
A version of this paper has been published in:

International Journal of Human-Computer Studies, 71 (6), pp. 725-761, 2013.

The final version is available in ScienceDirect.

EISEval, a Generic Reconfigurable Environment for Evaluating

Agent-based Interactive Systems

Chi Dung TRAN
a
, Houcine Ezzedine

b,c,d
, Christophe Kolski

b,c,d,*

a
LIMA Laboratory, DRT, CEA List, Atomic Energy and Alternative Energies Commission, Saclay, France

b
Univ Lille Nord de France, F-59000 Lille, France
c
UVHC, LAMIH, F-59313 Valenciennes, France

d
CNRS, UMR 8201, F-59313 Valenciennes, France

*
Corresponding author: Prof. Christophe Kolski christophe.kolski@univ-valenciennes.fr

Abstract

The evaluation of interactive systems has been an active subject of research for many years. Many methods have been

proposed, but most of them do not take the architectural specificities of an agent-based interactive system into account,

nor do they focus on the link between architecture and evaluation. In this paper, we present an agent-based architecture

model for interactive systems. Then, based on this architecture, we propose a generic, reconfigurable evaluation

environment, called EISEval, designed and developed to help evaluators analyze and evaluate certain aspects of

interactive systems in general and of agent-based architecture interactive systems in particular: User Interface (UI), non-

functional properties (e.g., response time, complexity) and user characteristics (e.g., abilities, preferences, progress).

System designers can draw useful conclusions from the evaluation results to improve the system. This environment was

applied to evaluate an agent-based interactive system used to supervise an urban transport network in a study organized

in laboratory.

Keywords: evaluation, user interface, electronic informer, ergonomic criteria, agent-based architecture, interactive

systems, human-computer interaction (HCI).

1. Introduction

The evaluation of interactive systems, in terms of utility and usability (Bastien and Scapin, 1995; Nielsen, 1993;
Shneiderman, 1998), has been an important research topic since the 1980s (Sears, 2003). A user interface (UI) aims at
increasing user comfort, satisfaction and productivity and decreasing the possibility that users can make errors while they
are interacting with the UI. For this reason, the evaluation is very important to help designers understand user difficulties
when interacting with UI and propose future improvements.

1.1. Motivations

Many evaluation tools exist today. However, these tools have several limitations and are inconvenient. Indeed, most
traditional tools attempt to generally evaluate the UI of interactive systems but do not take architectural specificities of
agent-based interactive systems into account when evaluating them. Moreover, these tools usually only aim at evaluating
the UI of interactive systems without considering other aspects of such systems. For instance, the non-functional
properties of an agent-based interactive system (e.g., agent response times, reliability, design complexity) are not
considered although these properties can be very useful for detecting the system’s problems. Moreover, traditional
Electronic Informer (EI) tools (i.e., tools that capture data during interactions between the user and the UI in real situations
so that the data can be analyzed later) show analysis results (e.g., statistics, classifications) in visual forms to evaluators,
who then must interpret these results to identify the problems with the UI and suggest improvements to designers. There
is no assistance or indication to help evaluators do their work. Other tools, like TFWWG (Tools For Working With
Guidelines) (Vanderdonckt and Farenc, 2000), mainly try to evaluate the static aspects (e.g., position, size and color of

elements, text fonts) of an user interface but do not apply objective use data. In consequence, more complete evaluation
environments may be envisaged.

1.2. Proposal

We propose an evaluation environment called EISEval (Environment for Interactive System Evaluation). Although
EISEval’s activity respects EI principles, it can remedy the aforementioned drawbacks of traditional evaluation tools in
general, and of EIs in particular, as well as provide a more complete evaluation. Moreover, EISEval also uses ergonomic
criteria as well as other quality criteria (e.g., response time between agents, complexity of MAS design) to help evaluators
interpret captured objective data and evaluate agent-based interactive systems.

In short, its objective is to provide evaluators with several benefits: in addition to evaluating UI (like other tools), EISEval
helps evaluators assess other system aspects that help improve the understanding of the drawbacks of the target system
as well as of the users’ difficulties, thereby enabling improvements to be suggested. Furthermore, EISEval also helps
evaluators interpret analysis results in order to assess the system and suggest improvements, whereas many EIs lets
evaluators interpret such results on their own. Moreover, the specificities of our proposed agent-based architecture model
for evaluating interactive systems using this environment taken into account by EISEval.

1.2. Organization of the paper

This paper is organized as follows. Section 2 presents a brief state of the art for the architectures of traditional

interactive systems and agent-based interactive systems. At the end of this section, we also introduce our architecture

model for agent-based interactive systems. Section 3 discusses the research related to evaluation tools. The main

contribution and content of this paper is our proposal - the EISEval evaluation environment, presented in the section 4.

Section 5 presents the application of EISEval for evaluating an agent-based system used to supervise an urban transport

network in a study organized in laboratory with a set of human subjects. Section 6 reports the summary of this study

results and discuss about it. Finally section 7 presents our conclusions and prospects for future research.

2. Architecture models FOR interactive systems: a parameter to consider for interactive system

evaluation

The architecture of interactive systems is not a new research topic in the HCI field. Architecture models help system

designers to design, develop and validate interactive systems. Since the 1980s, several architecture models have been

proposed (Bass et al., 1991; Coutaz, 1987; Goldberg, 1983; Pfaff, 1985; Tarpin-Bernard and David, 1999, etc.) to help

designers build interactive applications. According to [Coutaz and Nigay 2001], an architecture model is defined by a set of

structures that include components (e.g., modules, services, processes, procedures, applications, objects), the outside

visible properties of these components (e.g., required resources, provided services, performance) and the relationships

between them. Some well-known architectures and their evolutions are examined first. The presentation of architecture

models is divided into two sections: basic architecture models (section 2.1) and advanced models built based on the basic

ones (section 2.2). Section 2.3 introduces our architecture model for agent-based architecture interactive systems.

2.1. Basic architecture models proposed in the literature

In general, the models proposed in the literature respect the principle of an explicit separation between the two parts of

an interactive application: the interface that has direct contact with users and the application that is related to core

functions. This separation is useful for developing and improving applications, allowing system designers to modify one

part without affecting the other. As a result of this separation, the application’s flexibility and maintainability are increased.

In spite of this common point, the difference between models is clear.

We distinguish two main types of architecture models – functional and structural:

 Functional models – Such models decompose an interactive system into several independent functional

components. Two well-known models of this type are Seeheim (Pfaff,1985) and ARCH (Bass et al., 1991). The
Seeheim model splits an interactive system into three functional components: Presentation (interacting with the user),
Application Interface (related to the functional core) and Dialogue Controller (intermediary between the previous two
components). The ARCH model refines the relationship between three components of the Seeheim model by adding
two additional components: Functional core adaptor and Logical interaction.

 Structural models – Such models provide decomposition, whose the granularity is much finer than the functional

ones. They group functions together into one autonomous, cooperative entity, often called an agent. Some
representative models of this type are PAC (Coutaz, 1987, 1990), MVC (Goldberg, 1983)] and AMF (Tarpin-Bernard
and David, 1999). These models are agent-based architectures, respecting the principle of composition or
communication, with no functional decomposition. For example, a PAC agent is made up of three facets:
Presentation, Abstraction and Control, and an MVC agent is made up of three facets: Model, View and Controller. We
can also mention here MVP (Model-View-Presenter), a specialization of MVC model
(http://martinfowler.com/eaaDev/uiArchs.html).

Each type of architecture model has its own advantages and disadvantages. The functional models provide designers

with an analysis strategy by breaking down a big system into different parts, but they also have some drawbacks. For

example, the internal structure of components and the dialogue between them are not described, although this problem is

completely managed by the designers. Another problem is that components of the functional models are too macroscopic.

They provide canonical functional structures whose the granularity is too large and the functionalities are mixed in the too

macroscopic components (Tarpin-Bernard and David, 1999). In general, functional models are useful as a structural

framework for a rough analysis/design of an interactive system. They are generally not sufficiently fine to design complex

applications, especially not industrial supervision systems, as in our case.

Unlike functional models, the structural models describe their entities (i.e., agents) and the communication between

them. In addition, the granularity of their decomposition is much finer. These models thus seem to be more adaptable to

complex interactive systems. Furthermore, breaking down an interactive system into several autonomous, cooperative

entities can speed up the interactive system’s feedback for the user. This advantage is very useful for industrial

supervision systems because system users (i.e., human operators in control/command room, called regulators or

supervisors) have to perform highly cognitive tasks and execute a set of operations to oversee and regulate the

supervised dynamic process if it malfunctions (Moray, 1997). A long slow dialogue between supervision systems and their

users risks slowing down the system, thus decreasing productivity.

In spite of these advantages, the structural architectures also have drawbacks. Unlike the functional models, the role

and the number of the agents are not clearly specified (Coutaz, 1990). The global user interface of structural interactive

systems can be difficult for designers to perceive because Presentation components are distributed on the various agents.

Functional models solve this problem by supplying a single Presentation component.

2.2. Advanced models

Below we will present briefly some advanced models that derive from basic ones

2.2.1. Hybrid models

The advantages and disadvantages of functional and structural models led to hybrid architecture models, which try to
exploit advantages of each of them. Several models combining functional and structural approaches have been proposed
in the literature. For instance, Nigay and Coutaz combined the ARCH and PAC models to create the PAC-Amodeus
model, in which the controller component is decomposed using PAC agents (Nigay and Coutaz, 1995). Guittet proposed
the H

4
 model, which decompose each component of the ARCH model into a hierarchy of the abstract objects (Guittet,

1995), especially, the hierarchical structure of the Dialogue Controller component are detailed by new concepts (token,
questionnaire, interactor, task, monitor) in order to specify flows of information exchanged between the components of H

4

model.

2.2.2. Models dedicated to groupware

(Ellis, 1991) defines groupware as a computer system that assists a group of people engaged in a common task (or
common goal) and which provides an interface to a shared environment. In fact, if collaborative human activities are
supported by computer systems, then we have Computer Supported Cooperative Work (CSCW). Such systems are called
groupware (Ellis, 1991).

Architecture models of groupware are the evolution from mono-user architectural ones. We can mention below some
representatives ones: Dewan layered model (Dewan, 1998) considered as an extension/generalization of the Arch model;
PAC* - a collaborative version of the PAC-Amodeus model, used for multi-users systems and especially CSCW (Calvary
et al., 1997); Clover model (Laurillau, 2002) uses principles from Dewan and PAC* models for CSCW systems.

Groupware that can adapt to the settings of users and support them in their natural interactions is an active research

topic in the modern age of ubiquitous networked devices, such as smartphones, personal digital assistants (PDAs), digital

whiteboards, PCs, and tablets. Readers interested in their design and development can consult (Wolfe et al., 2010, 2009a,

2009b; Wu and Graham, 2007; Phillips et al., 2006; Phillips and Graham, 2003). We can also mention the work of (Garbay

et al., 2012) who propose a multi-agent approach for collaborative support systems in distant tangible environments, and

the works of (Lepreux et al., 2012) that enables interaction to take place between several interactive tabletops (seen as

interactive systems), each usable by one or several people; this architecture enables two types of distribution between the

user interfaces: centralized distribution of user interface (case in which one tabletop is master over the other) and network

of distributed user interfaces.

2.2.3. Models for mixed-reality and mobile systems

Mixed reality aims at interactive systems in which real objects and computer data are mixed in a consistent manner.
Paul Milgram proposed a unification of concepts using a "real – virtual continuum" from real-world to totally virtual

environments (Milgram, 1994a, 1994b, 1995). In this continuum, mixed reality is considered as intermediate stages that
mix real and virtual objects and it is divided into two sub cases: augmented reality (AR) and augmented virtuality (VA)
according to the proportion and role of real or virtual objects.

Architecture models for mixed-reality systems are usually created by combining a normal architecture model with an
interaction model dedicated to mixed reality. We distinguish between the interaction model and the architectural one using
the definition of (Beaudouin-Lafon, 2000):

 Interaction Models are a set of principles, rules and properties that guide the HCI design. They describe how to
combine interaction techniques in significant and consistent manner and they define the "look and feel" of the
interaction from the point of view of the user. For example the direct manipulation is a generic interaction.

 Architecture models describe the functional elements for the implementation of the interface as well as their
relationships. A wide variety of implementation model are being presented in this paper.

We can mention here some interaction models dedicated for mixed-interaction modeling:

 Interaction model proposed by (Renevier, 2004a, 2004b). This model aims at designing collaborative mixed and
mobile systems and it also allows representing the users and objects, their spatial relationships as well as the creation
or destruction of objects.

 ASUR (Dubois, 2001, 2002c, 2003a) proposed by Dubois is a formalism used to describe entities involved in the use
of a mixed-reality system in order to perform a given task. ASUR++ (Dubois, 2002a, 2002b, 2003b) is an ASUR
extension for mobile and mixed systems. ASUR 2004 (Juras, 2004) is proposed by refining the S component of
ASUR++, which represents the entire computer system. The latest version of ASUR and its meta-model are
presented in (Gauffre and Dubois, 2011) and it provides a complete, explicit and standardized definition of ASURs.

 IRVO (Chalon, 2004a, 2004b) (Interacting with Real and Virtual Objects), an Interaction Model for Designing
Collaborative Mixed Reality Systems. In fact, IRVO aims at “modeling the interaction between one or more users and
the mixed-reality system by explicitly representing the involved objects and tools and their relationship”.

We can mention here some architecture models dedicated to mixed-reality systems:

 (Dubois, 2001b) adapts PAC-Amodeus to the mixed-reality systems by moving the interaction model ASUR closer to
this architecture model.

 (Renevier, 2004b) presents another extension of PAS-Amodeus for mixed-reality collaborative and mobile systems,
by: a) following the extensions proposed by Laurillau in the Clover architecture model in order to describe
collaborative work aspects b) taking into account information about the users’ locality (their position and orientation).

 The agent-based architecture model for groupware AMF-C is extended by associating their agents to entities of the
mixed interaction model IRVO in order to design collaborative and mixed reality systems (Chalon, 2004a, 2004b).

 (Dubois et al., 2011a) present ASUR-IL - a model used to describe the software architecture of mixed interactive

systems. ASUR-IL is composed of two parts: 1) adapters (expressed by interaction model ASUR in order to describe

the required devices and API to implement the link between the physical world and digital world) and 2) system-

dependent components decomposed according to the MVC pattern (Model, View(s) and Controller(s) components)

Other papers for interested readers include (Dubois et al., 2011b) on a four-step co-design process of mixed interactive

systems with an example of a mixed interactive system in a museum, (Bortolaso et al., 2011) on a method for using a

mixed interaction model in creative sessions, and (Shaer et al. 2009) on a specification paradigm for designing and

implementing Tangible User Interfaces. This paradigm is based on a high-level UIDL (User Interface Description

Language) to provide developers from different disciplines with the means to specify, discuss and program a broad range

of tangible user interfaces. This high-level description can be semi-automatically converted into programs concerning

concrete TUI implementations, etc.

2.3. Proposal of new agent-based architecture models, an example

Existing hybrid architecture models still have drawbacks: they are still too imprecise to identify their agents,

implementing them is tedious and difficult, and their application becomes a handicap for highly interactive interfaces

(Depaulis, 2002).

In general, existing hybrid models do not take into account industrial interactive systems, such as supervision systems,

where HCI is complex and highly interactive, and whose users (such as human control room operators) must supervise

the real-time process and constantly perform quick and accurate manipulations. Our hybrid architecture model has already

been proposed in this context and is intended for designing complex interactive systems in the industrial domain. Our

model provides decomposition with fine granularity and its interface agents (presented below), (which can be added in

arbitrary numbers by the system designers) can correspond to supervision or regulation functionalities.

This hybrid architecture model decomposes each functional component in an interactive system in a precise structural

way. Its structure (Figure 1) has been presented in several papers (Grislin-Le Strugeon et al., 2001; Ezzedine, 2002;

Ezzedine et al., 2005). We present it briefly below.

Figure 1. Structure of our hybrid agent-based architecture model

This architecture model is respectively composed of three functional components, which are the same as the Seeheim
functional model: the component Application Interface, which connects directly to the application; the component User
Interface, which enters in direct contact with the user; and the component Dialogue Controller, which is the intermediary
between the two kinds of interfaces. Each component is organized structurally, each with a set of agents. We retain here
the definition of agent, presented by (Grislin-Le Strugeon et al., 2001). According to it, an agent is considered as an
information processing system with a set of actions it can perform, with mechanisms for input / output and the ability to
represent the states (called state vector). These three components (Application Interface, User Interface, Dialogue
Controller) can be considered as three sets of agents that are able to function in parallel, at least in theory.

 Application Interface: the Application represents the real process in physical world. For example, in our specific case
of an industrial supervision system for urban transport network, the Application deals with the supervised vehicle
network (i.e., bus, tram). The Application Interface component is a simulated multi-agent model of the Application that
interacts directly with the Application. This component contains agents, called application agents, which can send
information/commands to the Application. They can also receive information from the Application to transfer to the

other agents in the same component or in other components. These agents manipulate domain-specific concepts and
execute domain-specific functions for the Application. The Application Interface component, which cannot be directly
accessed by the user, represents the functional core of the interactive system.

