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Abstract

By using an interactive table, it is possible to interact with several people (decision-makers) in a simultaneous and
collaborative way, around the table, during a simulation session. Thanks to theRFID technology with which the table
is fitted, it is possible to give tangible objects a unique identity to include and to consider them in the simulation.
The paper describes a context model, which takes into consideration the specificities related to interactive tables.
TheTangiSenseinteractive table is presented; it is connected to a Multi-Agent System making it possible to give the
table a certain level of adaptation: each tangible object can be associated to an agent which can bring roles to the
object (i.e., the roles are the equivalent of a set of behaviors). The Multi-Agent System proposed in this paper is
modelled according to an architecture adapted to the exploitation of tangible and virtual objects during simulation on
an interactive table. A case study is presented; it concernsa simulation of road traffic management. The illustrations
give an outline of the potentialities of the simulation system as regards the context-awareness aspect, following both
the actions of the decision-makers implied in simulation, and the agents composing the road traffic simulation.
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1. Introduction

1.1. The problem: a need for more intuitive cooperative design tools

For thirty years, many simulators have been proposed in a setof application areas [4]. Most simulation software
are based on a standard architecture and can be used by a user interacting according to interaction principles, through
the usual triplet<screen, keyboard, mouse> [60, 28]. However, for implementing cooperative design approaches,
related to dynamic situations, complex, multifaceted, it is necessary to provide interactive simulation tools that are
more intuitive than the current tools, allowing different actors (e.g., decision-makers) to think together and react to
changes in context. This paper explores interactive tables1, associated with tangible objects. Our case study concerns
road traffic management.

1.2. Interactive tables and tangible objects for a new simulation support

With evolving technology, the objects in our environment will be increasingly equipped with computing capacities
and memory, especially in the data processing domain in which the evolution has been significant. Little by little,
data processing has been introduced into everyday life and has become known as ambient data processing [54]. By
highlighting inter-object communication and making it possible for objects to perceive their environment; objects
must have the “intelligence” (in the sense of artificial intelligence) to meet various objectives.

1The interactive tables are also called tabletops or interactive tabletops in the literature.
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This technological progress lets us to imagine new simulation systems in which any type of interaction would
be possible: the user becomes the primary interactor with the system, but the other people and objects that surround
him/her can also intervene in the simulation system.

We propose to use pervasive technologies in order to increase interaction and intelligence in simulation systems,
with the help of an interactive table. Interactive tables differ from the computer because they make collaborative
or competitive group work possible. New interactions are thus possible and feasible. Nowadays, there are few
applications and platforms, which allow simultaneous collaborations between users (e.g., multi-pointing or real-time
document sharing). For this reason, current research aims to explore the possibilities of this new technology.

1.3. Case study: road traffic management

Traffic trials can last for several days, or even several weeks, in order to evaluate the infrastructures about the
impact of new roads, motorway entries/exits, new roundabouts, and road signs, for example. In addition, researchers
conduct studies into the psychological aspects. Human beings are included in the traffic loop, thus it is necessary to
assess their behaviour in specific contexts.

Road traffic models can be distinguished by their design method: centralized and distributed. In centralized
methods, mathematical models appeared in the 1950s. Such a model allows a highway traffic situation to be modeled
using car-following laws, for instance. These laws are, in fact, differential equations that are obtained empirically
through regression using data collected at road sections currently operating [34, 2]. Even now, most of the microscopic
simulations use the car-following laws to model in-lane driving, while the specific case of intersections is managed
using centralized scheduling techniques. In these simulations, each vehicle approaching the intersection is placed in a
virtual queue, one for each branch of the intersection. For instance, Vissim [51] has a “yellow box” parameter, which
allows users to define a minimal speed that the vehicles inside the intersection must respect so that other vehicles
can enter the intersection. These traffic simulation tools suggest that a centralized scheduler makes decisions for
each vehicle, which enters the intersection only when theirtrajectories are not in conflict. The simulated behaviors
of individual drivers produced by schedulers are not alwaysrealistic, and thus many traffic phenomena can not be
simulated (e.g., the presence of traffic signals violations and congestion inside the intersection).

Since the beginning of the 1980s, distributed methods, called also behavioral approaches, have highlighted a
different view. These methods consider traffic as emerging phenomena, which result from actions and interactions of
the various traffic system actors (e.g., drivers, pedestrians, road operators). Different models have been developed for
building this traffic: cellular automata models [45], robotic-inspired models[43], and multi-agent models [8, 20].

For several years now, our team has focused primarily on these traffic models with multi-agent systems [24, 55].
We suppose that it is possible to propose new types of agent-based simulations on the interactive table described in
this paper.

1.4. The paper’s contents

In this paper, we introduce a new type of interactive table based on Radio Frequency IDentification (RFID) tech-
nology (Figure 1). This table allows the users to handle tangible objects equipped withRFID tags, enabling them to
record information. The users can thus interact and work on new applications using tangible objects (e.g., design or
production tasks, collaborative decision-making). This high-level technological platform (i.e., the interactive table) is
a support for our research. Such platforms lead us to envisage new ways of approaching simulation, combining both
virtual and tangible objects [32]. To be efficient, they need models that take into account the context ofuse. This
adaptation to context can be modeled through a Multi-Agent System (MAS). Multi-agent systems are appropriate for
this type of rich simulation environment because they are based, in particular, on models of distributed representa-
tion and reasoning [14]. Their deployment in an Ambient Intelligence situation [26] would adapt the intelligence of
so-called everyday objects to both the users and the contextof use.

