for these
parameters define the configuration space.

Tuning All Parameters

ICTT initialize all the caches parameters with MIN values, and
then the first vector of parameters is defined. The six-positions
indicate the current value of each parameter as illustrated in
Fig. 7. The parameters of the vector select from the left to the right.
The best cache size is obtained for the two-level cache by following
the four steps of the heuristic, as shown in Fig. 6.

a. Step 1: Initial Step: In this step, we tune the first parameter
(s2) of the initial vector from MIN to MAX by power of 2.
The order is important to guarantee the correct use of the
heuristic. While we tune one parameter, we keep the other
ones fixed. For example, during size tuning, the heuristic
starts with a 128 Kbytes cache L2 (Fig. 8); the line size and
associativity are fixed at their smallest values while the
cache size is explored from MIN to MAX. Then, we gradually
increase the total cache size to our largest possible size as
long as increasing the size of the cache results in a decrease
in total energy. We continue this process until we find the
best (s,) in term of energy consumption, or we reach the
MAX tune of (s,). The line size and associativity are tuned
in a similar way.

b. Step 2: In this step, the heuristic performs a size adjustment
task. This adjustment starts by tuning the second level cache
size (s2), and then the first cache size (s;). Since the cache
size has the largest impact on energy consumption, this sec-
ond step tries to tune just the cache size without the other
parameters (I, a). We mention that this tuning goes through
the smallest values of the cache size.

c. Step 3: Condition 1 evaluates the energy results of the size
adjustment step. The best cache size is obtained from the
two-level cache by varying its size (s,) decreasingly. We

u;,1,) &(a,,a,)

v for Two Level Caches N
Current Best Configuration
m {
i 2
3 Cache Size Size l o
g Tuning (S,) Adjustment : 3
: ® =1
2]
3 E g
) 3
()]
Q
S c
3 3
o
o =
z o
g = g
Y Two Level Cache N
es Size AdjL t o
for Energy
Decrease
Line & Associativity Tuning Test one more configuration

‘New Configuration’

P

Yes Two Level Cache No

Line & Associativity
Adjusment

.

Line & Associativity Tuning
(2 ,11) & (a2,a1)

f
e

Fig. 6. ICTT heuristic steps. Step 1: Applies ICTT heuristic for L1/L2 cache parameters. Step 2: Performs a size adjustment task. Step 3: Evaluates the energy results of the size

adjustment step. Step 4: Gets the best configuration for L1/L2 cache.

Syst. Architect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.018

Please cite this article in press as: A. Bengueddach et al., Two-level caches tuning technique for energy consumption in reconfigurable embedded MPSoC, J.

A. Bengueddach et al./Journal of Systems Architecture xxx (2013) XXx—xXx 7

L2 = 256Ko

240

230 /
225 /
—_—_— == Séries1

220

/100000
N
w
g

Energy(J)

215

16ko 32ko 64ko 128ko
L1 Size

Fig. 9. L1 cache energy dissipation (Sha Appli).

More we increase the cache size; the energy consumption in-
crease; this due to the number of cache access that also increases.
In the same time, the cache size directly affects miss rate. Increas-
ing cache size involves reducing of cache miss rate and vice versa.
However, increasing the cache size will not improve performance
greatly but will increase energy dissipation significantly. It is very
important to keep the near-memory cache miss rate as low as pos-
sible because it directly influences memory energy consumption.

This first experiment has as main goal to check the hardware
simulation architecture in term of memory hierarchy. In the sec-
ond series of experiments we apply our two level cache tuning
heuristic to find the best cache configuration for a constant
application.

4.3. ICTT results and analysis

In this section, we apply the ICTT algorithm on two different
categories of application: constant application and data stream
one. We considered just the Basicmath application as case study
to explain in details all aspects of the heuristic.

4.3.1. ICTT: constant applications

In embedded systems, the application could pass by different
phases during its running lifetime. In order to be efficient in each
phase of the application, we divided the application into several
intervals, and then we find the best cache configuration for each
interval in term of energy use. Choosing the right interval tuning
is important. Since the tuning process consumes extra energy

which represents the cost of the reconfiguration process in term
of consumed energy.