 User Interface: this component contains agents, called interface agents. Unlike the application agents in the
Application Interface component, they can interact directly with the user, and are visible to the user, via UI events. UI
events are represented by the acronym, EVIUs (EVents concerning Interface and User) in the meta-model of this
architecture model, presented in the next section.

These agents coordinate with each other in order to:

o Intercept user commands and send them to the Application via the other agents (application and controller
agents). In the supervision system, this allows human operators in the control/command room to send
commands to the Application.

o Compose a presentation that allows the user to understand the current situation of the Application. This
allows human operators perform their tasks as supervisors of the Application.

These interface agents are interactive agents or HCI agents. They may be simple buttons or windows whose
intelligence is limited. However, they may also be intelligent interfaces. Such intelligent interfaces can be adaptable
(with a possible human intervention), adaptive (without human intervention) to different use contexts (i.e., different
users, physical environments, computing platforms and current activities) or execute tasks as a user assistant (Kolski
and Le Strugeon, 1998). Such deep discussion about agent is beyond the scope of this paper.

 Dialogue Controller: this component contains controller agents, which are the intermediaries that insure the global
coherence of the dialogue between application agents and interface agents. In particular, these agents create links
between the other two components by distributing the user’s commands to the application agents and transferring the
feedback from the Application to the interface agents, and thus the user.

These three components constitute a complete model. However, an interactive system does not need to possess all of
them. It is possible for an interactive system to be composed of only User Interface component and/or Application
Interface component. These two cases correspond to an incomplete architecture model. Each agent provides a set of
services that correspond to actions able to be executed by this agent. Each interaction between agents is realized by

service invocation between them (see section 4.2 below). Using this model, designers can add an unlimited number of
interface agents to develop new representations for the user. This possibility is useful for developing complex HCI
systems, such as industrial supervision systems. For example, we used this model to develop a supervision system for
urban transport network, called IAS (see section 5).

The difficulty designers must face when they apply this architecture model to build an interactive system, is how can
identify agents? In details, how to organize agents and distribute work and knowledge into agents in each component,
especially in the case of large systems? This distribution affects many speed transmission of information between agents
and it should be based on specified criteria. Indeed, in the context of complex supervision interactive systems whose
users (as human operators in the control room) must supervise the process and make constant manipulation accurately
and efficiently, the distribution of work and knowledge between interface agents can be based on the "natural" criterion.
According to this criterion, each interface agent corresponds to a supervision or regulation functionality that operators can
perform in reality. Identifying agents in this way can help operators understand more easily the HCI and perform tasks in
better conditions.

Based on this architecture model, we propose a generic, reconfigurable evaluation environment, called EISEval,
designed and developed to help evaluators analyze and evaluate certain aspects of interactive systems in general and of
agent-based interactive systems that use this architecture model, in particular (see section 4). It aims to remedy
drawbacks of traditional evaluation tools and make the evaluation of interactive systems in general and the evaluation of
agent-based interactive systems that use our architecture model, in particular, more complete.

2.4. Concluding remarks on architecture models

In general, architecture models are useful for the system designers because these models guide their development of
interactive systems. Indeed, such models, some of which are based on agent principles (Kolski et al., 2009), can serve as
reference framework for designers. They provide designers with a generic structure in order to build interactive systems,
but they are not sufficient to produce high quality interactive systems. In order to achieve this objective, evaluation is
important because it allows problems and weak points in the evaluated systems to be detected.

3. Research Related to evaluation tools

For more than thirty years, interactive system evaluation has been a very active field of research. A user interface (UI)
has to increase user comfort, satisfaction and productivity; it also has to decrease the possibility that users can make
errors while they are interacting with the UI. Consequently, the evaluation is very important to help designers understand
user difficulties when interacting with interactive systems and propose future improvements for HCI. According to Senach
(Senach, 1990), all evaluation is based on a comparison of a model of the evaluated object and the reference model in
order to draw conclusions about the quality of the evaluated object. Evaluators apply evaluation methods and tools to a
given interactive system in order to obtain the real model of this system. Then, this model is compared to the reference
model in order to help the evaluators detect weak points of the system and propose necessary modifications.

The evaluation is based on multiple criteria, but two global dimensions can be distinguished:

 Utility – Evaluating utility determines whether or not the UI allows users to achieve their objectives. It involves
evaluating several properties: system performance, functional capacity, and the quality of the technical support
(Nielsen, 1993).

 Usability – There is no standard definition for usability; instead, there are several definitions (Dix et al., 1993; Nielsen,
1993; ISO/IEC 9126-1; ISO 9241). In general, it refers to a set of many things – such as execution time, performance,
user satisfaction and ease of learning (“learnability”), effectiveness, efficiency – taken together (Abran et al., 2003).
The interested readers can find an overall usability engineering as well as a survey of usability tools in (Howarth et al.,
2009), a summary of usability measures in (Hornbæk, 2006) and a framework for guiding and structuring, in a
systematic way, activities concerning the usability problem assessment and reporting in (Andre, 2001). In hypermedia
systems, we can mention another dimension: enjoyability. However, this dimension is also strongly related to the
usability because the transparency and the friendliness of the user interface are the key issues in enjoyability
(Yamada et al., 1995).

Nowadays, many evaluation tools exist. Before presenting our EISEval evaluation environment, we present below a
brief state of the art of the existing evaluation tools. Among various types of evaluation tools, we are particularly interested
in two important types: tools for working with guidelines (TFWWG) and electronic informers (EIs).

3.1. Tools for working with guidelines (TFWWG)

According to (Grammenos et al., 2000), the term, guideline, entails all forms of abstract or concrete recommendations

that may be used to design or evaluate interactive software so as to produce a more efficient and user-friendly user

interface. A guideline constitutes a design and/or evaluation principle for obtaining and/or guaranteeing an ergonomic user

interface (Vanderdonckt, 1999). TFWWG can be tools either for accessing/retrieving guidelines or for evaluating user

interface layout representations (Vanderdonckt and Farenc, 2000). TFWWG perform their evaluation using a guideline

database, automatically or semi-automatically, after reading source codes or descriptions of user interface (knowledge-

based tools).

Some representative tools should be mentioned: the guidelines management system proposed by Parush (Parush,

2000), SYNOP (Kolski and Millot, 1991), Sherlock (Grammenos et al., 2000), WebTango (Ivory and Hearst, 2002),

DESTINE (Beirekdar, 2004; Jasselette et al., 2006), AWebHHT (Rukshan and Baravalle, 2011), ErgoCoIn (Morandini et

al., 2011), EBC (Charfi et al., 2011), Ocawa (http://www.ocawa.com/fr/Accueil.htm), TAW (http://www.tawdis.net/), Dr.

Watson (http://watson.addy.com), AChecker (http://achecker.ca/checker/index.php), HTML Toolbox

(http://www.netmechanic.com/products/maintain.shtml), and WebXaACT

(http://www.w3c.hu/talks/2006/wai_de/mate/watchfire.html).

Below is a brief presentation of some representative tools; interested readers can find details on these tools in relevant

references.

 Guidelines management system proposed by Parush (Parush, 2000): Evaluators can enter new ergonomic rules,
modify existing rules or lookup the system to know and study the rules necessary for carrying out their tasks instead
of consulting a large paper manual. This is only an electronic system used to lookup rules instead of looking them up
in a large paper manual; it does not support any UI evaluation.

 Sherlock (Grammenos et al., 2000) works with rules to evaluate WIMP interfaces (Windows, Icons, Menus, Pointing

device). The description of a UI (in terms of a tree structure) is sent to Sherlock, which evaluates it based on the rules

supplied by rule providers in terms of ActiveX DLLs (Dynamic Link Libraries). ActiveX DLLs also contain inspection

routines to be called in order to evaluate a certain UI according to its rules and in order to detect usability violations of

UI presentations, such as the incorrect position of a command button or the use of inconvenient colors.

 Three approaches, WebTango (Ivory and Hearst, 2002), AWebHHT (Rukshan and Baravalle, 2011) and DESTINE
(Beirekdar, 2004; Jasselette et al., 2006) aim at evaluating web page UI usability (that relate to multiple aspects of
Web pages, such as use of color, text on a page, links, fonts and images, etc.). However, each approach has its own
way of representing guidelines. After representing guidelines, the evaluation tool of each approach analyzes the
HTML source code of Web pages in order to evaluate them based on their guidelines’ representation.

3.2. Electronic Informers

Figure 2 illustrates the principal actions of the EIs. These actions are performed in three steps:

(1) EIs discreetly and transparently capture data during interactions between the user and the UI in real use situations so
that the user’s activities are not interfered with. For example, the user’s actions on the UI (e.g., click on a button, select a
menu item) and the reaction from the UI (e.g., display/hide a window, make an alarm message appear/disappear) are
captured.

(2) The captured data are stored in a database and then analyzed by the EIs. Analysis results can be different calculations
(e.g., statistics), and they are often shown to evaluators in different forms (e.g., diagram, text, graph) to support their work.

(3) The model of user activity and HCI reactions can be reconstituted from the captured data and the evaluator’s analysis
results (Ezzedine and Abed, 1997). Called observed model or real model, this model can be compared with the model
predicted and specified by the designers. Designers can use the results of this comparison to improve the interactive
system. Several recent EIs have been proposed and are briefly presented below (interested readers can consult (Hilbert
and Redmiles, 2000) for older EIs):

 The tool family including USINE (Lecerof and Paterno, 1998), RemUSINE (Paterno and Ballardin, 2000),
WebRemUSINE (Paganelli and Paternò, 2003), Multimodal WebRemUSINE (Paterno et al., 2006) and MultiDevice
RemUSINE (Paterno et al., 2007). This tool family is based on using the task model CTT (Paterno et al., 1997) to
support the UI evaluation. Analysis results of these tools are shown in textual or graphical form.

USINE captures the physical actions of users on a WIMP (Windows, Icons, Mouse, and Pointers) interface and the
related information (e.g., mouse coordinates, time, name and content of affected widgets,…). Then, using the CTT
task model, it performs some analyses: task performance (successful or failed), types of errors committed by the user
(e.g., useless actions) and statistical calculations (e.g., number of performed tasks, number of errors,…). RemUsine
is similar, but it supports evaluations from a distance.

WebRemUsine (WRU) captures three types of EVs (events) on a Web interface (user interaction EVs on a Web
browser, internal EVs of the browser, and the EVs of the change of the target tasks of the user in the experiment) as
well as additional information (e.g., date, IP address and name of client system,…). The performed analyses are
similar to the USINE analyses and are supplemented with additional Web page information (such as the number of
times a page is accessed, page visit patterns, and time taken to visit or download each page,…).

Multimodal WebRemUSINE captures events similar to those captured by WRU, but also captures data concerning
user gaze direction using an eye-tracker tool.

Finally, MultiDevice RemUSINE captures events similar to those captured by WRU for mobile applications and also
captures additional contextual information such as locality and network signal power, etc. The performed analyses
are similar to those of other tools, except that they are combined with the contextual information.

http://www.ocawa.com/fr/Accueil.htm
http://www.tawdis.net/
http://watson.addy.com/
http://achecker.ca/checker/index.php
http://www.netmechanic.com/products/maintain.shtml
http://www.w3c.hu/talks/2006/wai_de/mate/watchfire.html

 The IBOT (Zettlemoyer et al., 1999) tool captures two types of data: 1) information on screen content when the user
interacts with the WIMP interface of the application and 2) low level EVs (mouse and keyboard EVs). IBOT combines
these two types of information to determine corresponding EVs at the highest level. IBOT does not display analysis
results. It inserts captured EVs into the event queue of the operating system to replay the actions made by the user
on the interface, enabling the evaluator can see what the user has done.

 The WET (Etgen and Cantor, 1999) tool captures interactions between the user and the Web interface (e.g., mouse
clicks, buttons pressed), Web browser EVs (e.g., page loads, etc.) and additional information (e.g., onscreen mouse
coordinates, occurrence time, etc.). This tool cannot display analysis results because WET is simply a method for
collecting EVs.

 The WebQuilt (Hong et al., 2001) tool captures data on visited Web pages, such as starting page, target page and
page links clicked, but it cannot capture local interactions with Web page elements (such as button, etc.) on a client’s
machine. This tool can detect visited pages, frequencies of followed paths, navigation patterns, and discrepancies
between the actual path and the optimal path expected by the designer. The analysis results are displayed as an
interactive directed graph whose nodes represent visited pages and whose arrows between nodes represent
transitions between pages.

 AppMonitor (Alexander et al., 2008): This is a Microsoft Windows-based client-side logging tool used to capture user
actions in Windows applications. It performs analyses such as command use frequencies and behavioral patterns.
This tool uses Windows SDK libraries to monitor both low-level interactions, such as “mouse button clicked” and
“pressed keys”, as well as high-level logical actions such as menu selection. The system currently supports logging in
Microsoft Word and Adobe Reader, but it can be expanded to other applications according to the authors.

EIs are completely different from Quality Feedback Agents (QFAs). EIs capture interactions between users and the an
application in real-use situations for later analysis in order to criticize the UI and improve it in the future. QFAs are software
components used to only gather technical data about what is happening in the application whenever it crashes. This
technical data is related to the context and the state of the application when it had problem (e.g., OS Version, Processor
Type, Display Type, register, functions that were called on just before the failure). This data is sent to the development
team to help them detect problems and the cause of the crash and then propose improvements for future versions of the
application. QFAs may also allow users to report what they were doing with the application when the failure appeared.
Since these QFAs only capture technical information to send to development team, QFAs are very limited for evaluating
interactive applications, compared to EIs (Tran et al., 2008).

Figure 2. Principle of EIs

3.3. Conclusion

In general, the aforementioned tools focus on evaluating usability. The of these tools do not discuss utility because
utility refers to the design's functionality and answers the question, “Does it do what users need it to do?” (Nielsen, 2003).
As a result, the methods used to evaluate utility are generally surveys, expert reviews, etc. (according to
http://wiki.cas.mcmaster.ca/index.php/Different_measures_for_evaluation).

Each type of tool evaluates a UI in different ways. TFWWG tools mainly try to evaluate the static aspects of user
interface (e.g., position, size and color of elements, text fonts). In addition, the TFWWG evaluation is not based on
objective use data. Since EIs are based on objective data captured from the interactions between users and the UI in real
situations, EIs allow the user interfaces (including their dynamic behaviors) to be evaluated objectively for real situations.
We designed EISEval as an extensive EI environment (not a TFWWG tool) based on objective data captured from the
interactions between users and the UI as well as between agents themselves in real situations, so that EISEval can allow
the user interfaces (including their dynamic behaviors) and other aspects of interactive systems to be evaluated objectively
for real situations (see section 4). EISEval’s activity is based on the EIs principles (Figure 2). However, EISEval also uses
ergonomic criteria, as well as other criteria (for example, response time between agents, complexity of MAS design, etc.),
to help evaluators interpret captured objective data and evaluate agent-based interactive systems. The shortcoming of
traditional evaluation tools, used as the motivation of EISEval, will be presented in the next section.

4. EISEval: an environment for evaluating agent-based interactive systems

In this section, we present our evaluation environment, called EISEval (Environment for Interactive System Evaluation),
which was specifically developed to evaluate interactive systems that use our agent-based architecture model (see section
2.3), although EISEval can also evaluate interactive systems based on other architecture models (as explained in the end
of the section 4.2 below). This environment is organized in modules so that designers can modify a module without
affecting the others.

This section is organized as follows. First, we give our motivation for developing EISEval and the shortcomings of
traditional evaluation tools. Then, we present EISEval’s design principles and briefly touch on the meta-model of our
agent-based architecture model, which is the basis of EISEval. Finally, we introduce the multi-step process on which
EISEval is based in order to evaluate interactive systems and introduce the modular structure of EISEval. Each module is
also explained in this section.

4.1. EISEval’s design principles and objectives

EISEval was designed to remedy the drawbacks of traditional evaluation tools in general and traditional EIs in
particular. We highlight these drawbacks below:

 Most of traditional tools try to generically evaluate the UI of interactive systems, but we needed an evaluation tool that
can specifically evaluate interactive systems that use our agent-based architecture model. In other words, most of
traditional tools do not take architectural specificities of agent-based interactive systems into account when evaluating
them.

 Traditional EIs only evaluate the UI of interactive systems. They do not consider other aspects of interactive systems,
such as the non-functional properties of an agent-based interactive systems (e.g., agent response times, reliability,
design complexity), although these properties can be very useful for evaluating the quality of a multi-agent system in
general and an agent-based interactive system in particular (Lee and Hwang, 2004).

 After capturing HCI data, the existing EIs perform some analysis on captured data and show the analysis results (e.g.,
statistics, classification) in visual forms to evaluators, who then must interpret these results to identify the problems
with the UI and suggest improvements to designers. There is no assistance or indications to help the evaluators do
their work.