In the next section, we present a state of the art about context-awareness and simulation. In section 3, we present
theTangiSenseinteractive table and its software architecture. In section 4, we propose a multi-agent system (MAS)
to manage the smart objects and context-awareness. ThisMASallows remote operations of intelligent objects using
a software representation. In section 5, we examine a case study based on a road traffic management simulation.
Section 6 discusses our proposal. Section 7 gives our conclusions and our prospects for future research.
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Figure 1:TangiSenseInteractive table in a collaborative context with tangibleand virtual objects: a traffic simulation

2. Previous research

2.1. Context-Awareness

Thecontextconcept has been used in interactive application design since 1994. In 1994, Schilitet al. [46] intro-
duced the concept,context-awareness, and associated it to a mobile system (ParcTab), in which user location (“Where
are you?”), the identity of the people (“Who you are with?”), as well as the proximity of the resources (“What re-
sources are nearby?”) allow the context to be studied. They described how the applications can react to changes in
the physical environment or the user. Some applications allow the users to participate and the users and devices to
interact; however, these applications react in particularaccording to the context.

Wardet al. [53] interpreted the context using the user localization and the state of the environment. They also con-
sidered the localization of objects. Pascoe [41] defined thecontext-awareness concept, defining the context according
to four generic contextual capacities: perception, adaptation, resource discovery, and contextual augmentation.

Deyet al. [17] added a detail to these concepts. They defined the context as a set of information elements making
it possible to characterize the situation of an entity, which is a person, a place or an object that can intervene in the
interaction between the user and the application. Thevenin& Coutaz [48] defined theinteraction contextconcept2,
which is connected to the definition proposed by Deyet al. The environment becomes an entity triplet<Object,
Person, Event> associated to the current task.

Calvaryet al. [11] introduced theplasticityconcept and the user interface adaptation. This adaptationis modelled
as two complementary properties: adaptability and adaptivity [10, 47]. Adaptability is the capacity of the system
to allow users to adapt their systems starting from preset parameters;adaptivity is the capacity of the system to
automatically improve the adaptation without user action.

In 2004, the context becamecontext of use. Calvaryet al. [12] put forward the adaptation of the Human-Machine
Interfaces to their context of use, seen as a triplet:<User, Platform, Environment>. The user represents the public
involved, the platform corresponds to the material and software structure underlying the interaction, and the environ-
ment refers to the physical environment supporting the interaction.

Rey et al. [44] proposed a context network, calledthe contextor. They also proposed a component model that
allows the capture, transformation and diffusion of contextual information.

More recently, Deyet al. [16, 18] used similar concepts as those described by the previous authors (e.g., local-
ization, state of the people in close proximity, time) to propose interactive prototyping of context-aware applications.

2Please note the term change.
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Pascoeet al. [42] added the concept of social context, which included the people’s biometric signs, history, emotions,
status and mood.

To summarize, the definitions in the state of the art refer to the localization and the physical environment, to the
user and generally to a specific platform in order to define thecontext. However, little by little, the cited authors made
some modifications that make it possible to specify and adaptprecisely the applications to the context with some
indications, such as entities, time or state. Nonetheless,current research (after 2007) on context-awareness does not
modify the definitions suggested previously.

We propose to model the context criteria with a class diagram(Figure 2) [32]. The criteria most often mentioned in
the references cited in this state of the art are arranged in classes. This classification uses the triplet<User, Platform,
Environment> proposed by Calvaryet al. [12]. The users can be characterized by their competence, ability, emotions
and cultural information; their preferences can also be included. The characteristics of the platform are taken into
account for the adaptation. The platform proposes a displaysurface for interaction (i.e., screen), which can be tactile
or not. Finally, the environment includes the localization, the type of environment (i.e., social, professional or private),
the resources available in the vicinity, the information onthe external environment (e.g., local characteristics), and
the possibility of using communication technologies. Thismodel is sufficiently general to be adapted according to
specific needs. It can be easily extended, depending on the development and use. It has been extended for using
interactive tables. The related extensions are outlined onFigure 2. They are detailed in Section 4.1.

In this paper, we will focus on the concept of context-awareness, using an interactive table that makes it possible
to act on virtual and/or tangible objects.

2.2. Road traffic simulation based on multi-agent approaches

The multi-agent model which agents evolve in traffic situations, as well as interactions between these agents.The
main advantage of multi-agent models is based on the environment’s dynamic modifications in a response time that
is close to real time: preferences and characteristics of autonomous vehicles, appearance of vehicles (e.g., buses,
motorbikes, cars), pedestrians and the road signs (e.g., stop signs, give way signs, speed-limit signs). The agents
perceive information that is geographically limited and incomplete. The traffic situation is, by nature, an open system
(i.e., the number of autonomous agents can vary during the simulation) in which the various entities do not cooperate
with each other, each having their own objectives. The situation is defined by multiple interactions between entities in
their environment, which makes it possible to reproduce more realistic behaviors of human drivers. In fact, simulation
conditions can be dynamically modified: the degree of visibility from the weather, the driving preferences of the
human driver, the characteristics of the autonomous agent (e.g., cars, lorries, buses, pedestrians) and road equipment
(e.g., traffic signals, traffic signs).

