
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

An efficient Framework for Power-Aware Design of
Heterogeneous MPSoC

Rabie Ben Atitallah, IEEE Member, Eric Senn, Daniel Chillet, IEEE Member, Mickael Lanoe, Dominique Blouin

Abstract—Currently, designing low power complex embedded
systems is a main challenge for corporations in a large number
of electronic domains. There are multiple motivations which
lead designers to consider low power design such as increasing
lifetime, improving battery longevity, limited battery capacity,
and temperature constraints, etc. Unfortunately, there is a lack
of efficient methodology and accurate tool to obtain power/energy
estimation of a complete system at different abstraction levels.
This paper presents a global framework for power/energy estima-
tion and optimization of heterogeneous MultiProcessor System
on Chip (MPSoC). Within this framework, a power modeling
methodology is defined and an open platform is developed. Our
methodology takes into account all the embedded system relevant
aspects; the software, the hardware, and the operating system.
The platform stands for Open Power and Energy Optimization
PLatform and Estimator (OPEN-PEOPLE). It includes diverse
estimation tools with respect to their abstraction levels in order
to cover the overall design flow. Starting from functional esti-
mation and down to real boards measurements, our platform
helps designers to develop new power models, to explore new
architectures, and to apply optimization techniques in order
to reduce energy and power consumption of the system. The
usefulness and the effectiveness of the proposed power estimation
framework are demonstrated through a typical embedded system
conceived around the Xilinx Virtex II Pro FPGA platform.

Index Terms—MPSoC, power modeling, system level estima-
tion

I. INTRODUCTION

THE increasing complexity of applications and System-
on-Chip (SoC) architectures places embedded system

designers in front of a very large design space. Exploring
the design space to reach an efficient solution becomes very
difficult, especially when the design must satisfy a large
number of constraints, such as power and energy consumption.
These constraints have led to introduce the usage of Multi-
Processor System-on-Chip (MPSoC) which allow to integrate
very complex systems. These MPSoC are generally hetero-
geneous and can contain memories (Cache, SRAM, FIFO,
etc.), processors (GPP, DSP, etc.), interconnecting elements
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(Bus, Crossbar, NoC, etc.), I/O peripherals, and reconfigurable
logic. To use the tremendous hardware resources available in
next generation MPSoC efficiently, rapid and accurate design
space exploration (DSE) methods are needed to evaluate the
different design alternatives. MPSoCs must be designed with
custom architectures to balance the implementation constraints
between the application needs (i.e.: high computation rates and
low power consumption) and the production cost. Neverthe-
less, the significant increase of complexity in such systems
prevents designers from controlling the complete design flow.
To guide the designer during the different design choices, the
development of an efficient methodology and associated tools
for power estimation and optimization is mandatory.

To be acceptable, the proposed methodology must include
all the system-on-chip aspects, i.e. architecture/hardware, ap-
plication/software, and management/operating system. Fur-
thermore, the associated tools must be able to provide results
from several description levels of the in-development system.
Indeed, during the first design steps, designers have a very
high description granularity of each part of the corresponding
system. Nevertheless, first evaluations of power consumption
can be necessary to make rapid and reliable design choices.
This permits a rapid exploration of a large solution space
by eliminating non-interesting regions from the DSE pro-
cess. Gradually, the possible alternatives will be reduced by
refinement of each part of the system. At a lower design
step, the designer needs more accurate tools to explore the
selected solutions in order to locate the most power-efficient
configurations. At each step, different power evaluations can
be extracted from a software or a hardware component relying
on parametric power consumption models.

In the design flow, the power estimation process is centred
around two aspects: the power model granularity and the sys-
tem abstraction level. The first aspect concerns the granularity
of the relevant activities on which the power model relies. It
covers a large spectrum that starts from the fine-grain level
such as the logic gate switching and stretches out to the coarse-
grain level like the hardware component events. Fine-grain
power estimation, in general, yields to more correlated model
with data and to handle technological parameters which is
tedious for system level designers. On the other hand, coarse-
grain power models depend on micro-architectural parameters
that cannot be determined easily. Let us highlight that the
power estimation accuracy is not altered by the chosen gran-
ularity level, however it depends first on the characterization
phase of each activity and second on the computing of the
related occurrences while carrying out the application. Even
we used coarse-grain activities, the characterization in term
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of power or energy cost can be done at a lower level (board
measurements, transistor, gate or RTL) and after that these
values can be used at a higher abstraction level. The second
aspect involves the abstraction level on which the system is
described. It starts from the usual Register Transfer Level
(RTL) level and extends till the algorithmic level. As we
go from higher to lower levels, the power evaluation time
increases, which is indirectly proportional to the accuracy.
The above presented aspects are correlated. Indeed, different
power estimation speed/accuracy trade-offs can be achieved
according to the power model granularity and the abstraction
level from which the relevant activities should be extracted.

To answer the above challenges, the OPEN-PEOPLE
project 1 proposes a complete platform to ease the design of
complex systems. It aims at providing a complete platform i)
to allow rapid power/energy estimation for complex hetero-
geneous systems, ii) to test different optimizations in order to
significantly reduce the power consumption of the system. Our
contributions in this paper can be summarized as follows:

• First, we have defined a power modeling methodology
that concerns the software and hardware layers to cover
the overall embedded system consumption. Our method-
ology defines the relevant activities on which the power
model relies. These activities are characterized using
measurements on real boards. Afterwards, power models
are elaborated by regression functions or simply recorded
as multi-entries look up tables.

• Second, several abstraction levels are considered for
power estimation incorporating the design flow steps.
Starting with functional estimation, passing through
simulation refinement, up to a native execution on
the target platform (GPP, DSP, FPGA, etc.), different
speed/accuracy trade-offs are obtained.

• Third, the OPEN-PEOPLE platform has been developed.
It provides designers an adequate environment to build
up new power models and to make relatively accurate
estimates using tools at different abstraction levels.

This paper is organized as follows. After section II which
presents the related works, section III exposes an overview
of the OPEN-PEOPLE project. Our proposed system power
modeling methodology is presented in section IV. In order
to evaluate our approach, section V presents the experimental
results for a typical MPSoC embedded system designed around
the Xilinx Virtex II FPGA board. Finally, Section VI concludes
this work and presents some perspectives.