In order to remedy these drawbacks, and thus extend the possibilities of traditional EI evaluation and make the
evaluation of agent-based interactive systems in particular and of interactive systems in general, become more complete,
we determine certain design principles (see below) that EISEval must respect before constructing it:

 EISEval is essentially an extensive EI environment, and the EISEval activities are based on EI principles (see Figure
2). However, compared to traditional EIs, EISEval provides a more complete evaluation. Traditional EIs evaluate only
one aspect of interactive systems: the UI. EISEval must allow evaluators to evaluate the various aspects of interactive
systems: the UI, but also certain non-functional properties of interactive systems (e.g., agent response times,
reliability, design complexity) and certain user characteristics (e.g., preferences, habits, ability to use the system, user
comparisons).

 EISEval exploits the specificities of our agent-based architecture model to evaluate interactive systems using this
model, which allows evaluators to better detect the problems in agent-based interactive systems, as well related
elements, for example: agent services that function poorly (e.g., their execution failed or took a long time); interface
agents that often or rarely interact with the user; application agents that often or rarely have problems) By detecting
such problems, evaluators may have an easier job when determining the necessary improvements and then
proposing them to designers.

 Although EISEval was specifically designed to evaluate interactive systems that use our agent-based architecture
model, it must be able to evaluate interactive systems that use other architecture models. We will explain how to do it
in the end of the next section 4.2.

 EISEval must extend traditional EIs by helping evaluators interpret analysis results to evaluate the different aspects of
interactive systems.

1

 EISEval must be generic and reconfigurable. As a result, EISEval was designed to be independent of a particular
interactive system, and it can be reconfigured to evaluate different systems.

 EISEval must take the abstraction levels of events into account. Two abstraction levels are taken into account: EVIU
level as well as service level (same level) and task level (higher level). These two levels are presented below in the
meta-model of our agent-based architecture model.

1
 Although the current version of EISEval provides evaluators with the indications necessary to help them interpret the analysis results,

one of the possibilities for future research is to extend this interpretation (see section 7).

4.2. Meta-model of our agent-based architecture model

In the section 2.3, we have presented the structure of our agent-based architecture model. In this section, we must
present the meta-model of this architecture model. Indeed, EISEval mainly aims at evaluating interactive systems that are
based on this architecture model. As a result, in order to propose EISEval - a generic, reconfigurable environment to help
mainly evaluate agent-based interactive systems that use our architecture model, it is necessary to “explain” this
architecture model to EISEval. In other words, EISEval must “understand” our architecture model, which is required for
interactive systems in order to be evaluated by EISEval. For this reason, we propose a meta-model of our architecture
model. This meta-model describes dynamic or behavioral aspect of our architecture model whereas the structure
(presented in the section 2 above) describes its static or structural aspect.

Please note that although EISEval mainly aims at evaluating interactive systems that are based on our architecture
model, it can still evaluate other interactive systems that are not based on it. This is one of our design principles
(mentioned above) and we will explain how to use EISEval to evaluate interactive systems that do not use our architecture
model in the end of this section.

Figure 3 shows the meta-model that we used in this paper. We used UML class diagram in order to present this meta-
model briefly and visually. The design of the EISEval evaluation environment is based on this meta-model. Please note
that these UML diagram classes in the meta-model do not imply or obligate their real implementations in the source code
of evaluated interactive applications based on our architecture model. Indeed, these classes are only used in this paper to
describe and help readers understand better, in a visual way, entities in our architecture model as their behaviors (in terms
of interactions between them).

controller agent

interface agent

system

-ID

-name

-etc.

task

-ID

-name

-etc.

service

-ID

-name

-etc.

agent

application agent useragent-based interactive system

-ID

-name

-etc.

EVIU

1
1..*

-user_invoker

0..1

-invoked_EVIUs*

-my_interface_agent

1 *

-EVIU_invoker

*

-invoked_EVIUs

*

0..1

*-EVIU_invoker

*

-invoked_services

*

-invoked_EVIUs

*

-service_invoker*

-my_agent

1

*

-invoked_services

*

-system_invoker 0..1

-invoked_services

*

-service_invoker *

0..1

*

Figure 3. Meta-model of our proposed agent-based architecture model

We explain our meta-model briefly below:

 An interactive system that uses our architecture model is composed of agents. According to what we have presented in
the section 2.3, an agent (class agent shown in Figure 3) is one of three types: application agent, interface agent, or
controller agent (respective classes shown in Figure 3).

 Every agent (application, interface, or controller agent) manages a set of services. A service (class service) is defined
as an action that can be executed by an agent.

 Every interface agent is associated a set of UI events, abbreviated to EVIUs in our description (EVents concerning
Interface and User, class EVIU). Such events represent interactions between the user and interface agents.

 The interactions between interface agents and the user appear in terms of EVIUs, whereas interactions between
agents themselves appear in terms of service invocations. Such interactions are illustrated in Figure 3.

An EVIU of an associated interface agent only appears if it is triggered by one of three following objects:

 The user – An EVIU of a certain interface agent can be triggered by the user through an interaction device, for

example, a menu item or a screen button is selected when the user clicks the mouse button on it.

 A service of the same interface agent – For example, in an urban transport network’s supervision system, when a

traffic disturbance is detected, the service related to a traffic disturbance warning can show a window whose message
warns supervisors of this disturbance (EVIU corresponds to the display of this window).

 Another EVIU – An EVIU of a given interface agent can be triggered by another EVIU of the same interface agent, for
example, a window is closed when the user clicks on its Cancel button.

A service is only executed by an associated agent if it is triggered by one of three following objects:

 The system (class system shown in Figure 3) – A service of a given interface agent or an application agent can be

invoked by the system, and this service is automatically executed. For example, in an urban transport network’s
supervision system, the service related to detecting traffic disturbances can be automatically executed when a traffic
disturbance occurs (e.g., lateness or breakdown of a vehicle). Nonetheless, the services of controller agents cannot be
invoked by the system.

 Another service – A service can be invoked by another service of the same agent or another agent. For example, in

an urban transport network’s supervision system, the service related to detecting traffic disturbances can invoke the
service related to traffic disturbance warnings. Such service invocations constitute the dialogue between system
agents.

 An EVIU – A service of an interface agent can be triggered by an EVIU of the same interface agent. For example, a

click on a button can invoke the execution of a certain business function. This case happens when the user activates a
certain function of the interactive system to perform his/her domain task.

Figure 4 provides an illustration of the activity of a service using a Petri Net (PN). From the current state, if a triggering
event appears (system, another service or an EVIU), conditions are verified, necessary resources are available, and the
service will be executed. This execution can invoke another service or an EVIU. PNs will be presented in the section 4.4.5.

A task (class task shown in Figure 3) is an abstract event, whereas EVIUs and services are objective data captured by
EISEval. The task is situated at an abstraction level that is higher than the level of services and EVIUs. The task
represents what the user and/or system must execute to accomplish some business purpose. Tasks are specific to each
application domain and they usually correspond to the system’s functionalities. In order to realize a task, a set of EVIUs
can appears and/or services can be executed. Based on the event that initializes tasks, the model can have two types of
tasks:

 System task – A system task is initialized by a service of an interface agent or of application agent. Then, this service
can invoke another service or EVIU. There are no direct user interventions to realize this task. For example, in an urban
transport network’s supervision system, the task “Warn supervisors of traffic disturbances” is carried out by two services
and one EVIU. First, this task is initialized by the service “Detect traffic disturbances” (service 1). Then, this first service
invokes a second service “Warn of traffic disturbances” (service 2). This second service displays a window to warn
supervisors of this disturbance (EVIU 1). In an industrial supervision system, system tasks are often executed when (1)
the supervision system informs human operators of the current state of the Application (i.e., the real process under
supervision) so that they can carry out their supervisory tasks, and (2) the supervision system warns human operators
of a disturbance or a problem in the Application so that they can make regulations necessary. Such adjustments are
themselves user tasks, presented below.

 User Task – Unlike the system task, a user task is initialized by an EVIU or a series of EVIUs. These EVIUs are
triggered by the user, and they can invoke services or other EVIUs to accomplish this task. For example, in an urban
transport network’s supervision system, the task “Send a message to passengers at station” is carried out by a series
of three EVIUs, triggered by the user in succession: ImageStation_Click (Clicking on the station’s image on the screen),
TextBoxMessage_Changed (Typing message content), and buttonOK_Click (Clicking on the button OK to send the
message). The EVIU buttonOK_Click will invoke the associated service to send the message to passengers at the
selected station. In a supervision system, user tasks often correspond to human operator activities in order to regulate
the supervised process. A supervision system always provides human operators with necessary functions for such
regulations.

 An EVIU of an interface agent can only invoke a service or another EVIU of the same interface agent; it is not allowed to
invoke a service or an EVIU of another interface agent. As shown below, this constraint can be described in more
structural way using OCL (Object Constraint Language)

2
 :

context EVIU

inv: if self.invoked_EVIUs->size() >= 1
then

self.invoked_EVIUs->forAll(invoked_EVIU | invoked_EVIU.my_interface_agent = self.my_interface_agent)
endif

2
 A more detailed explanation of OCL can be found on the OMG website: http://www.omg.org/technology/documents/formal/ocl.htm

inv : if self.invoked_services->size() >= 1
then

self.invoked_services->forAll(invoked_service | invoked_service.my_ agent = self.my_interface_agent)
endif

Apart from making EISEval “understand” the evaluated interactive system, this meta-model and its OCL description are
still useful if we aim at developing a visual development environment to help developers design, in an interactive and
visual way, interactive systems that use our architecture model. The meta-model is the base to construct this development
environment and OCL can be used by this environment to verify whether developer’s design for a certain interactive
system (based on our architecture model) is valid or not. This environment is one of our future research topics (section 7).

Figure 4. Activity of a service

This meta-model is the foundation for our proposed environment for evaluating agent-based interactive systems that
use our architecture model. Indeed, EISEval mainly aims at evaluating interactive systems that are based on our
architecture model and it takes into specificities of this architecture model into account. The meta-model of our agent-
based architecture model (presented above) is the way EISEval “understand” the evaluated interactive system. In other
word, EISEval consider that the evaluated system is based on our architecture model whose static (structural) and
dynamic (behavioral) aspects are already presented above. However, EISEval must be able to evaluate interactive
systems that do not use our agent-based architecture model. This is one of our design principles (mentioned above). In
order to use EISEval for evaluating a certain interactive system, called system A that does not use our agent-based
architecture model, we do in the following way:

We consider this interactive system A as a special case of our agent-based architecture model where A is composed of
a single User Interface component – only one of three components of our architecture model. In other words, it can be
considered that this interactive system A is based on an incomplete architecture model of our architecture model that we
have mentioned in the section 2.3 above. The User Interface component of A also contains an only one large interface
agent, which corresponds to the whole system.

As a result, we can use EISEval to evaluate this interactive system A in the same way we use EISEval to evaluate
interactive systems that are based on our architecture model. EVIUs related to HCI interactions (between the user and the
interface agent of A only) are captured and later analyzed by the EISEval’s modules. However, if the evaluated interactive

system is not based on our architecture model, EISEval is similar to traditional EIs and there are no specificities
concerning our architecture model to be captured and analyzed (e.g., Interactions between agents). However EISEval is
still extended by some specific and additional functions to analyze captured data. These functions are provided by
EISEval’ modules that will be presented later, step-by-step.

4.3. Evaluation process of EISEval

Applying EISEval to use an interactive system follows a multi-step process as presented below:

Step 1: EISEval captures and stores objective data. These data can be EVIUs (interactions between the user and UI
(interface agents)) and/or interactions between the agents themselves in terms of their service invocations.

Step 2: EISEval must be reconfigured to evaluate a given interactive system. Reconfiguration means that some input

information about the specific configuration and settings of the evaluated interactive system must be provided for EISEval
so that they can be stored and used in remaining steps. Input information can be provided for EISEval by the evaluator via
some user interfaces or via a configuration description file containing such necessary input information. In fact, EISEval
implementation does not impose rigorous order of the step 1 and 2 and allows them to be able performed at the same time
or in any order because their implementations are in two independent modules (see section below).

Step 3: Analyze captured data and show analysis results in visual forms (determining tasks from captured data, statistics,

measure calculations, PN generation, etc.). This step requires a certain intervention from the evaluator (presented later).
The input of this step is the data captured by step 1 as well as configuration information provided by step 2. The output of
this module is the analysis results of the target system that will be the input of the step 4 below.

Step 4: Help evaluator interpret analysis results in order to evaluate aspects of target interactive system based on a list of

predetermined criteria (e.g., ergonomic criteria or quality attributes). This is an open list and EISEval allows the evaluator
to modify/add criteria to it for each evaluated interactive system because each interactive system can require specific
criteria. The evaluation results of an interactive system can be saved for ulterior exploitation. The input of this step is the
step 3’s output (analysis results) as well as such a predetermined and open list of criteria (e.g., ergonomic criteria or
quality attributes). The output of this module is the evaluation results of the target system based on these criteria
(presented later in the sections 4.4.6 & 6 below). This step will be more detailed later in the section 5 through our study.

EISEval is designed in modular manner and these steps are implemented by EISEval’s modules. We present them in

the section below.

4.4. Structure of EISEval

This section presents our EISEval evaluation environment. The Figure 5 depicts seven modules of EISEval that we’ll
explain each of them below.

Although this environment is still able to evaluate interactive systems that use other architecture models, EISEval was
specifically designed to evaluate interactive systems that use our agent-based architecture model (explained in the end of
the section 4.2 above). EISEval is composed of seven modules, each of which belongs to a step of the EISEval’s
evaluation process (presented above). Indeed, the motivation for this module breakdown of EISEval is mainly based on
these steps. Each module will be presented below. In this section, we use screenshots to illustrate the activities of these
modules. These screenshots show data from our study (see section 5). The first version of EISEval was designed and
developed in C++.

Figure 5. The EISEval seven modules

4.4.1. Module 1 (M1)

This module corresponds to the step 1 of the EISEval’s evaluation process in order to capture and store objective data.
Among the seven modules of EISEval, only Module 1 (M1) was developed as an individual system; the six remaining
modules were integrated in a single system. The M1 and this single system can be launched individually. The M1 captures
objective data that later will be analyzed by other modules of EISEval. These data involve not only HCI events (like
traditional EIs) but also agent interactions. Specifically, these data can be 1) events related to interactions between the
user and interface agents (i.e., EVIUs), and 2) execution-invocations between agents’ services.

As Figure 5 shows, M1 is composed of three informers, which capture data (i.e., EVIUs, services) from respectively
interface agents, controller agents and application agents of the interactive evaluated system, and then store these
captured data in databases; the other EISEval modules can retrieve data from these databases to analyze them. When
evaluators want to use EISEval to evaluate a given interactive system, M1 must be launched first, before launching the
system, so that M1 can capture and store data from the evaluated system. This capture can be even performed remotely
since M1 can be launched individually to capture data from the evaluated interactive system, which can run on the same
machine or another one.

There are two ways to plug module 1 into the evaluated system for gathering events:

(1) M1 functions like a server and the evaluated system, as a client, connects to the M1 and sends events to it

(2) M1 receives and processes event logs from the target system.

Both ways can be performed using instrumentation code, which means a small quantity of instrumentation code is
inserted into the evaluated system to output necessary data for capture. These data are sent to the M1 (which functions as
a server) via a socket mechanism or are saved in logs to be processed later.

There are specific logging tools to save logs for the second method. However, we currently use the instrumentation
code by inserting a very small quantity of code into the evaluated system. There are also two instrumentation approaches:
source instrumentation or binary instrumentation. In this first version of EISEval, we follow source instrumentation.
Instrumentation is an interesting topic, but such a discussion about it is beyond this paper. Right now, we are focusing
more on analyzing captured data and interpreting analysis results to evaluate interactive systems. However, we have
several ideas for improving the M1 that is in charge of capturing data. These ideas will be presented in the last section of
this paper as future research.

As mentioned above (the end of section 4.2), in the case where we use EISEval to evaluate a certain interactive
system, called system A which is not based on our agent-based architecture model, we consider this interactive system A
as a special case of our agent-based architecture model where A is composed of a single User Interface component –
only one of three components of our architecture model. This User Interface component contains an only one large
interface agent which corresponds to the whole system and we can use EISEval to evaluate this interactive system A in
the same way we use EISEval to evaluate interactive systems that are based on our architecture model.

As a result, M1 will captures and stores EVIUs related to the HCI interactions (between the user and the only interface
agent of A), which later be analyzed by the other modules. In this case (where EISEval is used to evaluate interactive
systems that are not based on our architecture model), the M1’s data capture task is similar to traditional EIs and there are
not any specificities concerning our architecture model to be captured and later analyzed by other modules (ex.
Interactions between agents). However, other EISEval modules still provide evaluators with some specific and additional
functions (compared to traditional EIs) to analyze captured data (presented below).