Two research approaches are starting to be differentiated in terms of road traffic simulations usingMAS, made by
Meir and Rosenschein [37]. The first approach tries to offer organizational models to improve global problems, such
as logistics and/or services [15, 59], and the second approach offers solutions for “local” traffic congestion problems.
Congestion is a deteriorated state because all agents make “optimum” local decisionsa priori, far from the global
optimum.

Several studies have tried to answer the problems of congestion. From these different studies, two multi-agent cat-
egories can be cited to model the traffic in critical situations. A first category deals with coordination models/protocols
(e.g., simulation methods) or the equilibrium research [5, 37]. These ideas are essentially based on the way to opti-
mize global traffic. A minimal infrastructure is thus envisaged to regulate the agents/vehicles in an intersection or in
an intersection network. A reservation mechanism [22, 50] provides a coordination protocol for managing the space
in an intersection. Another method described by Trannoiset al. [49] uses aBlackboardmechanism for scheduling
the traffic in the intersection, and yet another method describes a mechanism to control traffic lights by minimizing
conflicts between the different agents [25].

A second category describes “profiles” for the different agents, and then analyzes the impact of these profiles on
the global traffic. These methods make it possible to obtain global information on the simulation (e.g., statistics data
concerning the average speed of vehicles, the number of accidents) to compare with real observed data. For example,
Ehlert and Rothkrantz [23] define agent profiles with a specific behaviour (i.e., prudent or aggressive behaviours, fast
or slow driving). The agents update the different information from the environment, and they adapt their behaviour
from a set of predefined rules. In similar approaches, the autonomous agents make decisions according to predefined
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Figure 2: Modelling of the interaction context, with the newcriteria concerning interactive tables (outlined with a bold-faced line)

behaviours (normal, prudent or aggressive) and different parameters (e.g., inter-vehicular distance or acceleration-
breaking characteristics) [40], or make speed-acceleration decisions and set maximum speed [58]. The agents may
also have non-normative behaviours (i.e., not respecting the highway code, not breaking at a stop sign) [20].

These studies are very widespread, with different goals (e.g., the optimization of global traffic or the understanding
of human driving). We would like to describe a new simulationtool that is based on an interactive table. The
simulation may be dynamically modified by the different users: changing the road infrastructure or altering the local
behaviour of specific agents.
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3. TheTangiSense interactive table

Our research aims to develop an interactive table as a tool that allows interaction between different users. Com-
pared to a traditional computer, this platform offers one main advantage: it can be used simultaneously by a group of
people, who could easily work around it.

Table 1 gives five different interactive tables, with each one using a different capture technology. This table shows
that each capture technology has its own characteristics. That is why the current interactive tables combine different
technologies.

Table 1: Five interactive tables using different capture technologies
Name Capture Tactile User Object Object Artificial Representative

technology distinction detection overlay Intelligence Application

Blip-tronic 3000 [7] Webcam No No Yes No Robots Music
Diamond Touch [19] Capacitance Yes Yes No N.A No Cartography

Magets [56] Fiber Optical/ DSI Yes No Yes No No Proof of concept
ReacTable [30] Rear DI Yes No Yes No No Music

TangiSense RFID No Yes Yes Yes Agents Traffic Simulator

We have chosen an interactive table, calledTangiSense. This table is not tactile, unlike the most of the interactive
tables on the market and in the scientific literature.TangiSensetable presents direct interaction via tangible objects.
The TangiSensetable has one advantage: this table detects overlapping objects, by usingRFID technology. This
technology can also store information about the different objects (e.g., size, history, behaviour). This solution allows
the object to “agentify” by associating it with an agent during the simulation.

Figure 3 shows theTangiSenseinteractive table, which is made up of “tiles”, each tile contains 64 antennas (8×8)
and measures 2.5 cm square, while the table measures 1 m×1 m. Designed by theRFIdeescompany3, this table is
operational, but its hardware is constantly evolving. It isnow a question of designing and developing the operating
software for the table and the associated objects. With these objects, the users around the table are able to interact and
work collaboratively with applications (e.g., simulation, design or production tasks, games), using physical objects.

Figure 3:TangiSenseinteractive table equipped withRFID technology

As mentioned earlier, the objects used on our interactive table can be virtual or tangible, with the latter being
physically accessible and easy to handle by the users. We call the visual objects video-projected on the table “virtual

3www.rfidees.fr

6



objects”. To accomplish the video projection, two technologies are possible on theTangiSensetable. Either a set of
LEDs is placed on the surface of the table or a video projectoris used. The table is fitted withRFID antennas, which
make it possible to detect the tangible objects that haveRFID tags, which can store information, such as the history of
the object’s movements or the users’ or objects’ authentification information. During the initialization, the application
associates the tags to one or several tangible objects.

The software architecture selected includes several layers (Figure 4):

• the hardware, which is the table itself.

• the middleware detects tangible objects, each equipped with one or more tags, handles events associated with
the objects and communicates the modifications of the objects’ positions to the multi-agent system.