II. RELATED WORKS

Significant research efforts have been devoted to develop
tools for power consumption at the different abstraction levels
in embedded system design. Among the existing tools for low
abstraction levels, we can mention SPICE [1], Diesel [2], and
PETROL [2] which operate at the RTL level. These tools are
fairly accurate, but require significant amount of simulation
time. At such low level, tools are used to optimize power
consumption of hardware blocks but not to evaluate entirely
complex SoC architectures.

1www.open-people.fr

To cope with the evaluation time, several tools have been
developed for power consumption estimation at the system
level. Among the wide-used approaches, we quote tools
based on micro-architectural cycle-level simulation such as
Wattch [3] and Simplepower [4]. They define fine-grain power
models by characterizing component features such as a set of
instructions or functional blocks using analytic power laws.
The contributions of the internal unit activities are calculated
and added together during the execution of the program on
the micro-architectural simulator. This approach needs low-
level description of the architecture which is often difficult
to obtain for off-the-shelf processors. Though using cycle-
level simulators has allowed accurate power estimation, the
simulation time of complex MPSoC needed to achieve the
results is still significant.

In an attempt to reduce simulation time, recent efforts
have been done to build up fast simulators using Transaction
Level Modeling (TLM) [5] [6]. SystemC [7] and its TLM
2.0 kit have become a de facto standard for the system-
level description of SoC. The TLM kit proposes different
coding styles to offer concepts for loosely and approximately
timed models. However, there is no a standard definition for
concepts or methodologies that involves power estimation at
the TLM level and this aspect is still under research and is not
well established. In [8] and [9], a methodology is presented
to generate consumption models for peripheral devices at
the TLM level. Relevant activities are identified at different
levels and granularities. The characterization phase is however
done at the gate level from where the activity and power
consumption for the higher level are deduced. Using this
approach for recent processors and systems is not realistic. In
fact, recent processors have complex architectures; they may
contain several pipeline slots, hierarchical memory system (L1
and L2 cache levels), and specific execution units such as
the NEON architecture for the ARM Cortex A8. The power
characterization phase at the gate level of each activity of these
blocks needs a huge number of experiments and significant
simulation time. Dhawada et al. [10] proposed a power es-
timation methodology for PowerPC and CoreConnect-based
system at the TLM level. Their power modeling methodology
is based on a fine-grain activity (processor instruction, data
word transmission via the bus, etc.) characterization at the
gate level which needs a huge amount of development time.
Such fine characterization leads to a high correlation with data,
hence authors announced a quite significant power estimation
error. Compared to the previous works, our proposed method-
ology for power estimation also partially uses SystemC/TLM
simulation with coarse grain power models.

For the functional level, Tiwari et al. [11] have introduced
the concept of Instruction Level Power Analysis (ILPA). They
associate a power consumption model with instructions or
instruction pairs, which are characterized using measurements
on a real chip. The power consumed by a program running
on the processor can be estimated using an instruction-set
simulator to extract instruction traces, and then adding up the
total cost of the instructions. This approach suffers from the
high number of experiments required to obtain the model. In
addition, it can be applicable only for processors. To overcome
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this drawback, Laurent [12] et al. proposed the Functional
Level Power Analysis (FLPA) methodology that was success-
fully applied on building high-level power models for different
hardware components (processor, memory, I/O peripherals,
FPGA, etc.). FLPA relies on the identification of a set of
functional blocks which influence the power consumption of
the target component. The model is represented by a set of
analytical functions or a table of consumption values which
depend on functional and architectural parameters. Once the
model is build, the estimation process consists of extracting the
appropriate parameter values from the design, which will be
injected into the model to compute the power consumption.
Based on this methodology, the tool SoftExplorer [13] was
developed. It includes a library of power models for simple to
complex processors. Recently, SoftExplorer has been included
as a part of Consumption Analysis Toolbox (CAT) [14].
CAT gives relatively precise power estimation results in a
surprisingly small time. Indeed, only a static analysis of the
code, or a rapid profiling are necessary to determine the input
parameters for the power models. However, when complex
hardware or software is involved, some parameters may be
difficult to determine with precision. For instance, this is
the case of cache miss rates in complex processors. This
lack of precision may have a non-negligible impact on the
final estimation accuracy, depending on the sensitivity of the
parameter. In order to refine the value of sensible parameters
in a reasonable delay, we propose in this paper to couple
SystemC/TLM simulation with functional power modeling.
Thus, a reasonable trade-off between estimation speed and
accuracy will be reached.

For the reconfigurable circuits (FPGA), several studies have
been done during last years. One of the first modeling proposal
has been done in by Garcia et al. in [15], [16]. In these
works, the power modeling is measured for the different
elements of the circuit (LUT, register, I/O, clock tree, etc). The
power consumption measured in this work concerns the active
component, but the configurable memory is not considered,
and the reconfiguration aspect is not evaluated. In [17], authors
explain how the pipeline of some hardware functions can
reduce the power consumption by the reduction of the clock
frequency. In general, applying pipeline technique leads to
increase the area of the hardware block. One important aspect
is then to evaluate the trade-off between dynamic and static
power. In particular, if the area of one specific hardware block
increases the static power of this block will increase too. High-
level estimations have also been developed for this type of
circuit. For example, the works presented in [18] and [19]
propose to model the power by using high level characteristics
of the system. In [18], the signal statistics are used to extract
the activity and then compute the power consumption. From
the signal activity, it is possible to evaluate the activity of each
hardware block and then to extract the power/energy consump-
tion of each block. A composition of theses consumptions
enables to evaluate the global consumption of the system.
In [19], the high level characteristics of the functionality
is used to model the power consumption. For example, the
frequency of the hardware implementation of a functionality
is used to estimate the power/energy consumption, and a sum

of all the powers consume in the circuit enables to evaluate
the power/energy of the system. When considering operating
system level, the service which ensures the task scheduling and
the task placement have an impact on the power consumption,
and in particular on the static power consumption. The work
presented in [20] shows that the reconfiguration must be
done as late as possible to prevent leakage current in the
reconfiguration memory, but this can be very interesting if and
only if it is possible to configure a usable area of the circuit in
a very low static power. Even if this technique exists, the trade-
off between the configuration of this state and the static power
saved by this specific configuration must be evaluated. The
mentioned above FLPA approach was also applied to develop
consumption models for FPGA at the system, algorithmic [21],
and architectural levels [22], and to assess the consumption
overhead due to hardware reconfiguration phases [23].