4.4.2. Module 7 (M7)

Module 7 (M7) corresponds to the step 2 of the EISEval’s evaluation process and it allows evaluators to reconfigure
EISEval to evaluate different interactive systems. EISEval reconfiguration means that some input information about
specific configuration and settings of the evaluated interactive system must be provided for the module 7 so that they can
be stored in a database and used by remaining modules (2, 3, 4 & 5). Among this input information of the module 7, some
are mandatory and others are optional. This input information will be made clear later, step by step, in the sections
concerning remaining modules (2, 3, 4 & 5). In this section, we only mention briefly it:

 Mandatory Information:

o Information about tasks (user tasks and/or system tasks. See section 4.2 above for the task notion) that can be
performed by the evaluated system. Indeed, the task represents what the user and/or system intend to execute in
order to accomplish some business purpose and they usually correspond to the system’s functionalities. When
developers design and implement an interactive system, these functionalities (tasks) must be determined and
developed. For example: when developers design and implement an urban transport network’s supervision system,
they determine and develop following tasks (functionalities): “Warn supervisors of traffic disturbances”, “Send a
message to passengers at station”, etc. because they predict that these task can be possibly to be carried out in
reality. As a results, these tasks are called predicted tasks or theoretical tasks or “to be carried out” tasks.
Predicted/theoretical tasks are used to confront with the notion real tasks or observed tasks that have already been
carried out by the user in a real situation (see the next section for clearer explication). In order to evaluate this
system, the information about these tasks must be provided for the module 7.The provided information about each
predicted task involves its title, description and settings (ex. time predicted to realize this task of an average user in
reality and time predicted to realize this task of an expert user in reality. See Figure 6 below). In the Figure 5 above,
we can see the module 7 stores this information about predicted tasks to the repository (called “to be carried out”) of
the task model base.

o Information about agents of the evaluated systems (indeed, when developers design and implement an interactive
system, its agents must be determined and developed) as well as other configuration settings (ex. predicted average
response time of service invocations between agents).

 Optional information: Detailed information on each agent, ex. information on associated services, EVIUs, etc. In the
Figure 5. We can see the module 7 stores information about agents (mandatory and/or optional one) to the AS (agent
specifications) repository.

This input information will be gradually illustrated in the next sections on the remaining modules. However, how can it
be provided for module 7? Indeed, this input information can be provided for the module 7 by the evaluator via some user
interfaces (one of which is illustrated by the Figure 6 below) or via a description file containing all necessary input
information.

 In the end of the section 4.2 above, we mentioned one of our future research topics: constructing a visual development
environment that helps developers interactively and visually design interactive systems that use our architecture model.
Indeed, after designing an interactive system in this environment, one of functionalities of this environment is to generate a
description file that contains such necessary input information to be provided for the module 7. At this moment, the
evaluator still has to input the module 7 via its user interfaces. This way takes the evaluator a significant time.

Figure 6. Screenshot of one of user interfaces of the module 7 – information about a predicted task (“tasks possible to realize” in this

figure) provided for the module 7

4.4.3. Module 2 (M2)

For each interactive system, designers specify tasks that can be possibly carried out by the user/system. These tasks
are called predicted tasks or theoretical tasks (presented above). For example, in an urban transport network’s supervision
system, a theoretical task can be “Warn supervisors of traffic disturbances” or “Send a message to passengers at station”.
Before using the EISEval modules 2, 3, 4 & 5 to analyze data captured by M1, the information about the configuration of
the evaluated system must be inputted into module 7 (see section 4.4.2).

Module 2 (M2) belongs to the step 3 of the EISEval’s evaluation process and it allows evaluators to determine, among
theoretical tasks, what tasks have already been carried out by the user/system in a real situation; these tasks are called
real tasks or observed tasks. Indeed, in order to determine observed tasks, evaluators have to associate each theoretical
task to corresponding EVIUs and services (captured by M1). All these associations are stored in the database of observed
task (Figure 5). For example, evaluators can associate the series of three EVIUs – ImageStation_Click (Clicking on the
station image on the screen), TextBoxMessage_Changed (typing message content in the text box), and buttonOK_Click
(Clicking on the button OK to send the message) – to the theoretical task, “Send a message to passengers at station”.

Using this association, evaluators determine that the user has already carried out this task, “Send a message to
passengers at station” in a real situation. M2 is used in EISEval to provide some kinds of analysis, such as identifying
theoretical tasks that have always, or never, been carried out in reality; computing statistics for task executions; or
comparing the user/system’s task executions (in real situation) with the designer prediction, the theoretical task. This is the

only intervention from the evaluator in this step 3 of the EISEval’s evaluation process and we can see (in the Figure 5
above) this module 2 stores determined observed tasks to a separate database for these tasks.

4.4.4. Module 3 (M3)

Module 3 (M3) belongs to the step 3 of the EISEval’s evaluation process and it retrieves the data captured by M1 (i.e.,
EVIUs, services) and the real tasks determined by M2 in order to analyze them. These analyses involve statistics (e.g.,

number and frequency of EVIUs, executed services, observed tasks) and measure calculations (e.g., the time taken to
carry out each observed task or each service in real situation, the average response time between agent services,
average time taken to accomplish a task, number of successful or failed tasks, etc.) of a given agent or all agents in a
given time period. Readers can find that some measures (provided by this module 3) have already been presented in
(Hornbæk, 2006). However, other measures, such as system-related measures (time response, service measures, etc.)
are not included in it. Moreover, M3 not only compute measures but also compare, in quite detailed way, the measures
computed from real usage with measures predicted by the system designer. In brief, M3 provide analysis results
concerning statistics/measures (number or frequency of EVIUs/services/tasks; number or frequency of successful

realization of each service/task as well as all services/tasks, response time, completion time on each service and
observed task, etc.) and compares these analysis results to the ones predicted by the system designer. M3 can calculate
such statistics & measures for each agent or across agents.

The M3 analysis results are shown to evaluators in visual forms, such as tables and graphs. Based on the suggestions
and indications of module 6 (see section 4.4.6 below), the evaluators are supported to be able to interpret analysis results
of modules 3, 4 & 5 to criticize the system and propose improvements to designers. M3 generates a set of screenshots.
These analysis results shown in the screenshots in Figures 7, 8 & 9 come from our study (see section 5). These
screenshots show the M3’s analysis results for a human subject who participated in this study.

Figure 7 shows the number and frequency of EVIUs that have occurred with a given interface agent of the evaluated
system. M3 can also produce such statistics and measures about realized tasks, executed services and triggered EVIUs
and then, show the results in tables or graphs. This Figure is one of M3’s screenshots concerning EVIUs. These analysis
results are very useful for evaluators to assess UI layout and system design. For example, knowing the frequency of
EVIUs allows the evaluators to identify the UI’s interactive elements that usually/rarely/never interact with users, so that
the evaluators can propose improvements for UI layout.

Figure 7. One of screenshots of module 3 - The number and frequency of EVIUs occurring with a given interface agent, shown in the form

of a table. By clicking on each “tab” (EVIUs, services, tasks, etc.), the evaluator can see corresponding analysis results (statistics,

measures) relative to EVIUs, services, tasks, etc

Figure 8 shows the number of successful or failed tasks represented with a bar graph. M3 can also produce such
statistics about services (e.g., the number of successes or failures of a given service or all services). These analysis
results are useful for evaluators for assessing system reliability and global system functioning.

Figure 9 shows the additional calculations that M3 can provide. These calculations relate to some measures, for
example, the average response time of interactions between agent services, the number of service interactions, the
average time taken to carry out a task, the number of successful or failed tasks, the number of successful or failed
services, and/or the number of tasks carried out. These calculations are performed at the system level, so we call them
aggregation calculations. These calculations are very useful for assessing non-functional system properties, such as
speed (through the response times between services’ interactions), reliability or design complexity.

Figure 8. One of screenshots of the module 3 - Statistics for results of observed tasks – number or frequency of successful realization of

tasks - shown in the form of a graph

Some calculations related to tasks can be found in other EIs, such as WebRemUSINE (Paganelli and Paternò, 2003),
but other calculations related to services and response time and comparisons are not possible with these EIs. Indeed, M3
can compare real information with information predicted by system designers. For example, designers can predict the time
taken by an expert user and an average user, respectively, to execute each task. M3 can compare the time taken in real
situation with such expert time and average time predicted by designers, and then calculates the number of tasks whose
execution time is longer, shorter or equal to the expert and average times.

Figure 9. One of screenshots of the module 3 - Additional calculations (response time between services’ interactions, average time taken

by a task, results of service executions & comparisons)

Such predicted information (predicted time to execute each task as well as theoretical tasks, etc.) has been provided for
the EISEval by the module 7 (see section 4.4.2) before using modules 2, 3, 4 & 5. If not, EISEval can still perform these
calculations but it cannot make these comparisons.

4.4.5. Modules 4&5 (M4 & M5)

Modules 4 and 5 also belong to step 3 of the EISEval’s evaluation process and they work with Petri Nets (PNs). Thus,
we first present PNs and explain our choice.

Petri Nets (PNs) were proposed at the beginning of the 1960s by C.A. Petri (Petri, 1962). PNs are a graphic and
mathematical tool, usually used to model and design discrete event systems formally. PNs also allow the performance of
the modeled systems to be evaluated. The elementary PNs are composed of three types of objects: (1) places,
represented by circles, corresponding to the system states; (2) transitions, represented by boxes or bars, corresponding to
the operators who perform state changes; and (3) arcs, represented by arrows, corresponding to the connections between
transitions and places. If there is a directed arc connecting a place to a transition, then this place is the input place of this
transition. If there is a directed arc connecting a transition to a place, then this place is the output place of this transition.

Due to their advantages, we chose to use PNs. One of the major advantages of using PNs is that the same model is
used for analyzing the behavioral properties and the performance evaluation (Zurawski and Zhou, 1994). In addition, PNs
provide concurrent behavior modeling, which features “true concurrency” semantics (Genrich, 1991; Navarre et al., 2009).
In EISEval, PNs are used to visually recapitulate behaviors of the users and the system agents while they were performing
a certain task to facilitate the evaluation. Another way to describe a task is CTT task model (Paterno et al., 1997) that
allows to a hierarchical tree of events and tasks. Comparing to CTT, PNs are more rigorous because it is based on a strict
mathematical basis. Moreover, PNs allow for the representation of transitions between the system’s states while it is
performing a task, and PNs provide more extensions (colored PNs, temporal PNs), which can be potential developments
for EISEval, whose current version only generates elementary PNs. In CTT task model, temporal relations are imposed in
very rigid way, thus we find it very useful to model systems that follow a rigid business process but it is limited to use this
model in supervision systems where events as well as regulation activities can be executed anytime, at the moment when
the disturbances occur. However, the CTT model generation is also one of our future research topics, so we can use CTT
to describe tasks whose execution follows rigid temporal relations.

As is shown in Figure 5, M4 exploits data captured by M1 and database of the observed tasks (i.e., real tasks)
determined by M2, in order to generate PNs describing each observed task. M4 generates PNs to visually recapitulate
behaviors that the users and the system agents have already performed to carry out each task. The user actions (EVIUs)
and the agent actions (service executions) are represented by PNs with places and transitions to facilitate the evaluation
of the system. Called observed PNs or real PNs, the generated PNs, are formally described using Petri Net Markup

Language (PNML) (Billington et al., 2003; Kinder, 2004, 2005) (see also http://www.pnml.org).

These generated PNs are very useful for the evaluation because they provide evaluators with visuals that facilitate the
detection of problems and inconveniences in the evaluated system. Figure 9 shows a portion of generated PNs from our
study (see section 5). This is the simplest PNs among PNs generated from our study and chosen for the sake of simplicity,
clarity and pedagogy. These PNs visually recapitulate behaviors that human subject 9 has already performed in order to
execute task 3 (“Send a message to passengers at station”). Using these PNs, the evaluators can detect this subject’s
useless actions and errors.

M5 allows evaluators to compare the real PNs for a given task with the theoretical PNs predicted and specified by the
system designer for executing this task. These theoretical PNs can be called “PNs to be executed”. Evaluators can also
compare the real PNs of different users, which is very useful for detecting problems with an interface, a system or users.
Some examples of the problems that can be detected are: incorrect or useless user actions, non-optimal paths chosen by
users to carry out tasks, failed service interactions, user characteristics and/or habits. In addition, the evaluators can
assess and compare different users’ abilities or supervise the progress of a given user’s abilities.

There are two types of errors that evaluators can detect using PNs: system errors, which are the result from service
execution failures, and user errors. Several sub-types of user errors can be distinguished:

 Redundant (or useless) actions – these errors do not cause any damage, but they are not necessary to carry out the
task. For this type of error, the evaluators need to pay attention to the repetition of certain useless actions.

 Erroneous actions – an incorrect path (i.e., erroneous actions on the part of the user) was chosen to carry out a task. If
the user persists in using this path, the task cannot be accomplished. An incorrect way consists of erroneous actions
made by the user.

 Non-optimal navigation – a non-optimal path chosen by the user to carry out a given task.

 Bad actions or habits – the objective of the actions is to carry out the task, but the user has performed these actions
improperly. Depending on the application domain or the evaluated system, an action/habit is considered a bad one. For
example, re-entering the same text instead of using the "copy/paste" operation, typing a text that is available to be
selected instead of selecting it, and typing a text in the “hunt-and-peck” method instead of using touch typing) are all
examples of bad actions in the transport domain and IAS – transport supervision system evaluated in our study (see.
Section 5). If such actions are performed many times of a certain user, evaluators can affirm that he/she has a bad
habit.

The PNs shown in Figure 10 illustrate some user errors from our study. Indeed, at first, the human subject in our study
wants to send a message to a station but he has already performed an erroneous action by choosing the wrong one.
Consequently, he had to click on the Cancel button to close this window. Then he performed useless actions by clicking
many times on the checkboxes that represent transport lines.

http://www.pnml.org/

Figure 10. Petri Net generated by human subject 9’s execution of task 3: “Send a message to passengers of station” in our study

(eviuM,N-I: the UI of event M of the interface agent N; sM,N-I: the service M of the interface agent N)

User actions are almost sequential, whereas service executions can be either sequential or parallel. For example, in our
study, the task, “send messages to vehicles” involves a parallel execution of two services: send messages to passengers
in a certain vehicle and send messages to the driver of a certain vehicle. M5 is used to compare PNs of different users or
compare real PNs and theoretical PNs predicted by the system designer or compare real PNs of different users. The
current version of EISEval only allows PNs to be visualized so that evaluators can compare them. The improvement of the
M5 takes part in our future research (section 7).

4.4.6. Module 6 (M6)

M3, M4 and M5 analyze the captured data. Evaluators then must interpret these analysis results (statistics, measure
calculations, generated PNs) in order to criticize the system and suggest the necessary improvements to the system
designers. This is step 4 of the EISEval evaluation process and module 6 (M6) corresponds to this step. Indeed, it
provides the evaluators with the necessary indications for interpreting the analysis results from the other modules. Figure
11 shows a screenshot of this module.

The module 6 provides evaluators with an open list of predetermined criteria to help them interpret and evaluate the
target system according to these criteria. An evaluation criterion supplied by the module 6 can be:

a) Ergonomic Criteria. There are many sources of ergonomic criteria, rules and style guides (Bastien and Scapin, 1993;
Vanderdonckt, 1994; Smith and Mosier, 1986; etc.), however, the current version of module 6 uses mainly ergonomic
criteria of (Bastien and Scapin, 1993), such as legibility, prompting, immediate feedback and error protection. The
evaluator can add other ergonomic criteria if necessary, for example, in our study the evaluator added two criteria specific
to the IAS – the evaluated system (see section 5 below).

b) Quality Attributes. At this moment, the module 6 supplies some quality attributes in order to evaluate some non-
functional aspects of the systems, such as: response time between agents’ services (calculated by measuring the time
from the service request to the service provision (Lee and Hwang, 2004), system reliability (the ability of a system or a

component to perform its required functions under the stated conditions for a specified period of time (IEEE, 1990)), etc.
The evaluator can add other quality attributes if necessary.

Figure 11. Screenshot produced by M6: evaluators criticize the system and propose improvements based on the provided criteria

Each criterion is composed of four parts:

1. Name of the criterion (ex. legibility) and evaluated aspects (UI, non-functional properties, user characteristics).

2. Definition of the criterion.

This section provides a definition of this criterion.

3. The way of interpreting EISEval’s analysis results in order to evaluate the target system based on this criterion.

This section provides the evaluator with a concrete indication of how to interpret analysis results to evaluate the system
according to this criterion (ex. the occurrence number and frequency, provided by EISEval’s module 3, of user interface
events (EVIUs) that allow the user to see more clearly the interface (such as Zoom Out, Zoom In, scroll bar, change the
size of views, etc.), can be used to evaluate the system interface according to this criterion "legibility", etc.). In other
word, this part shows the associations between this criterion and analysis results of EISEval’s other modules.

4. Criticism and improvements proposed by the evaluator based on this criterion.

This section allows evaluators to enter their criticism about the evaluated system based on this criterion and propose
their suggestions for improvement (ex. through study, EISEval let us know that user interfaces events (EVIUs) (such as
Zoom Out, Zoom In, scroll bar, change the size of views, etc.), never occurred because their frequency, provided by the
EISEval’s module 3, is zero). Therefore, the system’s interface can be easy to be read by the user and legibility of this
system can be appreciated, etc.). The module 6 also allows generating and saving all criticism and suggestions based
on all the module 6’s criteria into a document in order to be exploited later.