If the tuning interval is big, optimal configurations can be
skipped. Then, we observed that is convenient to start the tuning
by precise value. Based on our experience we set the interval value
by 500,000 cycles.

Thus, another parameter is taken into account during the explo-
ration process. This parameter refers to the number of iterations
(Design Space Exploration) being explored inside the same interval.
The number of iterations range from 1 to 486 as shown in Eq. (5).

In constant application with identified number of instructions,
the ICTT explores several iterations before converges to the “one”
that will be used for the rest of the instructions inside the same
interval. Thus, the heuristic tunes the cache parameters for each
execution phase. To simulate interval tuning “I” in Multi2sim, we
changed every 500,000 cycles the cache configuration until the
ICTT steps are done. ICTT set the caches parameters in the begin-
ning of each interval. Fig. 10 represents the best cache configura-
tion found for each “I” in term of energy use. We mention that in
this example the number of the intervals is fixed. This can be illus-
trated in the application Basicmath_large, which pass by different
phases and then need for different cache configurations {Csgs, Co,
Ci61, - .. C3}. For example, C;¢, (configuration number 162) is the
best cache configuration for I3 (see Fig. 11).

A red curve represents the energy consumption of the applica-
tion Basicmath_large during one interval tuning, and the blue one
represents the number of cycles in this same interval. We note that
for I5 our heuristic explores a number of configurations to converge
to the best solution.

Here we consider that the best configuration corresponds to the
optimization of both energy and execution time in the same time.
The both constraints have the same parity. Resulting in an average
energy reduction of 1% within the phase interval. Similarly, the
improvement of performance cycles CPU is 1% in the interval tuning.

The graph in Fig. 12 represents the explored configurations by
the heuristic during its execution time for the Basicmath_large
application. Given that, it is only from the configuration number
Cy43> the heuristic starts to have a better solution in terms of execu-
tion time and energy. The best configuration was number Cygs.

In this example, and to avoid the local optimal solution, which
corresponds to the peak at point C;gq, the heuristic (Fig. 6, step 3)
tries to diversify the exploration space allowing a bad solution. As
we can see in Fig. 12, the heuristic check twice the best configura-
tion (Cag5 in this case).

== Configuration

100000000
c485

10000000

1000000

Energy (nj)

100000

0 ¢c162 ¢c0 c0O cO0

10000

c0 CO cO c54 c162 <c16X0 3

Interval Execution

Fig. 10. ICTT: constant application.

Syst. Architect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.018

Please cite this article in press as: A. Bengueddach et al., Two-level caches tuning technique for energy consumption in reconfigurable embedded MPSoC, J.

A. Bengueddach et al./Journal of Systems Architecture xxx (2013) xXX-Xxx 9

w——Cycles == Energy

1630445 14590

- 14580

163044 . L3t

BestConf 111 —
¢ 1usso £
B 1630435 B
o 14540 ¢
w

14530

163043 14570

- 14510

0
0 54 54 54 54
Configuration

Fig. 14. ICTT’s convergence behavior in Iy.

Table 4
The number of configurations explored by Interval.

Interval tuning Configuration number

(M (NB_Cfg)
1 19
2 8
3 10
14 8
5 8
6 8
17 8
18 8
9 8
110 8
11 10
12 10
13 10
114 8
15 9

configurations are eliminated during the tuning of caches parame-
ters when the tuning way switch from MIN to MAX and form MAX
to MIN in a row as shown in Fig. 8.

—&—basicmath_large —#—bitcount_large

In Table 4, we show the several configurations corresponding to
ICTT exploration by each interval tuning considering Basic-
math_large. As we can see, the results indicated that, on average
the proposed heuristic does not exceed 8 configurations out of
486 possible configurations equal to 1% of exploration space.

4.3.2. ICTT: data stream application

In the case of data stream applications, the reconfiguration deci-
sion is taken with incomplete information about the upcoming
data. Then, in data stream case, the ICTT heuristic manage the
cache reconfiguration in a different way. In fact, the cache reconfig-
uration is done just for a defined number of iterations and then we
force the heuristic to converge and get the best cache configuration
for given interval. This configuration is used for the rest of the exe-
cution time (all the rest of the intervals). In other words, the heu-
ristic is applied just for few intervals and then it converges for all
the rest of the application.