The recent evolution of the FPGA circuits, and in particular
their capability to be dynamically and partially reconfigured,
leads us to consider specific managements. To ensure this man-
agement, we propose to model the power/energy consumption
of the reconfiguration step. From this model, we will develop
scheduling algorithms which consider the power/energy con-
sumption of the block during its activity and the power/energy
consumption of the block during its configuration step. In
order to be complete, our work will also include evaluation
of the static power of the configuration memory.

The role of an operating system is essential in the con-
text we are discussing here (heterogeneous multi-processors
systems) mainly to benefit from a large variety of services
to ease the exploitation of embedded platforms (cooperative
and pre-emptive multi-tasking, process management, multi-
threading, etc.) and to offer abstraction of the hardware that
permit to reduce the time to design. Its impact on the energy
consumption is however non-negligible. Several studies have
studied this impact without actually proposing consumption
models. [24] and [25] shown that the energy consumption can
rise from 6% to 50% with an OS, depending on the application,
and that it increases with the processor frequency and supply
voltage. [26] shown that the OS can consume from 1% to
99% of the processor energy depending on the services called.
In [27] was evaluated the overhead of using software trusted
platform in the context of trusted boot Linux OS. A general
study on aspects of OS design to improve energy efficiency
was proposed in [28]. An other trend is to analyze the OS
energy overhead from simulations at the micro-architectural
level like with Simbed in [29], [30], or at the instruction
level like with Skyeye [31], [32]. Such approaches inherit the
drawbacks of the simulation level involved (time consuming
cycle level simulations, simple processor models, larger errors,
etc.) as explained formerly. Actual consumption models are
only proposed in a few works [33], [34], or [35]. They however
only consider simple systems or only sub parts of the operating
systems functionality or services, and furthermore may be
again limited by the accuracy of the energy simulators used.

In the frame of the OPEN-PEOPLE project, the particularity
of our approach is that it is based on actual measurements
on the electronic boards, and that it aims at proposing
consumption models for every component in the embedded
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systems considered. Following this direction, we propose
models to take into account complete real-time embedded
systems, including complex processors, reconfigurable compo-
nents (FPGA), and dedicated OS services such as scheduling,
context switching, or inter-process communications [14], [36].

III. OPEN-PEOPLE PLATFORM

OPEN-PEOPLE stands for Open Power and Energy Op-
timization PLatform and Estimator. The platform is defined
for estimation and optimization of the power and energy
consumption of complex electronic systems. Among the target
systems, we mention heterogeneous MPSoC such as the TI
OMAP 3530 [37] and reconfigurable circuits like the Xilinx
Virtex5 FPGA [38]. Our platform allows power estimation
using:

• direct access to the hardware execution boards and the
measurement equipments. This first alternative enables
designer to measure the real power dissipation of the
target system. To do so, the low level description of
the system (C, VHDL, etc.) is carried out natively on
the target board. Furthermore, this alternative is used
to build new power models for hardware or software
component as it will be described in section IV. Several
boards have been integrated in our automated bench
and equipped with special gear to allow for power con-
sumption measurement. Among those boards, one may
find some processor based boards (OMAP 3530, OMAP
L138) or some FPGA based boards (Spartan 6, Cyclone
3,LS, Aria 2 GX, Virtex 5, Virtex 2).

• a set of Electronic System Level (ESL) tools coupled
with accurate power models elaborated within the first
alternative. Mainly, we offer tools at the functional and
transactional levels in the context of multilevel explo-
ration of new complex architectures.

The figure 1 presents a global view of the platform which is
based on two main parts; the software part and the hardware
part. The software user interface ensures the access to the
power measurements and helps the designer to define energy
models for the hardware and software system components.
From the measurements, the designer can build models and
compute an estimation of the energy and/or power consump-
tion of its system. In addition, from this software user inter-
face, the hardware platform can be controlled. The hardware
part consists of the embedded system boards, the measurement
equipments, and the computer that controls these different
elements and schedules the list of measurements required by
different users.

In the frame of the OPEN-PEOPLE project, new methods
and tools to model the different components of an hetero-
geneous system architecture are proposed including proces-
sors, hardware accelerators, memories, reconfigurable circuits,
operating system services, IP blocks, etc. For reconfigurable
system, the dynamic reconfiguration paradigm will be modeled
to estimate how this feature can be used by Operating System
(OS) to reduce the energy consumption. Furthermore, this
project studies how the complete estimation and validation
can be performed for very complex systems with a small
simulation time.

IV. SYSTEM POWER MODELING METHODOLOGY

In the following, we may refer indifferently to energy or
power models, knowing that passing from one to the other only
involves the actual execution time of the object considered.
Power and energy consumption are equally important concerns
to us: the first is directly linked to the power dissipation and
operating temperature of the hardware, the second impacts
on the batteries size and lifetime. Also, we will use later the
additive property of energy to build consumption models for
complete systems.

In order to obtain the global consumption of a complete
system, we propose a methodology mainly based on four
phases, which are presented in the following paragraphs. The
paragraph IV-A explains how the more consuming parts of
a system are identified at first. Paragraph IV-B explains how
the power and energy consumption of these parts is modeled
and estimated. Paragraph IV-C describes the building of power
models from consumption measurements, according to the
estimation methodology exposed. Paragraph IV-D shows the
usage of the developed power models in a power-aware design
methodology and the benefit of simulations in refining some
input parameters of the models to offer a better accuracy.

A. Consumption sources identification

The aim of this first step is to identify the sources of
power consumption in the embedded system. As shown in
figure 2, we consider an embedded system in his entirety:
the software (i.e. the application code) at the top level, the
hardware (the electronic board onto which the code is running)
at the lowest level, and between them the operating system
and associated services. Our estimation methodology is based
on actual measurements on the targeted hardware. Our aim
here is to identify the more consuming devices and services,
and to make connection between them, and the tasks to
be executed. For instance, one task obviously solicits the
processor, cache, and memory, but also involves the process
manager and the scheduler, which begets context switches and
eventually more processing and memory accesses. The same
task may also explicitly use Inter Process Communication
(IPC) services, or need access to external peripherals. As we
have seen in the state of the art section, the operating system
energy overhead may take a considerable part of the overall
system’s consumption. It actually depends on the applications
complexity and the number of services called. Our own works
have corroborated the fact that the main contribution to be
considered is coming from the memory and peripheral, and
thus is strongly connected, beside processing, to data transfer
and storage activities inside the system.