In brief, the current version of M6 associates the EISEval’s analysis results to an open list of predetermined criteria
(e.g., ergonomic criteria or quality attributes) in order to help evaluators interpret the results. Thus, the evaluators are
supported to criticize the system more easily and suggest useful improvements to the designers. These criteria can be
generic or specific to the evaluated system and can be related to three different system aspects: the UI, non-functional
properties, and user characteristics. Evaluators can also, if necessary, add new criteria since the criteria list is open, ex.
because each evaluated interactive system can require specific criteria, the evaluator can add some specific criteria to the
list so that the system can be evaluated according to these criteria. The evaluator has already done this in our study (see
section 5). Specific criteria often involve business concepts of the domain of the evaluated system.

At present, the associations between the evaluation criteria of module 6 and the analysis results of the remaining
modules are not yet formalized. As a result, module 6 is only able to provide evaluators with indications in order to help
them interpret these analysis results. In the future, it will be necessary to extend and formalize these associations as much

as possible, which would increase the automation of module 6. This is one of our future research topics (section 7). In the
next section, we will present a table summarizing the generic criteria provided by module 6.

4.5. EISEval’s Generic Criteria Summary

Table 1 summarizes important generic criteria provided by the M6 of EISEval to evaluate an interactive system. This list
of criteria is modifiable and open so that evaluators may add new criteria. We also present here very brief additional
information on the evaluation of the target system according to each criterion in our case study (after presenting the table).
Please note that each analysis result (e.g., measures, frequency, time, etc.) provided by the other EISEval modules can
be used to help evaluators interpret and evaluate the target system based on several criteria and each criterion can be
interpreted and evaluated using several analysis results.

Table 1. Summary of some of the Generic Criteria provided by EISEval

Criterion Definition Way of interpreting EISEval’s analysis results to evaluate the target system based
on this criterion

Legibility:
Legibility concerns the lexical
characteristics of the information
presented on the screen that
may hamper or facilitate the
reading of this information
(character brightness, font size,
interword spacing, etc.)
(Bastien and Scapin, 1993).

1) Frequency of occurrence of EVIUs that allow the user to see the interface more clearly (such as
Zoom out, Zoom in and change window size,etc).

If this frequency is high, then evaluators can doubt the legibility of the interface.

2) Time interval between the occurrence of an EVIU corresponding to the display of a window and
the occurrence of another EVIU corresponding to the next action of the user on this window.

Evaluators can find these EVIUs using generated Petri Nets (PNs). If this interval is long, they may
ask the UI designer and/or the user a question: "Why did the user take so long to perform the next
action on this window?”. Legibility of information on this window may be one of the possible
reasons.

Prompting:
Prompting has a broader
definition than usual. Here it
refers to the means available in
order to lead the users to
making specific actions whether
it is data entry or other tasks.
This criterion also refers to all
the means that help users to
know the alternatives when
several actions are possible
depending on the context.

Prompting also concerns status
information, that is information
about the actual state or context
of the system, as well as
information concerning help
facilities and their accessibility
(Bastien and Scapin, 1993).

1) Frequency of occurrence of EVIUs that correspond to the display of error messages when the
user enters invalid data or executes erroneous actions.

If this frequency is high, then evaluators can assume that the user has made many mistakes during
his interaction with the interface and doubt this criterion of the UI.

2) Frequency of a task that a user cannot accomplish, frequency of a chosen non-optimal way to
perform tasks.

If users were often unable to perform certain tasks or if they often chose the non-optimal way, and
the optimal path was subsequently rarely followed (when the system provides the user with several
possible ways to perform a task), then evaluators can assume that bad prompting of the UI may
have been one of possible reasons.

3) Frequency of occurrence of events corresponding to help consultation

If the user often looks up a help document in order to use the system, then evaluators can assume
that the user encountered difficulties during interactions with the system.

4) Frequency of EVIUs corresponding to useless manipulations, erroneous navigation and user
actions. This type of navigation and types of actions are shown on the generated PNs.

If this frequency is high, then the evaluator can assume that the prompting is not good. Evaluators
can interpret the UI’s ineffectiveness as leading to the user’s difficulties in interpreting it (Lecerof
and Paterno, 1998). In this case, for example, they can advise the system designers to add more
explicit labels or necessary guidance.

5) Time intervals between the occurrence of EVIUs that correspond to the user’s actions during
task performance and the time intervals between executions of user tasks.

When the user performs a task, a series of user actions (in terms of EVIUs) occur. If the intervals
between these EVIUs are long, evaluators can interpret this as the user taking a long time to find a
solution (in terms of navigation) to perform the task. Bad prompting can be one possible reason for
this.

The same may be considered when there is a long time interval between tasks to be performed.

In both of cases, an additional evaluation method, such as a questionnaire, can be used to obtain a
more complete evaluation of this criterion.

Immediate feedback:
concerns system responses to
users’ actions. These actions
may be simple keyed entries or
more complex transactions such
as stacked commands. In all
cases computer responses must
be provided, they should be fast
with appropriate and consistent
timing for different types of
transactions. (Bastien and

Observed Petri Nets (generated PNs) that visually describe task performances and the moment
where involved events (shown in PNs) occur can be used to evaluate the system according to this
criterion.

If EVIUs corresponding to system responses to user actions do not exist or if the time intervals
between their occurrences are long then the system can be underestimated for this criterion.

Scapin, 1993).

Design Complexity:
This refers to the degree of
complexity in system design
(Lee and Hwang 2004).
Complexity affects system
speed: the more design complex
the system, the more slowly the
system is likely to work. In
addition, it is more difficult for
designers to understand and
manage source code for
complex systems.

Additional measurements calculated by module 3: The ratio between two measurements – the
number of service interactions and the number of executed tasks – can be used to evaluate a
system according to the “complexity” criterion.

This ratio lets evaluators know the average number of service interactions between agents needed
to execute a task. If there are too many interactions, then evaluators may consider the system
design to be too complex. In short, the higher this ratio, the more complex the system design. If the
design is too complex, evaluators can advise designers to reorganize the agent services to
maximally reduce the number of agent interactions needed to execute a task. In general, there are
still many discussions and much literature on complexity.

Response time (RT):

This quality attribute is
calculated by measuring the
time from the service request to
the service provision system
(Lee and Hwang 2004).

1) The total number of service interactions

2) Average RT between service interactions

3) M3 information on service interactions have long RTs and the number of service interactions
that have RTs longer/shorter than an acceptable threshold (predetermined by configuring the
system using module 7)

EISEval only lets evaluators know the real response time - it cannot explain why the response time
is what it is (e.g., due to agent coordination patterns, interaction technique used or other reasons
such as network load, system platform load or application priority, etc.). The system designer is in
charge of considering these issues.

Reliability:
This is the ability of a system or
a component to perform its
required functions under the
stated conditions for a specified
period of time (IEEE, 1990).

Evaluators can use the ratio between two measures: the “number of executed services with a
successful result” and the “number of executed services” to evaluate the IAS according to this
criterion. This ratio is called the success ratio; the higher this ratio, the more reliable the system’s
operation.

Improvement suggestions
arising from the frequency of
event occurrence (services,
EVIUs, tasks).

Frequency of events provided by
the M3: From these frequencies,
evaluators can comment on the
system as well as users. They
can also provide useful advice to
help the designer improve the
system.

This criterion aims to answer the
questions: "Which events
(services, EVIUs, tasks)
occurred frequently?” “Which
events occurred rarely?” and
“Which events never occurred?".
The answers to these questions
are useful for evaluating the
interactive system.

1) Frequency of service execution

If some services are often executed, then recommendations are made to the designer to improve
the execution time of these services, thus contributing to the execution time of the overall system.
It is necessary to optimize these services (by reducing execution time and memory consumption,
by optimizing the code for implementing these services, etc.).

2) Frequency of task performance

In section 4.2 above, we distinguished between two types of tasks: system tasks (initialized by a
service of an interface agent or an application agent) and user tasks (initialized by an EVIU or a
series of EVIUs).

If some system tasks are often performed, then the evaluator can suggest that the designer seek
to accelerate their performance time. To achieve this goal, we must speed up the execution time of
involved services and the interactions between them (response time).

If some user tasks are often performed, then the evaluator can suggest that the designer facilitate
their implementation. To achieve this goal, the designer is advised to improve the views, related
windows (e.g., the designer can add different ways to perform these tasks through shortcuts or
speed keys. It is necessary to allow users to begin these tasks anywhere in the system.). As a
result, the productivity of the system and its user satisfaction can be increased.

3) Frequency of EVIU occurrence:

If an EVIU is often triggered by the user, then the designer may be asked to provide the user with
several ways to trigger this EVIU (mouse, hotkeys).

The EVIU frequency may let the evaluator know whether or not the current appearance of the UI is
effective.

If some EVIUs of a window occur with high frequency, then their associated widgets should be
placed so that they are close to each other on the interface or so that they are within the same
group on the interface. This organization reduces mouse movement and the interface becomes
more efficient (Sears, 1995).

If some EVIUs never occur or if they only occur rarely, then their associated widgets could be
removed or hidden. For example, when you want to print a document, a few options for paper, text
can be hidden in a separate option box (Sears, 1995) because these options are rarely employed
by users.

User performance:
User performance can be
evaluated when users use the
system and they can be
compared, for example, in order
to organize training sessions.

1) The frequency of tasks accomplished by users can be employed to evaluate this criterion.

Experienced users tend to be to achieve more tasks, while novice users may have difficulties
performing the tasks

2) The way(s) selected among the several possible methods provided by the designer to perform a
task can also be used to evaluate this criterion.

An experienced user tends to choose the optimal way out of the several possible ways to
accomplish a task.

3) The frequency of EVIUs corresponding to useless manipulations, erroneous navigation and user
actions are also exploitable. An experienced user has a tendency to commit fewer useless
manipulations and erroneous actions.

4) The time taken to perform a task can also be useful (see the "Average time taken by the user to
realize a user task" measure). An experienced user tends to perform tasks quickly.

5) The frequency of event occurrence corresponding to consulting help can be used to assess this
criterion. The experienced user refers less frequently to help documentation.

It is important to notice that such criteria list is open. In our case study (section 5 below), the target system was evaluated
according to these criteria, but it was also evaluated based on other specific criteria, such as:

 Prompting: In our case study, we learn that human subjects had performed useless or redundant manipulations (such
as re-typing available text instead of selecting it in the box) and erroneous actions or navigation while they performed
tasks. Some subjects took a long time (about 2 minutes) to begin a task. Some could not find the optimal way to
perform a task, and some users even chose the longest way to perform a task.

In general, our case study reveals that the evaluated system is not good at all with respect to this criterion.

Improvements were also proposed after this case study for UI and user interactive functions for two interface agents
of the evaluated system. These proposals were intended to improve the system with respect to this criterion.

 Legibility: EVIUs like Zoom in and Zoom out never occurred in our case study. Therefore, the evaluator can assume

that the target system has compliance with this criterion in our case study.

 Performance of users: In our case study, subjects can be clearly distinguished and evaluated based on their abilities.
Subject habits and frequent errors can also be found.

 Suggestions made by frequency of event occurrence (services, EVIUs, tasks): In our case study, some EVIUs never
occurred. Therefore, some proposals were made to improve the UI of interface agents involving these EVIUs.

 Design complexity: In our study, for each human subject the evaluator perceived that one or two interactions (on
average) ware needed to execute a task. Evaluators can therefore assume that the design of the evaluated system is
not complex.

4.6. Concluding remarks about EISEval

EISEval must respect certain design principles in order to remedy the drawbacks of traditional evaluation tools in
general and traditional EIs in particular. In order to achieve this objective, we have proposed a meta-model of our
architecture model for agent-based interactive systems. EISEval was developed based on this description, but it can also
evaluate interactive systems that do not use our architecture model.

EISEval is composed of seven modules. In order to use EISEval to evaluate a given interactive system, M1 needs to be
launched to capture objective data. Among seven EISEval modules, M1 is the only module developed as an individual
system, and so it can be individually launched. Before analyzing these captured data, the evaluators configure EISEval
using M7. Then, the data captured by M1 are analyzed by modules M2, M3, M4 & M5, which show the analysis results in
various forms. Evaluators must interpret these analysis results in order to criticize the system and suggest necessary
improvements to the designers, and M6 helps the evaluators do this work.

Table 2. Summary of important EISEval features

Data capture

Performed data
analysis and

results display

Assistance in
interpreting analysis
results to evaluate
different aspects of
the target system

Other features

Captured events are:

- Logical high-level EVIUs (such as
menu selection and clicked buttons)

- Events at device level (such as
mouse clicks, and pressed keys) (also
be captured)

- Service interactions between
agents.

These events are stored in databases
for future use.

Capturing methods:

The first version of EISEval uses
instrumentation code.

A small quantity code is inserted into
the target system to generate the
necessary output data. This technique
can be used in one of two ways:

1) The EISEval M1 functions like a
server and the target system like a
client, connecting an M1 and sending
events to it.

2) M1 receives event logs from the
target system.

Improving M1 is an important part of
future research topics.

Data are retrieved
from the database
populated by the
M1 in order to
perform some
analyses, such as:

- Measurements
and statistics on
frequencies, time,
successes and
failures, for
example.

- Generated Petri
Nets are used to
visually reconstitute
the activities of the
user and the target
system.

- Analysis results
are shown to the
user in tabular
and/or graphical
form.

- Provision of an open
and modifiable list of
criteria to help
evaluators interpret and
evaluate the target
system according to
these criteria.

- Possibility for
evaluators to define
and add new criteria
(both generic and
specific) to the
predetermined list of
criteria.

- Evaluated aspects: UI,
certain non-functional
properties of the target
system and users’
performance.

- EISEval is designed to be
modular way (7 modules).

- EISEval is reconfigured to
evaluate different interactive
systems.

- EISEval aims at evaluating
interactive systems that use
our architecture model
although it is still able to
evaluate other systems (by
considering them as a
special case of our agent-
based architecture model.
(See the end of section 4.2)).

- EISEval was used in a case
study to evaluate an
interactive system and we
intend to organize another
case study for a second
system.

From this table, we can view improvements in EISEval and its differences compared with traditional evaluation tools
(presented in §3). Indeed, TFWWG (Tools For Working With Guidelines) use guidelines mainly to analyze the static
aspects of UIs (position of a control, color combinations) and are not based on objective data generated by real user
activities. EISEval evaluates the system using criteria based on objective data. Traditional Electronic Informers generally
capture HCI data to perform an evaluation of the UIs of interactive systems. They usually assess the UI aspect and do not
consider other aspects. In addition, traditional EIs do not have assistance or indications to help the evaluators interpret
analysis results. Improving such assistance in EISEval is one of our future research topics (section 7).

The EISEval environment was applied in a study that evaluated an agent-based supervisory interactive system in the
transport domain, called Information Assistance System (IAS). In order to illustrate activities of the above modules, we
used some screenshots and data from our study. We present the results of this study in the next section.

5. Case study: Applying EISEval to evaluate a supervision system for an urban transport network

We organized a study to apply EISEval to evaluate the Information Assistance System (IAS), an agent-based system
used to supervise an urban transport network (buses, trams). This study involves several human subjects in order to
execute some supervision and regulation tasks. Each subject has his/her own data as well as the analysis results. Using
this study, the IAS was criticized and some improvements were suggested. This study also clarifies the advantages and
disadvantages of using EISEval. After explaining how we set up the study (section 5), we summarize the results of this
study in the section 6.

5.1. System deployment

In order to carry out the study, we deployed four systems on three connected machines that communicated via a local
network. All these systems communicated through the socket mechanism. These four systems were designed and
developed by the SART project (SART is the French acronym for Traffic Regulation Assistance System):

 Machine 1 The Exploitation Assistance System (EAS) was deployed on the first machine. EAS is a public transport
network simulator for tram and bus traffic. It was developed in Quest (Queue Event Simulation Tool), a simulation tool
with discrete events (http: // www.delmia.com). This simulator automatically determines vehicle locations and the
various disturbances of vehicles in real time. This system sends the information on vehicle locations to IAS and
information on the vehicles’ disturbances to both IAS and DAS.

 Machine 2 Both the Decision Assistance System (DAS) and the Information Assistance System (IAS) were deployed on
the second machine.

o DAS is a software solution used to help human regulators (or operators in control room) with their decision-making
and to resolve complex problems. When the DAS receives disturbance information from EAS, it provides regulators
with possible regulation solutions. These regulators can choose the most appropriate solution based on their
experience, or they can choose no solution and provide their own.

o IAS is an agent-based interactive system designed to help regulators supervise the public transport network. It
presents information on the current state of the traffic to regulators and allows them to send the necessary
messages or commands to vehicle drivers, as well as to the passenger in the stations or inside the vehicles. This
IAS is based on our architecture model and composed of six interface agents: State of the Line (Figure 12), which
allows regulators to supervise a given tram or bus line visually; Traffic Status, which informs regulators about the

status of all the vehicles on the line (e.g., disturbances statuses (such as lateness, earliness) or normal status (on
time)) (Figure 13); Vehicle, which represents a given vehicle; Station, which represents a given station; Message,
which manages and sends a message to stations and/or vehicles; and Global View, which shows an overview of the
entire transport network. (Interested readers can consult (Ezzedine et al., 2006) and (Ezzedine et al., 2008) to see
the different user interfaces of this system.).