Fig. 15 shows while ICTT determined the final configuration;
the benchmark is executed in that final configuration for the rest
of the benchmark’s execution.

These experiments prove the efficiency of ICTT algorithm in
term of convergence speed up. So, in these applications case

=& qsort_large

100000000 1
-\ w Casgy w |
10000000
E
E',, 1000000 -
[
t =
w
100000
' 'y 4 A c485
—¢ ¢ C89
10000 T T : ,
m 2 m3 T4 s

Interval Tuning

Fig. 15. ICTT: Data stream applications.

Syst. Architect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.018

Please cite this article in press as: A. Bengueddach et al., Two-level caches tuning technique for energy consumption in reconfigurable embedded MPSoC, J.

10 A. Bengueddach et al./Journal of Systems Architecture xxx (2013) XxXx—xXX

Table 5
Cache parameters example.

Cache parameters best Cfg/App S2 S1 2 L1 A2 Al

C 484/bitcount 64 8 64 64 4 2
C 485/qgsort 64 8 64 64 4 4
C 89/basicmath 16 4 64 16 4 4

B Streaming M Constant
22400

22300

22200

22100 -

22000 -

21900 -
‘mEEm
21700 + T T

basicmath_large

Energy (uj)

qsort_large djikstra_small basicmath_small

Fig. 16. Energy consumption (in uJ) for constant and data-stream modes.

studies (Fig. 15), two tuning phases were sufficient to find the best
caches configuration. For example the Bitcount application con-
verges on the Cyg4, also Qsort converge on C4g5. Except the Basic-
math application, where the optimal configuration was Cgg, the
heuristic converge after five tuning intervals. Table 5 illustrates
the cache parameters corresponding to those configurations.

4.4. Comparison’s studies

For comparison purpose, we choose a reference/base cache con-
figuration for L1 and L2, that defined respectively by (8KB, 64B line
size, and 64KB, 4-way), and (64KB, 64B line size, 4-way). Then we
calculate energy saving for a given configuration, by normalizing
the system’s energy consumption with base cache configuration
as shown in Eq. (6):

Energy Heuristic
Energy Base Cache

Normalized Energy = (6)

In the upcoming sections we will present various comparisons
of our heuristic via different experiments. For all experiments,
we keep the previous experimental environment.

4.4.1. Constant and stream data application

In this section we describe a comparison in energy consumption
between applications based data flow instruction and applications
with constant behavior. The graphs in Fig. 16 illustrate this com-
parison in term of energy use during the execution time. A red col-
umn represents the ICTT tuning for constant applications, and the
blue one represents the ICTT tuning for the data-stream execution.

In fact this figure shows that the energy used in the case of
application with constant behavior is more significant and this is
mainly due to initialization phase in the starting of each interval.
This phase of initialization is performed just once in the case of
applications with data-stream instructions.

4.4.2. Optimal approach and ICTT tuning

In order to demonstrate the efficiency of our approach in reduc-
ing MPSoC’s energy consumption, we compare our results with the
optimal approach (exhaustive research). Then, we calculate the en-
ergy consumed in the case of an exhaustive research, and the en-
ergy consumed in the case of ICTT solution. Fig. 17 clarifies this
comparison using 9 applications (benchmarks).

226

W ICTT = OPTIMAL

225

/100000

224
223

222 A

Energy())

221

Fig. 17. Energy (in J/10,000) comparison: ICTT vs. Optimal solution.

We can see that the optimal solution is found by the ICTT heu-
ristic for the most benchmarks. In two analyzed benchmarks (Jpeg-
enc, Blowfish) ICTT reaches the lowest energy consumption results.
Moreover, the modified ICTT reduces the configuration space
exploration significantly. The exhaustive approach for a two level
cache hierarchy explores 64 cache configurations. The improved
heuristic explores only 10 cache configurations, which correspond
to 15% of the space exploration [21]. Moreover, we find the same
solution as the exhaustive approach. The reduction in the configu-
ration space exploration speeds up both a simulation.