• theMulti-Agent System(MAS) layer (presented in section 4.2) which brings reasoning capacities into the system.
TheMAShas a total view of the virtual and tangible objects that makeup its environment. The organization [1]
between the agents makes it possible for the objects to be intelligently managed and to assign roles to the
objects.

• the Human-Computer Interaction(HCI) layer, which communicates with the users and which allows virtual
information to be transmitted (e.g., the user’s movement of a virtual object).

Figure 4: Software architecture of theTangiSenseTable

Our research is focused on theMASand theHCI layers. TheMASmanages the intelligent aspects of tangible and
virtual objects, which can hold multiple roles dynamically. TheHCI uses theRFID technology as a basic capture
mechanism for context-awareness [32]. In the next section,we present a multi-agent system designed especially for
interactive tables. This system adds an intelligent layer for this new type of interaction platform.
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4. Proposition of a multi-agent architecture for simulation on interactive table

Since the rise of mobile platforms and new interaction surfaces (e.g., interactive table), we saw that it was ad-
vantageous to predict the adaptation to theHCI context. The state of the art in section 2.1 proposed a set of criteria
(Figure 2). Platforms like interactive tables were then considered. In this section, we consider the characteristics of
interactive tables and complete the context model producedby the new criteria. These developments are outlined in
bold-face in Figure 2. These criteria (see§4.1) are then integrated into our multi-agent architecture, which will be
used to provide abilities to interact with ourTangiSenseinteractive table.

4.1. A model of context-awareness enriched to interactive tables

Compared to the usual platforms (e.g., PC, laptop, PDA), one of the characteristics of interactive tables is that they
can be multi-user. An attribute that allows the applicationto know whether or not the table ismulti-user can be added
to thePlatformClass (Figure 2). Thus, several users can use the application at the same time. These users will have
certain relationships that will modify the way that they collaborate and interact. Asocial link attribute is thus added
to our model, which allows the application to know the types of relationships the users maintain.

Moreover, using interactive tables results in a new way of interacting and/or collaborating. This collaborative
process needs new context criteria. In this paper, we do not focus on the platform changes; we only consider the
context-awareness involved in using the table.

Generally, the context is taken into account by an application, which is adapted to the platform, the environment,
and a user. Here, the applications are adapted to the environment, to the users but also to theirposition in relation to
the table. We think that in such a context of use, the user’s position is quite important, influencing the platform (i.e.,
the display) itself. In fact, the context will not be the sameif the user is positioned on one side of the table or on the
opposite side. An adaptation may be necessary to allow the user to work correctly according to his/her position on the
table. These adaptations can be determined during a collaborative use of an interactive table. Each user must be able
to work on his/her own space, which is allocated from the common space.

For the specific case of interactions with an interactive table, a criterion can be added to the model to know
whether or not the environment iscollaborative. This criterion is placed in the environment category rather than in
the platform category because the platform makes collaboration possible, but the environment determines whether
or not the collaboration is real. This collaborative environment can be distinguished by two characteristics that will
influence the interactions:

• co-localized collaboration, which happens when the users use the table to collaborate;

• distant collaboration, which happens when the users have several distant platforms or the users use the table
and another distant platform (e.g., another table or other platforms).

A contrario, the location is an unnecessary context criterion because the interactive table is generally not mobile,
but it can be also added to the model.

According to our model (Figure 2), two kinds of objects can beused with interactive tables: virtual objects and
tangible objects. In our case, the interactive table contains a set ofRFID antennas, which allow the simultaneous use
of virtual and tangible objects.

We describe the multi-agent architecture that brings the context-awareness mechanisms to the interactive table.

4.2. Description of a multi-agent architecture

The multi-agent system manages the behavior of the tangibleobjects moving on the table and of the virtual objects
(i.e., informational deliberative entities) that are used to implement the table. As shown in Figure 4, we associate an
agent to each tangible object [33], and to each interactive virtual object displayed on the table. Information coming
from severalRFID readers is transmitted by the middleware; this informationis used by agents to build their views
of their environment (as in Vrbaet al. [52]). In order to design aMAS that controls the behavior of tangible and
virtual objects for a given application, we need to define therelationships between the different types of agents and
the functional roles that they have to play according to the application to be instantiated.
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4.2.1. System organization
To define the relationships between agents and their respective roles, we propose to use the class diagram given

in Figure 5, which establishes links between agents and roles. This diagram is inspired by the research proposed by
Odell et al. [38, 39]. The particularities and properties of the interactive table’s applications led us to define a class
of agents (MAM4IT Agent: Multi-AgentModelFor I nteractiveTable) instantiated by all the agents used for these
different applications.

We propose aS ituatedAgentclass that can be extended by either aTangibleAgentclass for agents (associated to
a real tangible object) or aVirtualAgentclass for agents (associated to a virtual object projected on the interactive
table). These agents are located in a Cartesian plane that represents the environment defined by the interactive table.
A ConnectionAgentplays the scribe’s role and contains information on the position (i.e., cartesian coordinate on the
plane) and internal addresses of system agents (e.g., FIPA’s Management Service Agent4).

A MAM4IT Agentpossesses a list of role that can be initially empty or not. Indeed, the list of roles may dynami-
cally evolve while the application is running:

• through self-adaptation (depending on its perception of the environment, an agent can ask theRoleManager
agent to retrieve a role, or it can inform theRoleManageragent that it is leaving a role);

• through agent interaction (an agent can receive a role from another agent); or

• through a direct action of a user (a user is allowed to add and/or remove roles by interacting with the agent
through tangible objects).