In our study, each human subject was required to interact with these two systems, and especially the IAS system,
to execute a list of tasks in our scenario. The tasks are presented in the two tables in the next section.

Figure 12. The IAS system’s Interface Agent: State of the Line

Figure 13. The IAS system’s Interface Agent: Traffic Status

 Machine 3 The EISEval environment was deployed on the third machine. The evaluator used module 7 to configure
EISEval in order to evaluate the IAS system (step 2 of the EISEval’s evaluation process, section 4.3). EISEval’s module
1 had to be launched to capture all data relative to activities of the IAS and human subjects (e.g., HCI events, service
executions - step 1 of the EISEval’s evaluation process, section 4.3) and store them in the database. These data will be
analyzed later by other modules in order to help the evaluator criticize IAS and suggest improvements to IAS designers.

5.2. Study protocol

Ten human subjects took part in this study: one woman and nine men, ages ranging from twenty-four to thirty years,
with an average age of twenty-five years. The subjects were doctoral students, engineers or future engineers in Computer
Science and Automation. They were therefore quite familiar with computers, but they were not experienced users of traffic
supervision programs.

During the study, EAS sent, in real-time, information on vehicle locations to IAS (through socket mechanism) that
presents such information in visual and interactive interface. Each subject had to use IAS to execute nine tasks related to
traffic regulations and informing drivers and passengers. Table 3 presents these nine tasks. The first six tasks were
relatively simple because the subjects had to send a message to only one station or vehicle. The last three were rather
complex: the subjects had to send a message to multiple stations or vehicles in the same line or different lines.

After each subject finished performing all nine tasks, we begin testing their reactions to traffic disturbances using IAS.
EAS provides its user with the traffic disturbance generation functionalities and the evaluator can use them to generate
traffic disturbances at any desired time. When a traffic disturbance (e.g., lateness or breakdown of a given vehicle) are
generated, EAS sent information about this disturbance to both the DAS and IAS. The subjects had to use IAS to execute
the necessary reactions by sending the messages to the vehicles experiencing a disturbance as well as to their next
stations. Table 4 presents these necessary reactions. The subjects could also apply the solution suggested by the DAS.

We have chosen these tasks and reactions for the study because they are essential functionalities of public transport
network supervision and it is necessary to evaluate whether the IAS allows user to perform them easily and or not. While
the subjects were using IAS to carry out these tasks and reactions presented in two tables, EISEval’s module 1 was
capturing and storing all the necessary data to be analyzed later by other modules later. Module 6 helped the evaluator
interpret these analysis results in order to criticize the IAS and suggest improvements to its designers. The way in which
this module was used to evaluate an interactive system (IAS in this case) was already presented in previous section. We
present this more explicitly in the next section.

Table 3

The nine regulation and notification tasks in the study

Tasks Description of tasks (without feedback from the IAS, subjects must redo it)

T1 Send a message to the tramway station named Railway Station SNCF:

“The next tram is going to stop 2 minutes at the station”

T2 Send these two messages to tramway vehicle N3:

1) “Stop 2 minutes at the Railway Station SNCF” for its driver

 2) “We plan to stop 2 minutes at the Railway Station SNCF” for its passengers

T3 Send a message to the Station named St Wast on the bus line 15:

“The next bus is going to stop 3 minutes at the station”

T4 Send these two messages to vehicle N4 on the bus line 15:

1) “Stop 3 minutes at the St Wast station” for its driver

2) “We plan to stop 3 minutes at the St Wast station” for its passengers

T5 Send a message to the Station named Vaillant on the bus line 16:

“The next bus is going to stop 3 minutes at the station”

T6 Send these two messages to vehicle N5 on the bus line 16:

1) “Stop 3 minutes at the Vaillant station” for its driver

 2) “We plan to stop 3 minutes at the Vaillant station” for its passengers

T7 Send a message to all three stations – Canada, Ardenne, Concorde – on the bus line 62:

“Station will not be served tomorrow and the day after tomorrow for repairs”

T8 Send a message to all stations on all tram & bus lines:

“Possible traffic disturbances on Monday of next week”

T9 Send a message to all vehicles of all tram & bus lines:

“Have a good holiday!”

Table 4

Reactions to be executed by subjects when traffic disturbances happen

Disturbances Actions to be executed if traffic disturbances happen

A vehicle is late

for X minutes (X

under or equal

to 7 minutes)

1. Close the warning window related to this lateness.

2. Use the IAS to send the following two messages to this vehicle:

- “X minutes late; please speed up” for its driver, and

- “Be careful. The tram/bus is going to go faster to compensate its lateness” for its passengers.

A vehicle is late

for X minutes (X

over 7 minutes)

1. Close the warning window related to this lateness.

2. Use the IAS to send the following two messages to this vehicle:

- “You are X minutes late” for its driver, and

- “Attention. There will be a delay of X minutes” for its passengers.

3. Send a message to the next station visited by this vehicle: “X minutes late”, and then apply the
regulation solution suggested by the DAS.

Vehicle

breakdown

1. Close the warning window related to this breakdown.

2. Use the IAS to send the following two messages to this vehicle:

- “The repair service will arrive in 10 minutes” for its driver, and

- “Bus has broken down. Sorry for this inconvenience” for its passengers.

5.3. The way of using EISEval to evaluate an interactive system

As presented above in the 4.3 section, EISEval is configured to evaluate the IAS (module 7) and the data of each
human subject in our study are collected and analyzed (modules 1-5) in three first steps, with a certain intervention from
the evaluator (module 2 presented above).

In the step 4, EISEval helps the evaluator interpret analysis results in order to evaluate aspects of target interactive
system and the EISEval’s module 6 corresponds to this step. Indeed, in our study, after that each subject uses IAS to
perform all these nine tasks as well as some reactions to the traffic disturbances (generated by the EAS), according to the
scenario presented above in the two tables 3 and 4, objective data of each human are collected, stored and analyzed by
the modules 1-5; the evaluator used a list of evaluation criteria supplied by module 6 (M6) to interpret analysis results of
the captured data, criticize the IAS system and suggest useful improvement to the IAS designers. This evaluator followed
a three-steps method:

(1) the evaluator accesses to and studies each evaluation criterion of M6 to understand how the analysis results from
modules 3, 4 and 5 were interpreted in order to evaluate the system based on this criterion; In other word, the evaluator
understand the association between this criterion and the analysis results provided by other modules (part 3 among 4
parts of a criterion, see section 4.4.6 -module 6 above);

(2) for each evaluation criterion , the evaluator retrieves the associated analysis results to interpret them, using these M6
indications (part 3 among 4 parts of a criterion, see section 4.4.6 -module 6 above);

(3) the evaluator enters into M6 the criticisms and suggestions necessary for future improvements of the system based on
each evaluation criterion (part 4 among 4 parts of a criterion, see section 4.4.6 -module 6 above).

After following this method for all the module 6’s criteria, this module allows to generate and save all criticism and
suggestions based on all its criteria (called, evaluation results) into a document in order to be exploited later (ex. report,
see section below). The format of this document contains a list of paragraphs. Each paragraph is composed of four parts:
1) Name of criterion, 2) Definition of this criterion, 3) The way of interpreting EISEval’s analysis results in order to evaluate
the target system based on this criterion 4) Criticism and improvements proposed by the evaluator based on this criterion.

These four parts correspond to four parts of each criterion provided by the module 6 (see section 4.4.6 above).

6. A summary and discussion of our study results

An evaluation report has been written by the evaluator; this report presents, in very detailed way, evaluation results,
based on the module 6’s criteria. The main content of the report is based on the document generated by the module 6;
after that the evaluator has already followed the three-step method to interpret analysis results of the captured data,
criticize the IAS system and suggest useful improvement to the IAS designers (presented above). This report, in which
each criterion is used to evaluate the target system, is very long and presents screenshots containing analysis results
(statistics, measures, calculations of the modules 3, complicated Petri Nets of modules 4&5 because subjects had already
performed many useless and erroneous actions in our study – see types of errors in the 4.4.5 section above) as well as
the evaluator’s criticism and improvement suggestions (in terms of text and images). We only present below, in very brief
way, the reduced content of some paragraphs of this report (without images and improvement suggestions). Each
paragraph corresponds to an evaluation criterion and it is composed of four-parts format (presented above). The module
6’s criteria, examined in this study for IAS evaluation and presented in this report, include generic ergonomic criteria (such
as legibility, prompting, immediate feedback, error protection, etc.), specific criteria added to the module 6 because of
IAS’s particular features, and quality attributes to evaluate non-functional properties of IAS.

As presented above, in order to evaluate the IAS system, two following criteria specific to IAS have already been added
to the module 6: “The rapidity of regulators to find necessary stations or vehicles” and “The rapidity and facility of
regulators to treat disturbances of vehicles”. The reduced content of paragraphs concerning these two criteria, in our
report, is presented below:

 Specific Criterion “The rapidity of regulators to find necessary lines, stations or vehicles” was added to module 6:

Definition: This criterion evaluates whether the user interface (UI) of IAS allows its user to easily and fast find a line, a

station or a vehicle or not. Indeed, when regulators want to use IAS to command drivers or inform passengers at a
station or in a vehicle about a problem or event, the UI must help regulators to rapidly find the corresponding stations or
vehicles on the screen. It is important criterion that is specific to IAS because it affects the work productivity of
regulators and insures timely regulations.

The way of interpreting EISEval’s analysis results in order to evaluate the target system based on this criterion:

Useless actions (view types of user errors in 4.4.5 section above) already performed by the user before finding a line, a
station or vehicle can be used to evaluate the system based on this criterion. Through the Petri Nets (PNs - generated
by the module 4), which reconstitute the real activities of the user and the system to perform the tasks relative to
sending a message to the stations/vehicles, the evaluator can determine whether or not the user has already performed
these useless actions (in the form of EVIUs) before finding what was sought (lines, stations, vehicles). If the occurrence
number of these EVIUs (provided by the module 3) is high, then the evaluator may conclude that the user has difficulty
to find them.

Criticism and improvements proposed by the evaluator based on this criterion: The module 3 and the Petri Nets

generated by module 4 let the evaluator know that, in our study, except for a few “super subjects”, the remaining
subjects took a relatively long time to find the right stations/vehicles on the screen in order to send a message.
According to analysis results of the module 3 for each human subject), some subjects even took about 2 minutes. This
difficulty was shown by a lot of useless actions done by these subjects before they could do the first action necessary to
send a message (analysis results – Petri Nets from the module 4 for each human subject). For example, the Figure 10
shows a part of Petri Net generated by module 4. This Petri Net shows the execution of task 3 by subject 9. This
subject had to choose the right station to send it a message. However, he had already chosen the wrong station, so he
had to click on the button “Cancel” to close the wrong station’s property window. Then, he performed a lot of useless
actions before finding the right station to send a message. A set of similar Petri Nets was generated after this study for
each subject. The Petri Nets show that the subjects had difficulties finding the necessary stations/vehicles on the
screen, and thus the evaluator should advise the IAS designers to revise the user interface. The improvement
suggestions for the IAS’s UI to facilitate user are… [presented in our report, not described here by lack of space]. These
UI improvements involve modifications of UI and user interactive functions of two following interface agents of IAS:
State of the Line, Traffic Status (see Figure 12 & 13 above for the current version of these two interface agents).

 Specific criterion “The rapidity and facility of regulators to treat disturbances of vehicles”, was added to module 6

Definition: This criterion evaluates whether IAS allows its user to treat, easily and fast, disturbances (e.g., lateness or

breakdown of a given vehicle) or not, especially in cases where the time intervals between the occurrences of
disturbances are short, that means the disturbances occur almost simultaneously or consecutively.

The way of interpreting EISEval’s analysis results in order to evaluate the target system based on this criterion:

The evaluator may use the following analysis results provided by the module 3 to evaluate the system based on this
criterion:

o The evaluator may determine whether the user has failed the treatment of disturbances. If the number of
disturbances omitted is high, then measures should be taken.

o The time interval between the occurrence of a disturbance and the occurrence of the event corresponding to its
treatment can also be used to assess this criterion. If this interval is long, and we must take the consequences.

o If the user has performed useless actions (see types of user errors in the 4.4.5 section above) before processing a
disturbance, then the evaluator can interpret the user has struggled to treat it.

Criticism and improvements proposed by the evaluator based on this criterion: During the study, each subject

had to deal with from 3 to 6 disturbances. All the subjects had to send messages to the vehicles encountering a
disturbance and their next stations. Generally, the average time intervals between disturbances (generated by the EAS
in our study) were relatively long (1-3 minutes), thus the subjects quite easily dealt with them. One subject omitted a
disturbance (analysis results from the module 3 for each human subject) because of the short interval between two
disturbances (8 seconds). From this fact, the evaluator has believed that if disturbances had occurred in succession or
almost simultaneously during our study, then a lot of subjects would have omitted them. Thus, IAS does not have a
very good score for this criterion. The improvement suggestion is…[presented in our report, not described here by lack
of space]. This improvement involves the automation of IAS’s mechanism to deal with disturbances.

We also present here the reduced content of some paragraphs concerning criteria for evaluating non-functional system
properties:

 Criterion System reliability:

Definition: System reliability is one of non-functional system properties and it is also one of criteria provided by module

6. Reliability is “the ability of a system or a component to perform its required functions under the stated conditions for a
specified period of time” (IEEE, 1990).

The way of interpreting EISEval’s analysis results in order to evaluate the target system based on this criterion:

Evaluators can use the ratio between two measurements calculated by module 3: “number of executed services with
successful result” and “number of executed services” to evaluate the IAS according to this criterion (Figure 9). This ratio
is called success ratio; the higher this ratio, the more reliable the system operations.

Criticism and improvements proposed by the evaluator based on this criterion: In our study, for each human

subject, it is proved to the evaluator that the IAS is reliable. His/her success ratio is always maximal (analysis results
from the module 3 for each human subject). For example, the subject 4 had 100% success rate since all fifty services
were executed successfully (Figure 9 above).

 Criterion Response time (RT):

Definition: RT between services is one of the most important non-functional attributes to be evaluated; this attribute

measures the real performance of a multi-agents system (Lee and Hwang 2004). This quality attribute is calculated by
measuring the time from the service request to the service provision.

The way of interpreting EISEval’s analysis results in order to evaluate the target system based on this criterion:

The module 3 provides some measures concerning the RTs between agent services: the total number of service
interactions, average RT between service interactions. This module also lets the evaluator know which service

interactions have long RTs, the number of service interactions that have RTs longer/shorter than an acceptable
threshold (predetermined by configuring system using the module 7). In order to evaluate this criterion of the system,
the evaluator may use these measures. The higher the number of service interactions is, the higher the accuracy of this
evaluation is high.

Additional discussion: We should mention here what factors influence the RTs of interactive systems. According to

(Lee and Hwang 2004), different agent coordination patterns influence the performance of multi-agent systems.
However, agent coordination patterns are not the only thing that influences RTs; interaction techniques also influence
them. If designers cannot change agent coordination patterns to improve RT due to the constraints, then the evaluator
can suggest modifying the interaction techniques for the same purpose. These techniques are a key for such properties
as reliability and performance (Mehta et al. 2000; Spitznagel and Garlan 2001). Nowadays, there are many interaction
techniques for software systems (Mehta et al. 2000), and designers should consider this when they design an agent-
based interactive system. Please note that, EISEval only let the evaluator know the real response time, it cannot
explain why the response time is like that (because of agent coordination patterns, interaction technique or other
reasons such as network load, system platform load, application priority, etc.). The system designer is in charge of
considering these issues after receiving evaluation results from EISEval.

Criticism and improvements proposed by the evaluator based on this criterion: In agent-based interactive

systems using our architecture model, information transmissions between the application agents and interface agents
through control agents are very important. If these transmissions slow or delayed, it can cause severe consequences,
especially in industrial supervision systems like IAS, because human regulators must quickly understand the current
state of the real process and their commands must be sent to this real process in time, especially in cases of
malfunctions. Consequently, the speed of interactions between agent services must be evaluated.

In our study, for each human subject, the evaluator found that his/her average RT between service interactions was
between 120-200 milliseconds (analysis results from the module 3 for each human subject), thus the evaluator has
concluded that the IAS was fast. This is not surprising since all the agents of the IAS’s current version run on the same
machine (a distribution on different machines certainly lead to worse results).

However, the RT of most of the service interactions is longer than that intended by the designer (28 milliseconds
configured for the EISEval through the module 7), for example, in the case of a subject 4 whose results are shown in
the Figure 9 above, most of his service interactions (15/18) are longer than the acceptable threshold specified by the
designer. The evaluator concludes that he system speed is not as high as the system designer had desired. The
system designer can be advised to revise the system, and especially the service pairs whose RTs often take longer
than what is acceptable. Improving the RT of such service pairs will improve the overall system performance.