5. Conclusion

In this paper we evaluate the energy consumption in embedded
MPSoC system using cache-tuning approach. It concerns two level
caches (L1/L2) in multiprocessor architecture. The cache tuning
was applied for one processor based architecture with one cache
level, but has not yet been studied for multiprocessor architecture
with two level caches.

We propose an efficient solution to reduce the energy use in
cache memories. The proposed solution is based on tuning the
cache memories for a given application that have been divided into
several intervals. The tuning is based on three parameters: cache
size, line size, and associativity.

In the proposed framework, the ICTT reconfiguration algorithm
took into account two types of applications, with constant instruc-
tions, and data-flow.

In the first one, the heuristic explores and locates the best cache
configuration for each interval in term of energy saves, and gener-
ates automatically the best cache configuration parameters for
each interval of the application. In that way the total energy con-
sumption for a given application is reduced.

But for applications with continued data-stream, the reconfigu-
ration decision is taken with incomplete information about the
upcoming data. In that case, the ICTT heuristic accomplishes the
cache reconfiguration in a different way.

Therefore, the cache reconfiguration is done just for a defined
number of iterations and then we force the heuristic to converge
and get the best cache configuration for given interval. This config-
uration is used for the rest of the execution time of the application.

Finally, the approach was validated using several benchmarks
and we discuss the performance in terms of energy reduction. We
have also to mention that the heuristic is more suitable for an appli-
cation with variable tuning. And more appropriate if we need a rapid
exploration to get a solution near to optimal for our architecture
design.

Furthermore, future work will focus on implementing our ap-
proach of caches memories configuration at RTL (HDL) level using

Syst. Architect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.018

Please cite this article in press as: A. Bengueddach et al., Two-level caches tuning technique for energy consumption in reconfigurable embedded MPSoC, J.

A. Bengueddach et al./Journal of Systems Architecture xxx (2013) xXX-Xxx 11

a FPGA platform and an open source multiprocessor architecture
(Sparc LEON).

References

[1] W. Wang, P. Mishra, S. Ranka, Dynamic cache reconfiguration and partitioning
for energy optimization in real-time multicore systems DAC 2011, June 5-10,
2011, San Diego, California, USA, 2011.

[2] A. Malik, W. Moyer, D. Cermak, A low power unified cache architecture
providing power and performance flexibility, in: Proceedings of the
International Symposium on Low Power Electronics and Design, ISLPED 2000.

[3] A. Gordon-Ross, F. Vahid, N. Dutt, Fast configurable-cache tuning with a unified
second-level cache, in: Proceedings of the ISLPED 2005 International
Symposium on Low Power Electronics and Design.

[4] A. Gordon-Ross, P. Viana, F. Vahid, W. Najjar, E. Barros, A one-shot
configurable-cache tuner for improved energy and performance, Design,
Automation & Test in Europe Conference & Exhibition (2007) 1-6.

[5] D.H. Albonesi, Selective cache ways on-demand cache resource allocation,
Journal of Instruction Level Parallelism, May 2000.

[6] A. Gordon-Ross, F. Vahid, N. Dutt, Automatic tuning of two-level caches to
embedded applications, in: Proceedings of the Conference on Design,
Automation and Test in, Europe — DATE 2004.

[7] D. Benitez,].C. Moure, D.I. Rexachs, E. Luque, A reconfigurable data cache for
adaptive processors, ARC2006, Springer-Verlag, LNCS3985, 2006, pp. 230-242.

[8] A.G. Silva-Filho, F.R. Cordeiro, R.E. Sant Anna, M.E. Lima, Heuristic for two-level
cache hierarchy exploration considering energy consumption and
performance, PATMOS 2006, LNCS 4148, 2006, pp. 75-83.

[9] R.Reddy, P. Petrov, Eliminating inter-process cache interference through cache
reconfigurability for real-time and low-power embedded multi-tasking
systems, CASES, 2007.

[10] D. Kaseridis et al., Bank-aware dynamic cache partitioning for multicore
architectures, ICPP 2009.