For the hardware tasks, the sources of consumption are
generally different. Indeed, hardware tasks are generally data
intensive tasks and the designer normally doesn’t use operating
system service calls for this type of computation. The source
of consumption for one specific task is then not linked to the
operating system execution but it is only dependent from the
execution of the task on the configurable space.

Nevertheless, each hardware task consumes and/or produces
data from/to others blocks (processors, memories, I/O, etc.),
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Fig. 1. Global view of the OPEN-PEOPLE platform.

Fig. 2. View of an embedded system and application

so an important overhead due to data transfers can appear for
these tasks. For example, when a software task running on a
processor sends data to a hardware task, it can be compared as
driver function call and it produces an energy overhead during
the IPC OS service call of the software task.

B. Estimation methodology

The estimation methodology directly inherits from the pre-
vious analysis. In fact, even if the consumption profile may
differ from one system to an other, some general rules exist
that constitute the basis of our approach.

The different contributions of system parts in the global
energy consumption (called here energy levels), come from
the experimental modeling of different embedded applications
and platforms, which is based on consumption measurements.
The class of systems considered, as shown on figure 2, are
processor or multiprocessor based, with or without operating

systems. Operating systems studied so far are POSIX compli-
ant. The consumption models presented in the next section,
which are included in the Open-PEOPLE framework library,
rely on the contributions exposed in this section. There is
no model of computation really involved at this stage, since
the global application model is intended to a static analysis
of features related to the consumption. Simulations may be
performed as a mean to refine those features in subsequent
steps of the design flow (as described in section IV-D). Figures
in this section describe the general context of the application
class we are considering.

Variations of the power consumption with the time can be
modeled as presented on figure 3 for software tasks running
on processors, and on figure 4 for hardware tasks running
on FPGA. Note that the energy is simply the area of every
boxes on these figures. On figure 3, the bigger contribution is
Pground, which represents the power consumption of all the
components when the system, without OS, is not running any
application. This power consumption can be quite important
especially for embedded systems on FPGA. Energy overhead
of the different tasks and OS services comes in addition to this
first one. More or less additional boxes may be considered
depending on the actual system and application. To define
these boxes, simulations of OS scheduling can help to extract
the execution scenario, to define the OS overhead [39], and to
propose dynamic power-aware techniques to optimize the con-
sumption at runtime [40]. Indeed, an embedded system may or
may not use a virtual memory subsystem, so the ”page fault”
box might disappear. Again, dynamic reconfiguration may
be used for reconfigurable hardware, and a ”reconfiguration
overhead” box should be added for each task reconfiguration.
Indeed, some tasks on the figure 3 might be implemented
in a FPGA circuit. We then refer to figure 4 to represent
the energy contribution of the tasks placed on this circuit.
Here, two Pground powers are represented. The first corre-
sponds to the power consumed by the configurable memory
plan which maintains the task configurations in place during
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the execution, while the second represents the static power
consumed by the active elements of the circuit (i.e. the static
power for the configurable logic elements, the digital signal
processing blocks, BRAM memories, interconnects, etc.). As
we show there, for each task configured (or reconfigured) in
the configurable space, an additional energy is necessary to
load the bitstream within the configurable memory plan. Our
experiments show that this energy mainly depends on the size
of the bitstream file which has an impact on the configuration
time, the position or the file content have a very limited impact
on the configuration energy. Note that the figure 4 illustrated
the partial and dynamic reconfiguration paradigm with the
possibility to configure a specific part of the circuit while
the remainder continues to execute the tasks. On this figure,
we have illustrated the first configurations for tasks HTaski,
HTaskj and HTaskk, for these first configurations, addi-
tional energies are necessary and this energy directly depends
on the configuration file size. We also illustrated a specific
scenario where the second execution of the task HTaski needs
a reconfiguration phase, while the third execution doesn’t need
new reconfiguration because no other task has been configured
at the same place. The figure 4 also shows the placer/loader
activities to manage the reconfiguration process. For each
reconfiguration, the placer/loader service is called, and the first
step consists in finding a sufficient area on the reconfigurable
area, the placer supports this job. The second step consists in
loading the bitstream within the reconfigurable memory, this
step is supported by the loader. As illustrated in the figure 4,
for each reconfiguration, the placer is always executed, but the
loader is optional when the task is already configured in the
reconfigurable area.

Fig. 3. Energy contribution of different parts of the application running on
a hardware platform (software tasks on GPP or DSP) (For a better reading of
the figure, the different boxes are not represented on the same scale)

The energy consumption of one software task may be
generally modeled as shown on figure 5. It is the addition
of the following contributions, or ”energy levels” as we use
to call them:

• L1: Eground is the ”ground” energy consumed during the
task τ execution (with execution time T (τ)). It is directly
linked to Pground.

• L2: δEτ is the task’s intrinsic contribution, without
operating system. δPτ power consumption includes the
consuming resources directly implied in executing the
task : the processor, with caches and primary memory
δPτ accesses. Like for the following δP , δPτ is the
difference between the power consumption considered at

Fig. 4. Energy contribution of different parts of the general application
running on a FPGA circuit (hardware tasks on FPGA)

this point, and Pground. A specific power model of the
targeted processor is used to assess δPτ .

δEτ = δPτ × T (τ)
• L3: δEtt is the basic OS energy consumption due to timer

ticks interruptions.
δEtt = δPtt × T (τ)

• L4: δEscheduler is the scheduler energy overhead. It
includes context switches and scheduling operations.
δEscheduler = (δPscheduler + Pground)× δTscheduler

• L5: δEIPC is the energy due to communication and
synchronization services.

δEIPC = (δPIPC + Pground)× δTIPC
• L6: δEdevice is the energy overhead incurred by accesses

to peripherals (Flash, Ethernet, etc.).
δEdevice = (δPdevice + Pground)× δTdevice

• L7: δEvm is the energy overhead due to the OS virtual
memory subsystem.

δEvm = (δPvm + Pground)× δTvm

It is remarkable that whereas a specific power model is
used for every processor targeted (to estimate δPτ ), dedicated
consumption models are defined for any additional OS services
considered. We chose here not to use the processor power
model for OS services in order first to keep the estimation
time low, and second to avoid looking for the service code in
the OS complete source code.