 Criterion Design Complexity:

Definition: it is one of non-functional system properties, and it is also one of the criteria provided by module 6. This

quality attribute is used to examine the degree of complexity in the system design (Lee and Hwang 2004). Complexity
affects system speed: in general, the more complex the system, the more slowly the system risks to work. In addition, a
system whose the design is complex can be more difficult for designers to understand and thus more difficult for them
to manage the source code.

The way of interpreting EISEval’s analysis results in order to evaluate the target system based on this criterion:

In order to evaluate the complexity of an agent-based interactive system, evaluators can use the additional
measurements calculated by the module 3 (Figure 9). The ratio between two measurements – the number of service
interactions and the number of executed tasks – can be used to evaluate the system according to the “complexity”
criterion. This ratio lets evaluators know the average number of service interactions between agents needed to execute
a task. If there are too many interactions, then evaluators may consider that the system design is complex. In short, the
higher this ratio, the more complex the system design. If the design is too complex, evaluators can advise the designers
to reorganize the agent services in order to reduce as much as possible the number of agent interactions needed to
execute a task. Additional discussion: there are still many discussions and literatures about the complexity.

Criticism and improvements proposed by the evaluator based on this criterion: In our study, for each human

subject, the evaluator perceived that an average of one or two interactions was needed to execute a task (analysis
results from the module 3 for each human subject). For example, the subject 4 needed eighteen service interactions to
execute nine tasks (Figure 9) – in average: two interactions/tasks. This ratio is acceptable. The evaluator could
consider that IAS service organization is not very complex and that the IAS did not have to perform many interactions to
execute a task.

The other ergonomic criteria (such as legibility, prompting, immediate feedback, error protection, etc.) have also been
examined in our study. The evaluator’s criticisms and improvement suggestions for the target system based on these
criteria are already presented in the remaining paragraphs of the report. We only use two tables 5 and 6 here to
summarize the results of task executions following the study (see nine tasks in the table I). Please note that these tables
are only used in this paper in order to briefly present the tasks’ execution results of human subjects in our study, for the
sake of simplicity and briefness. Indeed, based on these tasks’ execution results of human subjects, we can classify the
subjects into two groups:

 Group 1 contains the subjects who were able to execute all nine tasks, including the last three complex tasks. The
subjects in this group had already chosen the optimal path to execute the first six tasks, although three subjects

performed useless actions. Subject 4 chose a non-optimal path to execute task 7, and subject 9 chose a non-optimal
path to execute the last three tasks. All remaining subjects of this group chose the optimal path to execute these three
tasks, although useless actions still appeared.

 Group 2 contains the subjects who were unable to execute the last three complex tasks among nine tasks. They also
chose the optimal path to execute first six tasks with several useless actions. While executing task 7 relative to sending
a message to three different stations, they could not find the way of sending a message to all three stations in only one
operation, as consequence, they sent the message to each station individually, thus they had to execute this task three
times in succession, which is the longest path. Subject 3 was able to execute task 8 by following a non-optimal path,
but this subject was unable to execute task 9. All remaining subjects of this group were unable to execute tasks 8 and
9.

In this paper, we have only presented some of our study results and some of the criteria provided by module 6. In fact,
following this study, many good points and bad points were detected for the IAS. For each detected problem,
improvements were proposed. Most of these improvements involved modifications of UI and interactive functions of three
IAS interface agents: State of the Line, Traffic Status and Message. In our study, some subjects chose an incorrect or
non-optimal path to execute tasks and some subjects could not accomplish every task. Thanks to these improvements,
the new UI of these IAS interface agents allow users to find the best path to accomplish regulation and supervision tasks
much more quickly. The evaluator also proposed to change the IAS’s mechanism to deal with disturbances (i.e., delays or
vehicle breakdowns). This new mechanism uses a queue to collect disturbances and allows automated access to vehicles
encountering a disturbance (instead manual access at this moment) in order to improve and accelerate dealing with
disturbances. Such improvement suggestions were presented in our report and they are not presented in this paper.
During this study, the EISEval environment was also tested to detect its strengths and weaknesses. This is really useful
for us to decide on future research projects.

Table 5

Group #1 subjects

Subject

Execution of the

first six tasks.

Were there

useless actions or

not?

Path followed when

executing the task 7

(optimal path or not?).

Were there useless

actions or not?

Path followed when

executing the tasks 8

& 9 (optimal path or

not?). Were there

useless actions or

not?

Message “Have

a good holiday!”

in task 9 is

perceived or

not?

Average

time to

execute a

task (in

seconds)

4

Optimal path was

chosen. No useless

action.

Non-optimal path was

chosen. No useless

action.

Optimal path was

chosen. No useless

action.

No. These

subjects had to

re-enter this

message using

the keyboard

when executing

task 9 although

this message

was available in

the “listbox”

60.1

8

Optimal path was

chosen. There were

useless actions and

navigations (an

example is shown in

Figure 10).

Optimal path was

chosen.

There were many

useless actions

before finding the

right path.

Optimal path was

chosen. No useless

action.

40.5

6

27.7

9

Non-optimal path was

chosen. There were

many useless actions

before finding the

right path.

Non-optimal path was

chosen. No useless

action.

38.8

1

Optimal path was

chosen. No useless

action.

Optimal path was chosen. No useless action.

Yes. This

subject selected

this message.

31.1

Table 6

Group #2 subjects

Subject

Execution of the
first six tasks.
Were there
useless actions or
not?

Path followed when executing
the task 7 (optimal path or
not?). Were there useless
actions or not?

Execution of the tasks 8, 9.
Were there useless actions
or not?

Average time
to execute a
task (in

seconds)

3

Optimal path was
chosen. There were
useless actions and
navigations.

The longest path chosen. These
subjects had to repeat the same
actions three times in a row.
Specifically, before finding the
right path, subject 7 performed
useless actions.

Non-optimal path chosen to
execute task 8. This subject
was unable to execute task 9.
No useless action

52.0

2

These four subjects were
unable to execute tasks 8 & 9.

68.6

5 35.6

7 41.0

10 37.7

7. Conclusion and future research

In this paper, after examining the architecture models of interactive systems, we proposed a hybrid architecture model
to combine advantages of functional and structural models. A generic and configurable environment called EISEval was
also proposed to support the evaluation of interactive systems in general and of agent-based interactive systems that use
our architecture model in particular. We designed EISEval as an extensive EI environment (not a TFWWG tool) based on
objective data captured from the interactions between users and the UI as well as between agents themselves in real
situations. EISEval’s activity is based on the EIs principles. However, EISEval also uses ergonomic criteria, as well as
other non-functional criteria to help evaluators interpret captured objective data and evaluate the target interactive system.
EISEval can remedy the drawbacks of traditional evaluation tools in general and traditional EIs in particular. It provides
some original functionalities to extend the evaluation possibilities of traditional EIs and to make the evaluation more
complete. The multi-steps evaluation process and seven modules of EISEval were presented.

We conducted a study with ten human subjects. In this study, EISEval environment was applied to evaluate an agent-
based interactive system called IAS, designed according to our architecture model and intended to supervise a public
transport network. The results of this study were briefly described in this paper. Several strengths and weaknesses in IAS
were revealed, and we proposed improvements corresponding to the weaknesses. This study also allows detecting some
strengths and weaknesses in the EISEval environment.

Consequently, we propose several perspectives for future research:

 We intend to conduct other studies in which:

o EISEval will be used to evaluate other interactive systems with other evaluators and more or less novice human
subjects. We intend to let other evaluators use EISEval in order to determine whether or not EISEval is easy for
them to use. Novice usability practitioners should be invited to use EISEval because difficulties are often particularly
pronounced for them (Howarth et al. 2009).

o In future studies, the target interactive systems should be in other application domains. We believe that EISEval can
be applied to evaluate interactive systems whose application domains are not in transport; other studies can
demonstrate this.

 As presented above (4.4.2 section), we aim at developing a visual development environment to help developers design,
in an interactive and visual way, interactive systems that use our architecture model. This environment can also allow
generating the description file that contains necessary input information to be provided for the EISEval’s module 7. At
this moment, the evaluator still has to configure EISEval by inputting the module 7 via its user interfaces; as a
consequence, it takes the evaluator a significant time.

 EISEval’s module 1 is responsible for capturing events occurring in the evaluated interactive system. This module was
developed as an individual system that is completely independent from the remaining modules. The link between the
modules is a common database. It is necessary to improve this module so that:

o it can work effectively in the cases in which the network is not high speed At this time, the evaluated interactive
system and module 1 communicate through a socket mechanism. Module 1 captures every event when it occurs in
the interactive system. This capture method works very effectively in local area networks, which tend to be quite high
speed. However, if module 1 and the interactive system communicate through a big network whose speed is slower
(e.g., the Internet), then this data capture method is not effective any more. Indeed, in such an environment, the
continuous transfer of large data quantities can slow down the network; the network can even be blocked.

o it can capture events of other types of applications (e.g., web and mobile applications) and stores the captured data
in a database that can be used later by the remaining modules. At this time, module 1 captures the events occurring
in interactive applications running on PC computers. If we want to apply this environment to evaluate other types of
applications, then it is necessary to improve this module.

 Modules 4 and 5 generate the Petri Nets (PNs), which reconstitute the processes of the real user and system activities
needed to execute tasks. After this study, we noticed that the PNs generated are often very complex because most of
the subjects have performed several redundant and/or erroneous actions (see types of errors in the 4.4.5 section
above). Indeed, after module 4 generates the PNs, module 5 allows the evaluator to visualize the generated PNs (of
different users) and/or the designer’s theoretical PNs, so that they can compare them. As a result, the evaluator was
overloaded by these PNs (approximately 130 PNs were generated after the study). In the future, it will be necessary to
improve module 5 to help the evaluator analyze these PNs by detecting the user’s erroneous actions and useless
manipulations (in terms of redundant transitions and the states of PNs). Such an improvement would facilitate
evaluators’ work.

 As presented above (4.4.5 section), we intend to add a new functionality to the EISEval’s module 4 so that it can
generate, the CTT task model (Paterno et al. 1997). This model is useful for describing tasks whose execution follows
rigid temporal relations.

 At this time, the associations between the evaluation criteria of module 6 and the analysis results of the remaining
modules (3, 4 & 5) are not yet formalized. As a result, module 6 is only able to provide evaluators with indications in
order to help them interpret these analysis results. In the future, it will be necessary to formalize these associations as
much as possible, which would increase the automation of module 6. Moreover, it is necessary to enrich the module 6
as well as other modules with other evaluation criteria as well as corresponding analysis results (measures, statistics).

 The IAS that was evaluated by EISEval is a static interactive system. In order to evaluate adaptive systems that are
able to change their behavior and interfaces according to the each context of use, it is necessary to take the context
into account during the evaluation. At this time, evaluators themselves are responsible for taking the context into
account when they interpret the EISEval analysis results, using the criteria of module 6. In this case, in order to
evaluate a given adaptive system, evaluators can use the EISEval environment to evaluate system operations and the
system interface in various contexts. By interpreting analysis results, evaluators can know in what contexts errors and
problems appear the least and the most; then they can suggest that the designers revise the system for the contexts in
which errors and problems appear the most. As a result, the evaluators can use objective data to evaluate the quality of
the system’s adaptation. From this perspective, it will be necessary to take the used context into account when we

formalize the associations between the evaluation criteria of module 6 and the analysis results of the remaining
modules.

Acknowledgements

This research was supported financially by International Campus on Safety and Intermodality in Transportation (CISIT),
the Nord/Pas-de-Calais Region, and the European Community (FEDER). The authors gratefully acknowledge the support
of these institutions.

References

Abran, A., Khelifi, A., Suryn, W., Seffah, A., 2003. Consolidating the ISO Usability Models. In: Proceedings of 11th Int. Software Quality
Management Conference, Glasgow, Scotland, UK.

Alexander, J., Cockburn, A., Lobb, R., 2008. AppMonitor: A Tool for Recording User Actions in Unmodified Windows Applications.
Behavior Research Methods 40(2) 413-421.

Andre., T.S., Rex Hartson., H., Belz, S.M., Mcreary, F.A., 2001. The user action framework: a reliable foundation for usability engineering
support tools. International Journal of Human-Computer Studies 54(1) 107-136.

Bass, L., Little, R., Pellegrino, R., Reed, S., 1991. The Arch Model: Seeheim revisited. In: Proceedings of User Interface
Developpers’Workshop, Seeheim.

Bastien, JMC., Scapin, DL., 1993. Ergonomic Criteria for the evaluation of human-computer interfaces. Technical Report n°156, INRIA,
Rocquencourt, 1993

Bastien, JMC., Scapin, DL., 1995. Evaluating a user interface with ergonomic criteria. International Journal of Human-Computer
Interaction 7, 105-121.

Beaudouin-Lafon, M., 2000. Instrumental Interaction: an Interaction Model for Designing Post-WIMP Interfaces. In: Proceedings of ACM
Human Factors in Computing Systems, CHI'2000, The Hague (Netherlands). ACM Press, pp. 446-453.

Beirekdar, A., 2004. A methodology for automating web usability and accessibility evaluation by guideline. PhD Thesis, Facultés
Universitaires Notre-Dame de la Paix, Namur.

Billington, J., Christensen, S., Hee, K.V., Kindler, E., Kummer, O., Petrucci, L., Post, R., Stehno, C., Weber, M., 2003. The Petri Net
Markup Language: Concepts, Technology, and Tools. In: preliminary version of a submission to the conference proceedings of the
ICATPN 2003, Eindhoven, Netherlands.

Bortolaso, C., Bach, C., Dubois, E., 2011. MACS: A combination of a Formal Mixed Interaction Model with an Informal Creative Session
(regular paper), ACM SIGCHI conference Engineering Interactive Computing Systems (EICS 2011), Pisa, Italy, 13/06/11-16/06/11,
ACM SIGCHI, pp. 63-72.

http://www.sigchi.org/

Calvary, G, Coutaz, J., Nigay, L., 1997. From Single-User Architectural Design to PAC*: a Generic Software Architecture Model for
CSCW. In: Proceedings of CHI 97. ACM publ., pp. 242-249.

Chalon, R., David, B. T., 2004. IRVO: an Architectural Model for Collaborative Interaction in Mixed Reality Environments. In: Proc. of the
Workshop MIXER'04, Funchal, Madeira, January 13, 2004, CEUR Workshop Proceedings, ISSN 1613-0073.

Chalon, R., David B. T., 2004. Modélisation de l’interaction collaborative dans les systèmes de Réalité Mixte. In: Actes de la 16ème
conférence francophone sur l’Interaction Homme-Machine (IHM’04). Namur, 1-3 septembre 2004. ACM Press, ISBN 1-58113-926-8,
pp. 37-44.

Charfi, S., Trablesi, A., Ezzedine, H., Kolski, C., 2011. Towards ergonomic guidelines integration within graphical interface controls for the
evaluation of the IS. MSLT 2011, First IEEE International Conference on Mobility, Security and Logistics in Transport (May 31 - June
1-3), Hammamet, Tunisia, pp. 76-82.

Coutaz, J., 1987. PAC, an Object-Oriented Model for Dialog Design. In: 2nd IFIP International Conference on Human-Computer
Interaction, Stuttgart, Germany, pp. 431-436.

Coutaz, J., 1990. Interface homme-ordinateur, conception et réalisation. Dunod, Paris.

Coutaz, J., Nigay, L., 2001. Architecture logicielle conceptuelle des systèmes interactifs (in French), in: Kolski, C. (Ed.), Analyse et
Conception de l’Interaction Homme-Machine dans les systèmes d’information. Éditions Hermes, Paris, pp. 207-246.

Dewan, P. 1998. Architectures for Collaborative Applications, in: Beaudouin-Lafon, M.(Ed.), Collaborative Systems. John Wiley & Sons
Ltd.

Dix, A., Finlay, J., Abowd, G., Beale, G., 1993. Human-Computer Interaction. Prentice-Hall, New Jersey.

Depaulis, F., 2002. Vers un environnement générique d’aide au développement d’applications interactives de simulations de
metamorphoses, Doctoral thesis (in French), Université de Potiers.

Dubois, E., Nigay, L., Troccaz, J., 2001. Consistency in Augmented Reality Systems. In: Proceedings of EHCI'01, IFIP WG2.7 (13.2)
Conference, Toronto, May 2001. LNCS 2254, Spinger-Verlag.

Dubois, E., Gray, P., Nigay, L., 2002. Asur++: A Design Notation for Mobile Mixed Systems. In: Proceedings of Mobile HCI 2002. LNCS
2411, 2002, Springer-Verlag, pp. 123-139.

Dubois, E. 2002. Asur: un point de départ pour fédérer différents aspects de la conception d'un système interactif mobile. In: Colloque sur
la mobilité, GDR-I3, 6 décembre 2002, LORIA, Nancy. 2 pages.