Initially, roles are stored and managed by an agent that has the RoleManagerrole; this agent plays a kind of
directory services role. Like the Directory Facilitator (e.g., yellow pages) recommended by the standard FIPA, this
type of agent makes it possible to discover which agents playwhich roles or what are the roles played by a given
agent. It contains the list of couples<agent, roles> and the list of couples<objectID, role> because some tangible
objects can represent roles that users add to situated agents.

4.2.2. Knowledge and Context
To model our multi-agent systems and the roles, we used the formalisms defined by Adamet al. [1], which are

based on the roles, and we took inspiration from the task decomposition of Hannounet al. [27]. Each agent in theMAS
is composed of knowledge, states, messages, personal rules, and roles. This knowledge includes: social knowledge
(KS) relative to knowledge about other agents; environmental knowledge (KE) relative to the objects perceived in the
environment and the environment map; personal knowledge (KP) that contain the agent goals and properties.

Each agent also contains, by definition, a perception function that allows the agent to update its knowledge and to
receive messages. According to the agent’s knowledge and messages, it activates some of its personal rules and some
of its roles.

An agent rule is composed of a set of elementary tasks; each task has a priority level that is used to evaluate the
agent’s preference for this rule.

The role characterizes the ability of an agent to perform some specific tasks [57]. In our case, a role is also
composed of sets of: social knowledge (KS) relative to knowledge about other roles; environmental knowledge (KE)
relative to the objects needed to play the role; personal knowledge (KP) that contain the role’s objective, the conditions
in which the role can be activated (pre-requirement) and theconsequences of modifying the agent’s state. We propose
to define a roleRwith the equation 1.

The role contains also the context knowledgeKCrole that defines different interaction criteria, such as user compe-
tence, user position and collaborative environment. Of course, this knowledge relative to the context could be stored
in the set ofKE of environmental knowledge, but we propose, in this project, to extract the context knowledgeKC in
order to facilitate the definition of the roles, from the designer point of view.

A role encompasses a set of rules. We define a rule (see equation 2) as a set of behaviors associated to the role.
A rule is composed of a name, a priority level, and a set of elementary tasks. The rules are chosen according to the
agent’s knowledge, issued from its perception of the other,of the environment and according to the rules priority level.

4Foundation for Intelligent Agents (FIPA) defines standardsfor MAS– www.fipa.org
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Figure 5:MASclass diagram
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For example, in road traffic management, the agents may have the role of driver (cf. Eq. 3).

R=





















driver, priority{},KP{Driver′s license},
KE{Roads; RoadS igns},KS{Vehicles},
rules{RespectS topS ign; Bend; Alert . . .}





















(3)

An agent receives theDriver role if he has the necessary prerequisites (e.g., a driver’s license). Environmental
knowledge of this role allow the agent to have a local representation of roads and road signs. We limit this knowledge
because it is not necessary for the agent to know all the roadsand traffic signs on the table. Therefore, the environ-
mental knowledge is acquired by the agent through its field ofvision. This local environment is sequentially updated
at each movement. Social knowledge makes it possible to manage difficult situations with other agents (giving way
to emergency vehicles, not colliding with the vehicle in front, etc.). The role is composed of a large set of rules that
define a set of actions.

The notion of contextof theHCI layer is a subset of the agent’s environmental knowledge. The context knowl-
edge (KC) of an agent is composed of the triplet:<User, Platform, CollaborativeEnvironment>, as proposed in§4.1.
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We propose to use this triplet in the definition ofKC with KC.U being the knowledge context of the User,KC.E the
knowledge context of the nature of the Collaborative Environment,KC.P the knowledge context of the Platorm. Thus,
we have:KC = {KC.U,KC.E,KC.P}.

The Context Knowledge allows an agent, through its roles, toadapt its interaction with the users and the other
agents. Other interactions between agents are deduced fromtheir classes. For example, an elementary principle
between Virtual Agents and Tangible Agents relies on their interactions. A tangible agent/object can act on a virtual
and/or tangible agent/object. In other words, a tangible agent/object’s movement can push a virtual agent/object or
another tangible agent/object, whereas this is not the case for a virtual agent/object. A virtual agent/object cannot act
on a tangible agent/object.

The list of roles is dynamic for a given agent; this one can receive or reject some roles. We propose a role
management procedure based on three major notions for a given role:

1. The pre-requirements that an agent must respect to be allowed to receive a role.
2. The implications that define a role’s consequences on an agent (e.g., the addition, the modification of the agent’s

personal characteristics).
3. The coherence management of the role aggregation or combination process.

The pre-requirements and consequences are stored in the personal knowledge (KProle) of the roles.
To manage the dynamic lists of agents’ roles, we use theManagerAgentin reference to the class diagram in Figure

5. The description of roles and agents are fundamental principles for developing an application. In the next section,
we will use the proposed model in a case study highlighting these concepts.