These previous contributions can be combined to define the
energy of tasks and the energy of operating system services
called by the task, as presented below

Eτ = Eground + δEτ (1)
EOSτ = δEtt + δEscheduler + δEIPC + δEdevice + δEvm

For the reconfigurable space, if we consider data intensive
computation tasks which are not preemptable (to ensure a high
performance execution) and without operating system service
calls, the model of energy consumption can be defined through



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 7

Fig. 5. A representation of the additivity property of energy : every surface
represents a contribution in the task’s energy consumption

the followings energy contributions

• Esground is the ”ground” energy consumed by the con-
figurable memory plan;

• Eaground is the ”ground” energy consumed by the active
elements of the global FPGA circuit. Even if these
elements are not configured, a static energy is consumed
by this part. We can note that the circuit can provide some
mechanisms to configure the circuit with a low power
static configuration which can significantly reduce the
static power. We don’t take this mechanism into account
in this study;

• Eti is the energy consumed by the hardware task
HTaski during its execution. This energy must represent
the consumption of the task with the corresponding data
transfers; We can note that if we want to propose more
flexibility, it is possible to define several implementations
for the tasks, more details can be found in [41], [42]

• Econfi is the energy necessary to configure the task
HTaski for its first execution. For this step, the operating
system must manage the configuration, and this is ensured
by the operating system service Placer/Loader in the
figure 2. The execution of this service leads to active
the file manager service of the operating system and
thus leads to consume an important energy to access to
the bitstream file ; The figure 4 doesn’t shows this energy
contribution begeted by the operating system calls, but
this energy is included in the operating system execution.
The Econfi presented here corresponds to the effective
configuration operation, which is the write operation into
the ICAP port (in the case of Xilinx circuit);

• Ereconfi is the energy necessary to reconfigure the task
HTaski for the other executions. If we consider that the
tasks are not preemptable, the context of the tasks doesn’t
have to be stored. In this case, Ereconfi = Econfi.

Finally, the global energy is defined as

Efpga = Esground + Eaground

+

Nht∑
i=1

(Econfi + Eti)

+

Nht∑
i=1

Nei−1∑
j=2

(Ereconfi ∗ βi,j + Eti) (2)

With Nht the number of tasks to execute within the recon-
figurable space, Nei the number of executions for the task
HTaski and βi,j an integer value equal to 1 if the task
HTaski must be reconfigured for the new execution of equal
to 0 if the task HTaski is already configured and just need
to be launched. The value βi,j depends on the execution order
of the tasks, which is dynamically decided (on-line) by the
operating system.

C. Consumption modeling / power models

The former Section IV-B presents the estimation process,
which can be seen as a global consumption model of the
complete application running on the system. The estimation
process computes the total consumption for the complete
application from the different power models of the system
components. The development of those power models is
presented in this section.

Our power models come directly from current measure-
ments on the targeted electronic boards. Our modeling ap-
proach, the Functional Level Power Analysis (FLPA), was
already discussed in former publications [43], [12]. It includes
three steps : (i) a decomposition into functional blocks with a
strong impact on the power consumption. A functional block
gathers some functionalities of the hardware that are inter-
dependent regarding the power consumption. It is important
to target here a coarse granularity, in order to keep simple
both the consumption models and the estimation process.
Parameters with the biggest impact on the power are deter-
mined here (the frequency for instance, the cache miss rate
for a cache consumption, or the number of instruction per
cycle for a superscalar processor). (ii) a set of measurements
to characterize the evolution of the consumption with the
parameter values. (iii) the determination of the power-models
under an analytical form (a mathematical equation) whenever
possible; a table of values is used otherwise (a multi-entry
look-up table : entries are the model inputs, output is the power
or energy).

This modeling approach was proven fast and precise; it
produces simple models, even for complex architectures, that
can be used at high levels in the design flow.

Models were developed for processors with different ar-
chitectures, from the simple RISC (ARM7, ARM9) to much
more complex architectures (the super scalar VLIW DSP TI-
C62, C64, and C67), and also for low-power processors (the
TI-C55 and the Xscale) [44], [45]. Important phenomena are
taken into account, like cache misses, pipeline stalls, and in-
ternal/external memory accesses. The average error, observed
between estimations and physical consumption measurements,
for a set of various algorithms (FIR filter, LMS filter, Discrete
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Wavelet Transform (DWT), Fast Fourier Transform (FFT) 64
to 1024 points, Enhanced Full Rate (EFR) Vocoder for GSM,
MPEG1 decoder, MJPEG chain, etc.) is lower than 5% at the
assembly level, and lower than 10% from the C-code. Power
models were also developed for reconfigurable circuits FPGA,
memories, different peripherals and devices, and operating
system services [14], [36]. In the case of the application
presented in section V, the following power models have been
developed : tick timer power model, scheduling power model,
inter-process communication power model, Ethernet access
power model, compact flash access power model, processor
(PowerPC 405) power model, page fault power model.

Concerning FPGA, different power models may be used
with different granularity. The choice of one granularity level
actually depends on the information at disposal. The system
level model is the simplest. At this level, the application code
is not known yet. The designer needs to quickly evaluate
the application against power constraints, energy constraints
and/or thermal constraints. A fast estimation is necessary here,
and a much larger error is acceptable. The parameters we can
extract from the very high-level specification are the frequency
F , the activity rate β, and the occupation ratio α of the targeted
FPGA implementation.

The algorithmic level model involves the software specifica-
tion of the future circuit or the IP component. The architectural
resources are not known yet however: they may indeed depend
on some configuration parameters of the IP. The parameters
of this model are algorithmic parameters, in addition to the
operating frequency which we rather regard as an architectural
parameter. Algorithmic parameters describe some features of
the algorithm that have a strong impact on its implementation
power consumption. For example, we proposed a model for
the FIR filter IP with the following input parameters: the filter
order, its delay, and its operating frequency [23]. Intuitively,
the place and route of the IP should have an influence on its
power consumption. However, we observed that this influence
was relatively small enough to be neglected in the modeling
of such IPs.