Dubois, E., Pinheiro da Silva, P., Gray, P., 2002. Notational Support for the Design of Augmented Reality Systems. In: Proceedings of the
9th international workshop conference DSV-IS'02, Rostock - Germany, June 2002, pp. 95-114.

Dubois, E., Nigay, L., Troccaz, J., 2003. Un Regard Unificateur sur la Réalité Augmentée : Classification et Eléments de Conception.
Revue d’Interaction Homme-Machine 4 (1), 85-118.

Dubois, E., Gray, P., Nigay, L., 2003. ASUR++: Supporting the design of mobile mixed systems. Interacting with Computers, 15 (4),
Elsevier, 497-520.

Dubois, E., Gray, P., Trevisan, D., Vanderdonckt, J., 2004. Workshop on Exploring the Design and Engineering of Mixed Reality Systems.
In: Proceedings of 2004 International Conference on Intelligent User Interfaces (IUI’04), Funchal.

Dubois, E., Mansoux, B., Bach, C., Scapin, D., Masserey, G., Viala, J., 2004. Un modèle préliminaire du domaine des systèmes mixte. In:
Actes de la 16ème conférence francophone sur l’Interaction Homme-Machine.

Dubois, E., Bortolaso, C., Gauffre, G., 2011. Models Transformations for Ubiquitous System Design Proceedings of International
Workshop on Model-based Interactive Ubiquitous Systems (Modiquitous 2011), Pisa - Italia, 13/06/11, pp. 1-6.

Dubois, E., Bortolaso, C., Bach, C., Duranthon, F., Blanquer-Maumont, A., 2011. Design and Evaluation of Mixed Interactive
Museographic Exhibits, International Journal of Arts and Technology, Inderscience Publishers, special issue Interactive Experiences in
Multimedia and Augmented Environments, 4 (4), 408-441.

Ellis, C., Gibbs, S.J., Rein, G.L., 1991. Groupware: some issues and experiences. Communications of the ACM. 34 (1), 38-58.

Etgen, M., Cantor, J., 1999. What does getting WET (Web Event-logging Tool) Mean for Web Usability?. User Experience Engineering
Division AT&T Labs Middletown, NJ, USA.

Ezzedine, H., Abed, M., 1997. Une méthode d'évaluation d'Interface Homme Machine de supervision d'un procédé industriel. Journal
Européen des Systèmes Automatisés (RAIRO-APII-JESA) 7, 1078-1110.

Ezzedine, H., 2002. Méthodes et Modèles de Spécification et d'Evaluation des Interfaces Homme-Machine dans les systèmes industriels
complexes (in French). HDR Thesis, University of Valenciennes and of Hainaut-Cambrésis.

Ezzedine, H., Kolski, C., Péninou, A., 2005. Agent-oriented design of human–computer interface:application to supervision of an urban
transport network. Engineering Applications of Artificial Intelligence 18, 255-270.

Ezzedine, H., Trabelsi, A., Kolski C., 2006. Modelling of an interactive system with an agent-based architecture using Petri nets,
application of the method to the supervision of a transport system. Mathematics and Computers in Simulation 70, pp 358-376.

Ezzedine, H., Bonte, T., Kolski, C., Tahon, C., 2008. Integration of traffic management and traveller information systems: basic principles
and case study in intermodal transport system management. International Journal of Computers, Communications & Control (IJCCC)
3, 281-294.

Garbay, C., Badeig, F., Caelen, J., 2012. Normative multi-agent approach to support collaborative work in distributed tangible
environments. In: Steven E. Poltrock, Carla Simone, Jonathan Grudin, Gloria Mark, John Riedl (Eds.), CSCW ’12 Computer
Supported Cooperative Work, Seattle, WA, USA, February 11–15, 2012 – Companion Volume, ACM 2012, pp 83-86.

Gauffre, G., Dubois, E., 2011. Taking advantage of model-driven engineering foundations for mixed interaction design. In: Hussmann, H.,
Meixner, G., Zuehlke, D. (eds.) Model-Driven Development of Advanced User Interfaces. Studies in Computational Intelligence,
Springer, Heidelberg (2011), 340, pp 219-240.

Genrich, H. J., 1991. Predicate/Transitions nets, in: Jensen, K., Rozenberg, G. (Eds.), High-Levels Petri Nets: Theory and Application.
Springer, pp. 3–43.

Grislin-Le Strugeon, E., Adam, E., Kolski, C., 2001. Agents intelligents en interaction homme-machine dans les systèmes d'information, in:
Kolski, C. (Ed.), Environnements évolués et évaluation de l’IHM. Éditions Hermes, Paris,pp 207-248.

http://www.inderscience.com/

Goldberg, A., 1983. Smaltalk-80, the interactive programming environnement. Addison-Wesley.

Grammenos, D., Akoumianakis, D., Stephanidis, C., 2000. Integrated Support for Working with Guidelines: The Sherlock Guideline
Management System. International Journal of Interacting with Computers, special issue on "Tools for Working with Guidelines" 12 (3),
281-311.

Guittet, L., 1995. Contribution à l'Ingénierie des Interfaces Homme-Machine - Théorie des Interacteurs et Architecture H4 dans le système
NODAOO (in french). Unpublished PhD Thesis, Poitiers, France.

Hilbert, D.M., Redmiles, D.F., 2000. Extracting usability information from user interface events. ACM Computing Surveys (CSUR) 32 (4),
384-421.

Hong, J.I., Heer, J., Waterson, S., Landay, J.A., 2001. WebQuilt: A Proxy-based Approach to Remote Web Usability Testing. Journal ACM
Transactions on Information Systems (TOIS) 19 (3), 263-385.

Hornbæk, K., 2006. Current practice in measuring usability: Challenges to usability studies and research. International Journal of Human-
Computer Studies 64 (2).

Howarth, J., Smith-Jackson, T., Hartson, R., 2009. Supporting novice usability practitioners with usability engineering tools. International
Journal of Human-Computer Studies 67 (6), 533–549.

IEEE, 1990. Institute of Electrical and Electronics Engineers, IEEE Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries. New York, 1990

ISO/IEC 9126-1, 2001. Software engineering -- Product quality -- Part 1: Quality model. 2001 (JIS X 0129-1: 2003)

ISO 9241, 1998. Ergonomic Requirements for Office Work with Visual Display Terminals.

Ivory, M., Hearst, M.A., 1998. Improving Web Site Design. IEEE Internet Computing, Special Issue on Usability and the World Wide Web
6(2).

Jasselette, A., Keita, M., Noirhomme-Fraiture, M., Randolet, F., Vanderdonckt, J., Brussel, C.V., Grolaux, D., 2006. Automated repair tool
for usability and accessibility of web sites. In: Proceedings CADUI 2006, Bucharest. Springer-Verlag.

Juras D., 2004. Modélisation des systèmes mixtes. Examen probatoire en informatique du CNAM, Centre de Grenoble, 14 décembre
2004, 42 pages.

Kindler, E., 2004. High-level Petri Nets – Transfer Format. Working Draft Version 0.5.0 of the International Standard ISO/IEC 15909 Part
2.(Submitted for a combined ISO/IEC SC7 WD/CD registration and CD ballot.).

Kindler, E., 2005. Software and Systems Engineering – High-level Petri Nets, Part 2: Transfer Format. International Standard ISO/IEC
15909-2. Working Draft Version 0.9.0, June 2005, (Submitted for a combined ISO/IEC SC7 WD/CD registration and CD ballot).

Kolski, C., Forbrig, P., David, B.T., Girard, P., Tran, C.D., Ezzedine, H., 2009. Agent-based architecture for interactive system design:
current approaches, perspectives, evaluation. In: Human-Computer Interaction, Part I, HCII 2009 HCI International 2009. LNCS 5610,
Springer-Verlag, San Diego, pp. 806–815.

Kolski, C., Millot, P., 1991. A rule-based approach to the ergonomic “static” evaluation of man-machine graphic interface in industrial
processes. International Journal of Man-Machine Studies 35 (5), 657-674.

Kolski, C., Le Strugeon E., 1998. A review of intelligent human-machine interfaces in the light of the ARCH model. International Journal of
Human-Computer Interaction 10 (3), 193-231.

Laurillau Y., Nigay L., 2002. Clover architecture for groupware. In: Proceedings of the 2002 ACM conference on Computer supported
cooperative work, New Orleans, USA, November 16 - 20, 2002, pp 236-245.

Lecerof, A., Paterno, F., 1998. Automatic support for usability evaluation. IEEE Trans. on Software Engineering 24 (10).

Lee, S.K., Hwang, C.S., 2004. Architecture modeling and evaluation for design of agent-based system. The Journal of Systems and
Software 72, 195–208.

Lepreux, S., Kubicki, S., Kolski, C., Caelen, J., 2012. From Centralized interactive tabletops to Distributed surfaces: the Tangiget concept.
International Journal of Human-Computer Interaction, 28 (11), 709-721.

Milgram, P., Kishino, F., 1994. A taxonomy of mixed reality visual displays. IEICE Transactions on Information Systems, E77-D (12).

Milgram, P., Takemura, H., Utsumi, A., Kishino, F., 1994. Augmented Reality : a class of displays on the reality-virtuality continuum. SPIE
Telemanipulator and Telepresence Technologies 2351.

Milgram, P., Drascic, D., Grodski, J.J., Restogi, A., Zhai, S., Zhou, C., 1995. Merging Real and Virtual Worlds. In: Proceedings of
IMAGINA’95, Monte-Carlo, Monaco, 1-3 Feb. 1995, pp. 218-230.

Mehta, N.R., Medvidovic, N., Phadke, S., 2000. Towards a Taxonomy of Software Connectors. In: Proceedings of the 22nd international
conference on Software engineering. ACM Press, 2000.

Moray, N., 1997. Human factors in process control, in: Salvendy, G. (Ed.), Handbook of human factors and ergonomics. John Wiley &
Sons, pp. 1944-1971.

Morandini, M., de Moraes Rodrigues, R.L., Cerrato, M.V., Lordello Chaim, M., 2011. Project and Development of ErgoCoIn Version 2.0.
HCII'11 Proceedings of the 14th international conference on Human-computer interaction: Springer-Verlag Berlin, Heidelberg. Design
and development approaches - Volume Part 1.

Navarre, D., Palanque, P., Ladry, J.-F., Barboni, E., 2009. ICOs: A model-based user interface description technique dedicated to
interactive systems addressing usability, reliability and scalability. ACM Trans. Comput.-Hum. Interaction 16 (4).

Nielsen, J., 1993. Usability Engineering. Boston, MA. Academic Press.

Nielsen, J., 2003. Usability 101: Introduction to Usability. Retrieved November, 2012, from http://www.useit.com/alertbox/20030825.html.

Nigay, L., Coutaz, J., 1995. A Generic Platform for Addressing the Multimodal Challenge. In: Proceedings of CHI'95, Human Factors in
Computing Systems. ACM Press, NY, pp. 98-105.

Parush, A., 2000. A Database Approach to Building and Using Online Human Computer Interaction Guidelines, in: Vanderdonckt, J.,
Farenc C. (Eds.), Tools for Working with Guidelines. Springer-Verlag, London, pp. 77-84.

Pfaff, GE., 1985. User interface management system. Springer-Verlag, 1985.

Paganelli, L., Paternò, F., 2003. Tools for remote usability evaluation of Web applications through browser logs and task models. Behavior
Research Methods, Instruments, and Computers 35 (3),, 369–378.

Paterno, F., Ballardin, G., 2000. RemUSINE: a bridge between empirical and model-based evaluation when evaluators and users are
distant. Interacting with Computers 13(2), 229–251.

Paterno, F., Mancini, C., Meniconi, S., 1997. ConcurTaskTrees: A Diagrammatic Notation for Specifying Task Models. In: Proceedings of
the IFIP TC13 International Conference on Human-Computer Interaction Pages, Interact’97, July’97, Sydney. ISBN:0-412-80950-8,
Chapman & Hall, 362-369.

Paterno, F., Piruzza, A., Santoro, C., 2006. Remote Web usability evaluation exploiting multimodal information on user behavior. In:
Proceedings CADUI 2006, Bucharest. Springer-Verlag.

Paternò, F., Russino, A., Santoro, C., 2007. Remote evaluation of Mobile Applications. In Task Models and Diagrams for User Interface
Design. In: 6th International Workshop, TAMODIA 2007, Toulouse, France.

Greg Phillips, W., Graham, N., T.C., Wolfe, C., 2006. A calculus for the refinement and evolution of multi-user mobile applications. In
Proceedings of Design, Specification and Verification of Interactive Systems (DSV-IS 2005), Springer LNCS, 2006, pp. 137-148.

Greg Phillips, W., Nicholas Graham, T.C., 2003. Workspaces: A Multi-level Architectural Style for Synchronous Groupware, in
Proceedings of Design, Specification and Verification of Interactive Systems (DSV-IS 2003), Springer LNCS, 92-106, 2003.

Renevier, P., Nigay L., 2004. Notation de Conception pour les Systèmes Mixtes Collaboratifs et Mobiles. In : Actes des Premières
Journées Francophones : Mobilité et Ubiquité (UbiMob’04), 1-3 juin 2004, Nice, Sophia-Antipolis, pp. 66-73.

Renevier, P., 2004. Systèmes Mixtes Collaboratifs sur Supports Mobiles : Conception et Réalisation (in french). Ph.D Thesis, Univ. Joseph
Fourier – Grenoble I, 28 juin 2004. 220 pages.

Rukshan, A., Baravalle, A., 2011. A quantitative approach to usability evaluation of web sites. Proceedings of Advances in Computing
Technology, London, United Kingdom.

Shneiderman, B., 1998. Designing the user interface: strategies for effective human-computer interaction. Addison-Wesley.

Sears, A. 2003. Testing and evaluation. In J.A. Jacko, A. Sears (Eds.), The human-computer interaction handbook, Lawrence Erlbaum
Associates, 1091-1092.

Sears, A., 1995. AIDE: A Step Toward Metric-Based Interface Development Tools. Proc. UIST’95, New York: CM Press, 1995

Senach, B., 1990. Evaluation ergonomique des IHM : Une revue de la littérature. Report INRIA n°1180, mars, 1990.

Shaer, O., Jacob, R.J., 2009. A specification paradigm for the design and implementation of tangible user interfaces, ACM TOCHI, 16 (4),
20, 1-39.

Smith, S.L., Moisier, J.N., 1986. Guidelines for designing user interface software. Report No. MTR-10090, ESD-TR-86-278, Bedford,
MA:MITRE Corp,1986.

Spitznagel, B., Garlan, D., 2001. A Compositional Approach for Constructing Connectors, In: The Working IEEE/IFIP Conference on
Software Architecture, Royal Netherlands Academy of Arts and Sciences Amsterdam, The Netherlands.

Tarpin-Bernard, F., David, B., 1999. AMF : un modèle d'architecture multi-agents multi-facettes. TSI 18 (5), 555-586.

Tran, C. D.., Ezzedine, H., Kolski, C. 2008. Evaluation of agent-based interactive systems: proposal of an electronic informer using Petri
Nets. Journal of Universal Computer Science 14 (19), 3202-3216.

Vanderdonckt, J., 1994. Guide ergonomique des interfaces homme-machine. Facultés universitaires Notre-Dame de la Paix à Namur
(Belgique), Presses Universitaires de Namur, Namur, 1994.

Vanderdonckt, J., 1999. Development milestones towards a tool for working with guidelines. Interacting with Computers 12(2), 81-118.

Vanderdonckt, J., Farenc, F. (Eds.) 2000. Tools for Working With Guidelines TFWWG’2000. Springer Verlag.

Wolfe, C., David Smith, J., Nicholas Graham, T.C., 2010. Fiia: A model-based approach to engineering collaborative augmented reality. In
Emmanuel Dubois, Philip Gray, and Laurence Nigay, editors, The Engineering of Mixed Reality Systems, Springer, 2010, pp. 293-312.

Wolfe, C., Nicholas Graham, T.C., Greg Phillips, W., Roy, B., 2009. Fiia: User-Centered Development of Adaptive Groupware Systems, in
Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, ACM, pp. 275-284.

Wolfe, C., Nicholas Graham, T.C., Greg Phillips, W., An Incremental Algorithm for High-Performance Runtime Model Consistency, In
Proceedings of Model Driven Engineering Languages and Systems (MODELS 2009), pages 357-371. Springer LNCS, 2009.

Wu, J., Nicholas Graham, T.C., 2007. Toward Quality-Centered Design of Groupware Architectures, in Proceedings of Engineering
Interactive Systems, 18 pages, 2007

Yamada, S., Hong, J.K, Sugita, S., 1995. Development and evaluation of hypermedia for museum education: validation of metrics. ACM
Trans. Comput.-Hum. Interact. 2 (4).

Zettlemoyer, L.S., Amant, R.S., Dulberg, M.S., 1999. IBOTS: Agent control through the user interface. In: Proceedings of the International
Conference on Intelligent User Interfaces, Redondo Beach, CA,31-37.

Zurawski, R., Zhou, MengChu., 1994. Petri nets and industrial applications: A tutorial. IEEE Transactions on Industrial Electronics 41 (6),
567-583.