5. Case study: a simulation of road traffic management

In this section, we present a case study related to the simulation of road traffic management. This context-
awareness situation makes the various interactions with the interactive table visible (e.g., user collaboration or ad-
justment of the number of users and their positions around the table). In this simulation, we studied the possible
interactions between virtual and tangible agents/objects. In this case, theHCI andMAScannot be used independently
and are integrated into the road traffic management simulation, which is described step by step.

5.1. Consideration of the actors implied in the simulation

In the research literature, the most common cases of context-awareness intervene during platform modifications
(generally restricted) when users leave their personal computer and use a PDA or another mobile platform. In this pa-
per, context-awareness does not focus on platform modifications. The interactions will focus on using theTangiSense
table with tangible or virtual objects.

In this case study, a user, who is responsible for the infrastructure, initially occupies the interactive table’s
workspace alone. He can thus use all available space and all of the virtual and tangible objects needed in the de-
sign task. Two other users, a security expert and a site foreman, are able to work collaboratively with the person
responsible for the infrastructure, but they have their ownobjects to use for the task (Figure 6). This change of context
must be detected in order to adapt the interface to each expert user and to allow them to use their own objects.

The new users (i.e., the security expert and the site foreman) put their objects(equipped with one or moreRFID
tags) on the table. An object with aRFID tag can be identified and thus detected (We do not explain the process of
authentification in this paper). The table detects the new users’ objects and notifies the original user (i.e., the person
responsible for the infrastructure) that he will not longerbe working alone. TheHCI then adapts the display of the
preceding information so that the table is able to “share” the space among all of the users and associate each object to
its user5. Since the users work collaboratively, it is not necessary to adapt the principal display6.

5In other types of application, it would be possible to highlight the objects of each expert by associating each tangible object with a virtual
object (e.g., a different color halo under the objects of each expert).

6One can note however that the specific data to each expert must be marked according to the location of each user. For example, the security
expert user must have safety markings for his/her position. Therefore, the context of use must be adapted [31].
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Figure 6: A context-awareness situation: individual (leftpart) and collaborative (right part) use of theTangiSensetable with tangible objects

Figure 7 shows the context according to the classification system proposed in section 4.1. This figure shows the
initial context (top table) and the modified context (bottomtable). The number of users using the interactive table was
modified. The profiles of the new users were then added, as wellas the relationship between the users, if necessary. In
this case, the user (U1) was assumed to be the colleague ofU2 andU3. The environment became collaborative and
co-localized.

This case study highlights the criteria proposed in section4.1. It also justifies our context model and validates it
through a simple example of interactive table use. Our example demonstrates that it is essential to adapt our model
according to the use context of interactive tables, especially when using tangible objects.

5.2. Road traffic management
In the road traffic management simulation, vehicle agents represent driverswho drive on a road network. The road

signs are the tangible agents/objects, and the vehicles and the road network are the virtual agents/objects (i.e., are
shown on the table with a video projector). The rules for the driver role are defined according to the Highway Code.
Vehicle agents have to choose the rules according to their interactions with the others, their perception of the other
vehicle agents and the environment in which they are acting.

5.2.1. Agent concepts useful for the simulation
The simulation application proposes a set of facilities used by the person responsible for the infrastructure, the

security and/or site foreman experts to manage road traffic. Its main objective is to optimize road traffic, like Balaji and
Srinivasan [3] but using an interactive simulation, by avoiding traffic jams and by improving the emergency services.

For all applications based on the interactive table, we defined sets of tangible and virtual agents for the road traffic
simulation:

• Tangible agents: they represent tangible objects equippedwith one or moreRFID tags. These objects corre-
spond to road signs, traffic lights and some tangible actions. Some of the objects represent behaviors that can be
associated to the agents. For instance, with a tangible object linked to an “ambulance” behavior, we can check
the driver behavior and modify the behavior of a driver who has the “no breakdown” pre-requirement. We just
have to place this object in the vehicle position of the driver projected on the table.
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U 1

User 1
Vocation: person responsible for the infrastructure
Skill: consulting, network, economical conception,
etc.
UserPosition: in front of the table

E
Time: 9:00
Collaborative Environment: not applicable

P

Multi-user: yes
Screen size: 1 m×1 m
Objects: tangible and virtual

⇓ Changes

U

1
User 1
Relation:U1 colleague ofU2 andU3
UserPosition: in front ofU3, right ofU2

2

User 2
Vocation: security expert
Skill: security, town-planning, organization
UserPosition: right ofU3 to the left ofU1
Relation:U2 colleague ofU1 andU3

3

User 3
Vocation: site foreman
Skill: civil engineering
UserPosition: left ofU2 in the front ofU1
Relation:U3 colleague ofU1 andU2

E
Time: 14:00
Simulation speed: *2
Simulation speed: *5
Collaborative Environment: colocalised

P
Objects: tangible and virtual (road signs, traffic
lights, roads, intersections, cars, etc.)

Figure 7: A context-aware situation: the state of the environment based the context model; Top: one user (U1); Bottom: three users (U1, U2, U3)

• Virtual agents: projected on the table, they represent driver agents and service agents. For example, theGenius
agent collects information about agent positions, informsagents about their environment, and transfers infor-
mation to theHCI layer; and theroles Manageragent stores and/or transmits the different roles used while the
application is running.