It is remarkable that if an IP is not available for a hardware
accelerator we need to use, a High-Level Synthesis (HLS) tool
can give a good estimate of the amount of resources necessary
to implement it, and given the targeted circuit, provide its
occupation ratio and activity rate. With those two parameters
and the frequency, a system model can be used then.

The architectural level model is the more complex. It takes
into account the architecture that will be implemented on the
physical target. If the architecture is known with the exact
resources involved, a more precise estimation can be achieved.
The model will be built from a library of models of the circuit
resources. It will take in input the number of resources, the
types of resources, the data types, the interconnections, and
the operating frequency. Of course, this approach will be used
whenever an algorithmic model has not been developed for
the application IP.

Our modeling approach was also used to model operating
system energy consumption on different platforms. In [14],
we present the modeling of the Xillinx Virtex-II Pro XUP
platform with a Linux 2.6 operating system. Different services

are first modeled like scheduler/timer interrupt, inter-process
communications (mqueues, pipes, shared memories, etc.), de-
vice accesses (Ethernet, compact flash, etc.). For example, the
mqueue energy is here expressed as a set of relations between
the processor frequency and the messages size. The operating
systems energy overhead is then expressed as the sum of
multiple contributions related to services activated during a
run of the application. In [46], we present the modeling
of the power and energy consumption of virtual memory
management mechanisms. The virtual memory subsystem of a
complete and recent Linux (patched for real-time) is studied,
with its relation with the processors memory management
resources (Memory Management Unit and Translation Look-
aside Buffer). Our model allows to estimate the time and
energy penalties for different page allocation strategies and
different categories of page faults. Lately, we have presented in
[47] the modeling of the operating system energy overhead on
an OMAP3530 EVM board from TEXAS INSTRUMENTS.
The influence of the scheduler policy is included there, espe-
cially in the context of multiple power domains (voltage and
frequency scaling) for multi-task applications.

D. Power-aware design methodology

This subsection details our power-aware design method-
ology for heterogeneous MPSoC to cover several layers of
the design. The objective is to offer for each step a power
estimation tool in order to have a gradual refinement of
the design space solution basing on the power or energy
criteria. In order to cope with the design complexity, we
focus specially on the functional and the transactional levels
that offer different trade-offs between accuracy and estimation
time.
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Fig. 6. Power-aware design methodology
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1) Functional level estimation: As explained in the intro-
duction, our approach is based on the use of coarse grain
power models, built upon physical measurements, which give
a good trade-off between accuracy and estimation time. This
approach allows the modeling of even complex components in
a reasonable time. From there, different abstraction levels of
the specification may be used to refine the input of the models.

In the frame of the former European project SPICES [48],
our energy estimation methodology and power models have
been integrated in a Computer Aided Design (CAD) Consump-
tion Analysis Toolbox (CAT) [49]. The aim of SPICES was
to provide avionic system builders with reliable analysis tools
for the design of critical embedded systems. The CAT toolbox
combines a set of power estimation models with a system
architecture model to provide system-level power consumption
analysis. CAT has been used on our case study to compute
the estimated power consumption. CAT runs on the Windows
and Linux platforms and is deployed on the Eclipse Integrated
Development Environment (IDE). The central part of CAT is a
Domain Specific Language (DSL) that was defined to describe
system architectures from a power analysis perspective. It also
serves as a communication layer between the CAT application
tiers to exchange the modeled system data. CAT can also
be used in conjunction with the Open Source AADL Tool
Environment (OSATE) [50], and the Toolkit in Open source
for Critical Aeronautic Systems Design (TOPCASED) [51].
CAT may be downloaded with related documentation on [52].

2) Transactional level estimation: In order to offer a de-
tailed power analysis by the means of a complete simulation
of the application, we used a fast SystemC simulator at the
transactional level. Our simulator consists of several hardware
components which are instantiated from the SoCLib 2 library
in order to build a prototype of the target system. We highlight
that processors are described using Instruction Set Simulator
(ISS) that sequentially executes the instructions and has no
notion of concurrency of micro-architecture. Such technique
is currently in use industrially and is expected to provide
good performance accuracy. Today, heterogeneous MPSoC
can be evaluated using simulation technique [53] at different
abstraction levels. Fig 7 shows our developed system level
power estimation tool that includes the functional power
estimator and fast SystemC simulator. The functional power
estimator evaluates the consumption of the target system with
the help of the elaborated power models. It takes into account
the architectural parameters (e.g. the frequency, the number
of processors, the processor cache configuration, etc.) and
the application mapping. It also requires the different activity
values on which the power models rely. In order to collect
accurately the needed activity values, the functional power
estimator communicates with a fast SystemC simulator at
a TLM level. Combination of the above two components
described at different abstraction levels (functional and TLM)
leads to a hybrid power estimation that gives a better trade-off
between accuracy and speed.

2https://www.soclib.fr/

Fig. 7. Power estimator functioning

V. THE CASE STUDY

This section describes the usefulness and the effectiveness
of our power estimation framework for a PowerPC 405-
based SoC implemented into the Xilinx Virtex II Pro FPGA
(XupV2Pro) platform. The Virtex II Pro FPGA contains two
hardware PowerPC 405 processors that have a 16KB, 2-way
set associative instruction and data caches. In addition, a
large number of configurable logic blocks (CLB) are available
for implementing hardware accelerators. Each processor has
the access to the on-chip memory (BRAM) and the off-chip
memory (SDRAM) via Processor Local Bus (PLB). We used
the JPEG (Joint Photographic Experts Group) application as
a benchmark. The JPEG application consists of 6 main tasks:
acquisition of the input image, conversion RGB (Red, Green
and Blue) to YUV (luminance, blue chrominance, and red
chrominance components), Discrete Cosine Transform (DCT),
Quantization, Huffman coding, and rebuild of the output
image.

A. Power model elaboration

The power models presented below are the result of the
consumption modeling of the targeted system. For every
component identified as taking a large part of the platform
overall consumption (it is the initial step of our modeling
approach presented in section IV-A), the Functional Level
Power Analysis is applied. As explained in section IV-C,
the first step consists in dividing the component architec-
ture into different functional blocks, and then to group the
blocks that are simultaneously activated when a code or an
application is running. Next comes the characterization of
the component power consumption which is achieved by
varying the parameters which were identified as having a
strong impact on the power consumption (Frequency, Voltage,
etc.). These variations are produced with some basic assembly
programs. The power consumption is measured for every of
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those programs, and a power model is derived from the set
of measures : either an analytical model, i.e. a mathematical
function, is computed by regression, or the set of consumption
values is stored in a multiple entries table.