[11] C. Zhang, F. Vahid, W. Najjar, A highly-configurable cache architecture for
embedded systems, in: Proceedings of ISCA 2000, the 30th Annual
International Symposium on Computer Architecture.

[12] C. Zhang, F. Vahid, Cache configuration exploration on prototyping platforms,
in: 14th IEEE International Workshop on Rapid System Prototyping, June 2003,
vol. 00, p. 164.

[13] T. Givargis, F. Vahid, Platune: a tuning framework for system-on-a-chip
platforms, IEEE Transactions on Computer-Aided Design 21 (2002) 1-11.

[14] M. Rawlins, A. Gordon-Ross, CPACT - The conditional parameter adjustment
cache tuner for dual-core architectures, ICCD 2011, 396-403.

[15] M. Palesi, T. Givargis, Multi-objective design space exploration using genetic
algorithms, International Workshop on HW/SW Codesign, May 2002.

[16] C. Zhang, F. Vahid, R. Lysecky, A self-tuning cache architecture for embedded
systems, ACM Transactions on Embedded Computing Systems 3 (2) (2004)
407-425.

[17] M. Rawlins and A. Gordon-Ross. An application classification guided cache
tuning heuristic for multi-core architectures, ASP-DAC 2012.

[18] R. Ubal, J. Sahuquillo, S. Petit, Pedro Lopez, Z. Chen, D.R. Kaeli, The Multi2Sim
simulation framework computer architecture and high performance
computing, SBAC-PAD 2007, in: 19th International Symposium on Computer
Architecture and High Performance Computing.

[19] S.Li,J.H. Ahn,].B. Brockman, N.P. Joupp, McPAT 1.0: An Integrated Power, Area,
and Timing Modeling Framework for Multicore Architectures, <http://
www.hpl.hp.com/research/mcpat/>.

[20] C.Huang, D. Sheldon, F. Vahid, Dynamic Tuning of Configurable Architectures:
The AWW, Online Algorithm, CODES+ISSS 2008.

[21] A. Bengueddach, B. Senouci, S. Niar, B. Beldjilali, Energy consumption in
reconfigurable MPSoC architecture: two-level caches optimization oriented
approach, in: International Design and Test Symposium (IDT'12),
December14-15, Qatar, 2012.

[22] A.G. Silva-Filho, F.R. Cordeiro, A combined optimization method for tuning
two-level memory hierarchy considering energy consumption, EURASIP
Journal on Embedded Systems 2011.

Asmaa Bengueddach received her engineer degree in
Computer Science from the University of Oran Es-Senia,
Algeria in 2004. Currently she is working as assistant
professor and preparing her PhD thesis within the
computer science department in the University of Oran
Es-Senia Algeria. Her research interests include
embedded multiprocessor systems design and recon-
figurable computing.

Benaoumeur Senouci received his Ph.D in computer
engineering from the National Polytechnic Institute of
Grenoble-TIMA Laboratory (France) in 2008; currently
he is working as PostDoc in CNRS/University of Valen-
ciennes with LAMIH laboratory. Before joining the
CNRS, he was working as research follow in the uni-
versity of Twente (The Netherlands). His research topics
includes platform based embedded HW/SW systems
design, and dependability of embedded systems.

Smail Niar (University of Valenciennes & CNRS, France)
received his PhD in Computer Engineering from the
University of Lille in 1990. Since then, he has been
professor at the University of Valenciennes. He works in
the “Mobile & Embedded Systems” research group at
the “Laboratory for Automation, Mechanical and Com-
puter Engineering”, a joint research unit between CNRS
and the University of Valenciennes.

Bouziane Beldjilali received his PhD degree in Com-
puter Science from the University of Algiers in 1996.
Now, he is working as professor at the University of
Oran Es-Senia, Algeria. He works as the head of Com-
puter Science Departement till 2004. Also, he is leading
a research group in LIO Laboratory at the University of
Oran Es-Senia. His research interests include embedded
multiprocessor systems design and Production Systems.

Syst. Architect. (2013), http://dx.doi.org/10.1016/j.sysarc.2013.05.018

Please cite this article in press as: A. Bengueddach et al., Two-level caches tuning technique for energy consumption in reconfigurable embedded MPSoC, J.