The context model (Figure 7) is included in the role description. It is updated when the middleware layer gives
information (i.e., addition, withdrawal, displacement) to a tangible agent about a modification of the tangible object to
which this agent is linked. This tangible agent can switch the user, the platform or the environment. In the road traffic
simulation, the environmental context allows the speed at which the simulation progresses or the level detail of roads
to be described, for example. These changes in situations are generally caused by the users and their skills, which
allow them to test new situations. The number of users aroundthe table and their skills can interact with the agent
roles. Whenever a change is detected, information is sent to each agent to update their knowledge base. Depending
on the situation, the drivers (vehicle agents) must adapt their behavior and if necessary compute new ways to reach
their objectives.

Other tangible objects can also be used to create new vehicles on the table (i.e., the users put the stamp on the
table) or to zoom in so to have an overview of traffic or of a specific part of the environment.

The environmental knowledge of vehicle agents is used to represent roads and road signs in the vicinity. The road
network is stored in the environmental knowledge of vehicleagents as a weighted graph; it contains the directions,
the speed limits, and the number of lanes. Social knowledge allows critical situations to be managed in terms of other
agents (e.g., giving way to vehicles that have priority) [20].

For instance,RespectS topS ignrule relies on the following action plan consisting initially in stopping the vehicle
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and the driver looking left and right and then acting on traffic. The rules of a role are sorted by their level of priority.
This priority is dynamic and computed at run time. For example, at a given time, a rule that we callbendreliant on
the following plan consisting in calculating the bend degree and adjusting the car speed and finally turning the wheel
can be subject to another rule (for example,RespectS topS ignhas priority overBend) to avoid conflict.

5.2.2. Illustration and validation on a scenario
The scenario shows an example of a road traffic microscopic simulation (in the sense of [35]). The road map

and the vehicles are projected on the interactive table by the HCI layer. The users can interact with this map by
adding/removing/moving tangible objects equipped withRFID chip(s); these objects represent road signs, but some
of them can be used to slow down the simulation, zoom in on/out from the map, or move the map.

When a vehicle agent is at an intersection, it receives messages from the tangible objects in the local environment
that represents the road signs and adapts its behavior according to its state, its roles and its local environment. The
user can move the road sign to different intersections to see the impact on road traffic.

TheMASmanages messages from the interactive table, in addition tointer-agent messages. When the user moves
an object on the surface of the table, theRFID antennas, composed of nine active zones, send the object positions to
theMAS.

To illustrate the interactions with the tangible objects, the virtual objects and the users, we propose a scenario
making it possible to follow the collaboration of three fieldexperts, implied in the “road traffic management” (Table 2).
This scenario illustrates an extract of a work session exploiting a road traffic simulation in the town of Valenciennes,
in the north of France. The three experts must consider various possibilities concerning the installation of crossroads
and maximum speeds for certain roads related to the crossroads.

Table 2: Detailed stages of the scenario

Stage 1 – Initialization of the map:
After having selected a working area using JOSM (Java Open-
StreetMap Editor) software, the data is recovered from an XML file
and transformed into a directed and balanced graph. The map is then
generated starting from this graph and is displayed using a video-
projector.

Stage 2 – One simulation actor zooms in:
An expert uses a Zoom object to modify the map scale. This object is
associated to a tangible agent having the zoomMap function (integer
val): if the val variable is positive, an enlarging of the video-projected
map is done; and ifval is negative, the map is reduced. The rotation
direction is determined according to the relationship between the old
and the new radian value of the object.

Stage 3 – The cars arrive at a crossroad:
When the map is loaded, the crossroads are not initialized andeach
entry is symbolized by a white square. Vehicles representedby vir-
tual agents are generated in the graph according to a flow at entrance
points simulating a traffic flow. The vehicles then move then on the
graph either randomly or with objective lists defined at the initializa-
tion stage. To solve the shortest path problem to go from point A to-
wards pointB, the vehicles use the Dijkstra algorithm. The operation
principle of the vehicles agents is based on a traditional model of per-
ception/decision/action.
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Stage 4 – The security expert places traffic lights objects at each
crossroad:
A virtual agent is in charge of a crossroad and manages each entry. It
prohibits or authorizes the vehicles to go through according to the road
signs. On this figure, the security expert places traffic lights objects and
initializes the various entries (an entry is initialized when a LEDs halo
under the object becomes green). The agents in charge of traffic lights
then communicate with the crossroad agent by sending a message to
inform it of the signs which should be set up. In this situation the
crossroad agent has as many behaviors as entries (here three). These
behaviors are finite-state machines and make it possible to go from a
greenstate to ared state, from ared state to anorangestate, and from
anorangestate to agreenstate according to the evolution of time.

Stage 5 – Consideration taking of the traffic lights objects by the
crossroads:
When the indication of the crossroads is set up, the traffic lights are
activated one by one in agreenstate, which authorizes the vehicles to
pass through. The setting up of this state implies the modification of
the graph node associated to the crossroad entrance which the vehicles
use to travel. The experts can analyze freely and easily the vehicle be-
haviors at this intersection (with the same types of concerns as in [13]).

Stage 6 - The security expert proposes a speed limit of90km/h be-
fore the crossroad:
The security expert places a road sign to limit the road to 90 km/h. The
agent in charge of this object modifies the vertices of the global graph.
The maximum speed that the vehicles can reach is updated fromthe
road sign until the next intersection. The other vehicles update their
speed as soon as they arrive near the limitation.