1) Processor power model: The FLPA methodology allows
to identify the architectural parameters and system activities
that have the strongest influence on the processor power
consumption. Table I shows the power consumption laws
for the PowerPC 405-based SoC implemented into the XUP
FPGA. These models predict consumption of the kernel and
the I/Os parts separately, since they are powered by distinct
power supplies (2.5V for the kernel and 1.5V for the I/Os).
The input parameters of the power models are the processor
frequency (Fprocessor), the bus frequency (Fbus), and the
cache miss rate (γ). The frequencies of the processor and
bus are fixed by the system designer while the cache miss
rate is considered as an activity of the processor which could
be extracted from the simulation environment. Either internal
BRAM or external SDRAM may be used with the PowerPC,
which gives two different set of models.

TABLE I
CONSUMPTION LAWS FOR THE TARGET PLATFORM

Power models for PowerPC 405

BRAM 1.5V P(mW)=0.40 Fprocessor + 3.24 Fbus + 74
2.5V P(mW) = 5.37 Fbus + 1588

SDRAM 1.5V P(mW) = 0.38 Fprocessor + 3.45 Fbus + 79
2.5V P(mW) = 4.1 γ + 6.3 Fbus + 1599

2) FPGA power model: A power model has been built
for the reconfigurable part of the FPGA component on the
XUP board. This model has been built with the coarser
granularity, hence at the system level, as described in section
IV-B. This model does not come as a multi-linear equation
of the frequency F , switching activity β and area utilization
α. For this reason, a 3 entries table of consumption values is
used. The power is estimated by interpolation of these 3 input
parameters. Fig 8 illustrates the variation of the FPGA power
consumption according to area utilization and the switching
activity with an operating frequency set to 100 MHz.

3) OS power model: In order to estimate the energy over-
head due to the operating system while running our application
on the Xilinx Virtex II board, we have developed power
and energy models for the following Linux 2.6 services:
timer interrupt, Inter Process Communication (IPC), Ethernet
and Compact Flash accesses, and virtual memory. A detailed
description of those models may be found in [14], [36] and
[46]. We will here only sketch their major features.

Tick timer model: Every timer tick, the
scheduler_tick() function is called to evaluate
the runnable processes. To estimate the energy overhead
incurred by timer interrupts, we have executed several
computing intensive programs with and without OS. Roughly
the same power overhead was observed for all programs,
which appeared to be a small proportion of the system’s
global consumption. The energy overhead is obtained buy
multiplying the power overhead with the program execution
time. The parameters of the power model are the CPU
frequency and the tick timer frequency.
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Fig. 8. FPGA power consumption with 100 MHz frequency

IPC model: Inter-process communications allow threads
in one process to share information with threads in other
processes, even on different hardware platforms: the OS ex-
plicitly copies information from a sending process address
space into a distinct receiving process address space. We have
developed models for the following IPC mechanisms: pipes,
mqueue, shared memory and sockets (for remote IPC). To
model IPC power consumption, we have executed programs
that repeatedly use an IPC mechanism, with different values
for parameters such as the amount of data sent and received,
the OS tick timer frequency and the processor frequency.
Finally, the parameters that impact on the energy consumption
are the messages size and the CPU frequency, plus the protocol
chosen in case of a socket (Ethernet access).

Compact Flash accesses: The Compact Flash (CF) is
seen here as the standard mass storage device in the system.
Two different Linux system calls were modeled. The first
model concerns buffered I/O which are the default Linux
I/O operations. When the I/O is buffered the compact flash
does direct memory access from/to the kernel cache, and not
from/to the user space source/destination buffer allocated by
the user application. The second model concerns self-caching
I/O. In this case, the application will keep its own I/O cache
in user space (often in shared memory), so it does not need
any additional lower level system cache. Again, the amount of
data transferred and the CPU frequency were kept as inputs
to the models.

Virtual memory: The power and energy consumption
modeling measurements have been conducted on the XUP
Virtex-II pro development board with a 256MB SDRAM and
a compact Flash for the root file system. The operating system
analysed is the Xilinx Open Source Linux which is based on
the 2.6.29 Linux kernel, to which we applied the RT-Preempt
patch to make it fully preemptable. The memory management
unit (MMU) of the processor performs address translation and
protection functions. The translation look-aside buffer (TLB)
is used by the MMU for address translation. Each valid entry
contains the virtual page number and its translation into a
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physical page number. If a virtual address does not match
an entry in the TLB, the CPU raises a TLB miss exception.
The operating system provides the physical address from its
page global directory (PGD) and updates the TLB. Whenever
the address is not in the PGD, a minor or major page fault
occurs. Our measures show that the energy cost of TLB misses
is negligible in front of the cost of page faults. The energy
overhead model for page fault is finally a function of the
number of TLB misses and the processor frequency.

B. System level power estimation

1) Monoprocessor architecture: In the next step, the devel-
oped power models are integrated into system level design
tools as explained in Section IV. As a first scenario, we
used the JPEG application with a PowerPC monoprocessor
based architecture. To do so, we developed a system level
prototype of the PowerPC based SoC, with the help of
SystemC models including ISS for the target processor, with
the cache parameters and bus latencies set to emulate the real
platform behaviour. A set of counters are injected into the
simulator to determine the values of different miss rates: read
data miss, write data miss and read instruction miss of the
corresponding caches. The fast SystemC simulator takes the
full JPEG application with the real standard frame size of
256×256 pixels and simulates it entirely in order to collect
the required activities.

Table II shows the detailed activities of each task in the
application, as a result of the SystemC simulation. From these
results several remarks can be drawn. First, we can notice
that instruction cache miss rates and read data miss rates are
very low when compared with write data miss rates. This is
due to the fact that the task kernel is small (a small number of
instructions) and that the volume of data accessed is also small
compared to the cache size (16 KB). With the new submicron
technologies however, static power consumption cannot be
neglected. For this reason, some software processors, such as
the Microblaze, come with reconfigurable cache sizes to fit
the application requirements. Secondly, we observe that the
data write miss rates have a high impact on the total power
consumption. This is due to the algorithm structure which does
not favour the reuse of data output arrays, and to the usage
of write-through cache policy. As we can see, the statistics
collected in Table II can help in tuning the application structure
for a better optimization of the system power consumption.