Stage 7 – The person responsible for the infrastructure proposes
another speed limit of50km/h when approaching a crossroad:
The person responsible for the infrastructure chooses to test the effect
of the speed change of the road by limiting it to 50 km/h. When two
tangible speed limit objects are placed on the same road, it is the last
road sign placed which is taken into account by the system.

Stage 8 – The site foreman indicates that there will be some road-
works:
Finally, the person responsible for the infrastructure removes his panel
because the site foreman has to indicate, using a warning road sign that
there will be roadworks. This panel can be linked with the 90 km/h
speed limit and thus results in dividing the maximum speed bytwo
(choice of the developers of the simulator). Consequently,the vehicles
must slow down and go from 90 km/h to 45 km/h starting from new
sign.

The proposed application is in the prototyping stage. It is written in Jade [6], a FIPA standard software imple-
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mented in Java, and used to simplify the deployment for the multi-agent applications. This tool allows without effort
to create and activate the different agents, and to process exchanged messages between these agents.

6. Discussion

Although interactive tables are beginning to emerge from academic and industrial laboratories, and these tables
are beginning to be commercialized, few (or none) software products are provided with the hardware. In addition,
most software applications are musical applications, games, and applications managing multimedia data, especially
pictures. With respect to industrial problems, the simulation is very little, or not at all, dealt with in interactive tables,
while the economic stakes are potentially very important.

The simulation application is significant for the followingreasons. It shows that the interactive table, coupled
with tangible objects (withRFID technology, in our case) is a natural support to interactions between different users.
This work seems to be coherent with other approaches [29, 9, 36], which have contributed to tangible interactions,
whatever the technology used. It also shows that the consistency of the information related to the simulation and the
interactions in different contexts, which may vary considerably during a simulation session, and between tangible and
virtual objects, is effectively supported by the multi-agent system. To our knowledge, this approach has never been
used yet during the simulation of interactive table. Moreover, it can be reused for other applications, which are not
described in this paper. We have implemented other applications that are different from traffic simulation, using a
multi-agent approach for this interactive table [31].

Moreover, in most of the research work, the researchers do not explicitly take into account the decision-makers
in the traffic simulation. Nevertheless it is important if one considerssituations in which the decision-makers have
to make choices among several alternatives (for example to study the environmental impact of different possible
modifications in the road infrastructure). The underlying question could be expressed as the way to coordinate several
human actors, each with specific functions, who must meet therequirements of their complex tasks. So we have
proposed in this paper to represent different human actors (person responsible for the infrastructure, security expert,
site foreman) acting with their tangible (i.e., physical) objects, each of these actors having their own goals to achieve
(different context of use). The interactions between these different human actors depend not only on the direct actions
on the agent-based simulation (in particular in the application presented in the paper, on the infrastructure, concerning
the safety problems and considering the constraints linkedto roadworks), because they are also the result of direct
verbal communications. The modification of the infrastructure is thus directly taken into account by the simulated
agents (vehicles, traffic lights,etc.); the response by a mathematical approach would not usuallybe immediate.

More generally, the use of interactive tables based on aMASapproach leads to analysis about people interacting
with agents, which have not yet been explicitly considered in the literature (as regards neither interactive tables nor
multi-agent approaches). Indeed we are confronted with problems, which besides being very difficult to analyze,
involve mutual influence of decisions. The human decision-makers take decisions in a more or less collaborative
way (that can be considered as a system of decision-makers);one can consider also that they propose implicitly or
explicitly behavioral rules to be applied in the studied system (in our case the agent-based traffic system). At the
level of the studied system, the agents react immediately tothe environment; they can also generate other constraints,
which have to be treated by the human decision-makers. It becomes clear that in this way, each system (MAS, group
of decision-makers around the table) influences the others mutually. Such new simulation possibilities clearly show
that a new research field is now open, regarding simulation onan interactive table, in collaborative contexts involving
humans and software agents.

In short, we suggest a new research path for proposing and evaluating new simulators with interactive tables, in
which the objects involved in the simulation can be both tangible and virtual objects. In this context, the users, through
natural interactions, may themselves become the actors of the simulation.

7. Conclusion

In this paper, we proposed a new type of simulation. It relieson an interactive table, calledTangiSense, and a set
of tangible objects. These objects can be used and manipulated by a group of users, who are the decision makers,
cooperating together around a given problem (e.g., for the design of a complex system).
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TheRFID technology makes it possible to trace objects and to transmit information. We presented a state of the
art about context and context-awareness (e.g., interaction context or context of use). We proposed a context model
based on this state of the art and enhanced with new context criteria for using theTangiSenseinteractive table.

We proposed a multi-agent system appropriate for managing smart objects and the interaction context. ThisMAS
can be used with any application. It can combine different roles for the agent responsible for managing virtual or
tangible objects. A case study in road traffic management simulation was proposed in order to illustratethe context-
awareness mechanism and the multi-agent system.

This simulator allows different users to work together cooperatively at the interactive table by directly manipu-
lating physical objects of a road infrastructure, which arepart of tangible components of the simulation (e.g., traffic
signs, lights). The objective is now to develop other demonstrators of new types of simulation systems, allowing
interactions between several types of users. Many evaluations can also be envisaged.
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