In the next step, using the obtained results and the power
models shown in Table I, we estimated the total power
consumption of each task. Fig. 9 illustrates the results and
shows the comparison between the proposed hybrid estimator,
the SoftExplorer tool introduced in Section II, and the real
board measurements. Negative and positive errors correspond
respectively to under and over estimation of the consumption.
The average error is the mean value of the absolute values of
those errors. First, the hybrid power estimator has a negligible
average error equal to 0.02% which offers better accuracy
than SoftExplorer with its average error of (3.32%). Indeed,
the activities captured in the SystemC simulator are more
accurate than the static analysis or rapid profiling of the code

Fig. 9. Power Estimation and Comparison with SoftExplorer

performed by SoftExplorer. The maximum of error is reported
for the acquisition and rebuild tasks, respectively 22.5% and
6.36%. In fact, these two tasks use operating system calls to
read and write from/to files. Those system calls are however
only executed by the system level simulator by means of a
virtual file system, which does not reflect precisely the real
operating system’s behaviour. Finally, without considering the
acquisition and rebuild tasks, the hybrid estimator gives an
average error of 1.32% while SoftExplorer’s is 3.17%.

2) Homogeneous multiprocessor architecture: The second
case study involves an homogeneous architecture with iden-
tical processors to run the JPEG application. To evaluate the
impact of the number of processors on the execution time and
total energy consumption, we executed the JPEG on systems
with 1 to 8 processors. The PowerPC frequency was set
to 300 MHz and the PLB frequency to 100 MHz. All the
processors execute the same workload but on different image
macroblocks. Figure 10 reports the execution time in ms and
the total energy consumption in mJ .

Given these results, we see that adding processors to the
system decreases the execution time, which improves the
system performance. This variation is not linear because the
processors share resources, which generates conflicts at some
times, and reduces the speedup as waiting cycles are added
to the processors execution. In terms of energy consumption,
we observe that until a certain number of processors, the
total system energy consumption decreases as the execution
time is reduced. Adding more processors increases the power
consumption, however with not the same slope as the time
decreases. As we are using only the ASIC PowerPC processors
integrated in the Xilinx Virtex II FPGA and the processors are
executing the same workload in parallel, the static power is not
influencing significantly the total consumption. But increasing
the number of processors over a certain limit tends to be
ineffective, as it just adds new conflicts at the PLB level,
leading to more waiting cycles.

3) Hardware accelerators architecture: In this part, we
emphasize the benefit of our estimation methodology in the



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 12

TABLE II
APPLICATION MISS RATES

Program Instruction miss rate (%) Read Miss rate (%) Write Miss Rate (%) Total Miss Rate (%)
acquisition 0.003386 3.56 31.73 0.02
rgb2yuv 0.001128 3.03 99.91 5.64
dct y 0.002283 4.49 40.72 3.88
dct u 0.000315 4.49 40.72 3.88
dct v 0.000314 4.49 40.72 3.88
qt y 0.000812 2.06 99.88 5.58
qt u 0.000406 2.06 99.93 5.58
qy v 0.000406 2.06 99.94 5.58
huff y 0.004375 4.58 20.11 0.85
huff u 0.000515 4.57 19.8 0.84
huff v 0.000643 4.56 19.61 0.84
rebuild image 0.298380 3.05 25.19 2.87
complete application 0.000012 0.029 0.09 0.012
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Fig. 10. Execution time and energy variation in terms of the number of
processors

context of heterogeneous architecture. In general, the choice of
a hardware accelerator is driven principally by the performance
requirements of the application and the processor usage of
each task. For the JPEG application, the DCT task is the most
time consuming task. Thus, it is selected to be implemented as
a hardware accelerator. Various trade-offs can be done between
the amount of consumed hardware resources (i.e.: the area
utilization), the execution time, and the power consumption.
The DCT task is highly regular and has large repetition spaces
in its multiple hierarchical levels. Such large repetition spaces
allow us to fully exploit the existing partitioning in VHDL (i.e.
hardware-software and parallel-sequential hardware). System-
level architecture synthesis tool such as GAUT [54] or
ROCCC [55] can be used to obtain several implementations
of the hardware accelerator with different trade-offs between
the execution time or the number of resources [56]. Certainly,

more accurate estimation of these parameters can be obtained
at lower levels using the commercial RTL tools but at the price
of significant evaluation time. We selected a configuration
which is about 200 times faster than a software execution
with a PowerPC processor running at 100 MHz. A hardware
synthesis of this configuration occupies 18% of the XupV2Pro.
According to the FPGA power model, the power consumption
of the chosen DCT hardware accelerator is around 300mW
offering 40% of power saving compared to the software
execution.

4) Extrapolation for complete MPSoC architecture: The
above developed power models will be used in the frame of
system level estimation of heterogeneous MPSoC that may
contain several processors and hardware accelerators. This
approach is mandatory in the design flow for two reasons,
even if the corresponding estimates are less accurate than
those provided by real board measurements. First, system
level estimation can be achieved with acceptable accuracy 10-
1000x faster than the physical level taking into account the
required design time. Second, it allows exploring architectures
that cannot be implemented due to the hardware resource
limitation or the unavailability of the target component. For
instance, we cannot exceed two PowerPC based architecture
using our XupV2Pro platform. Thus, it is important to have a
scalable approach to address the complex system power/energy
estimation issue. The equation 3 will be considered for the
total system energy estimation. We find there the sum of the
energy consumptions of every software tasks with the related
operating system energy overhead (see equation 1) and the
sum of the energy consumptions of every hardware tasks
(see equation 2). The consumption of the synchronization part
required to access the shared resources is included in EOSτ .

Etotal =
∑

(Eτ + EOSτ ) +
∑

Efpga (3)

In our XupV2Pro platform, a software synchronization
between several tasks running on different processors or
hardware accelerators will call for a hardware mutex through
an OS service. Several experiments have been conducted to
evaluate the additional power cost of this hardware component.
This study includes three parameters which are the number of
masters, and the processor and bus frequencies. Fig 11 shows
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that the mutex power consumption depends mainly on the PLB
frequency.
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VI. CONCLUSION

This paper presents a complete estimation and optimization
framework for power aware design of heterogeneous MPSoC.
Indeed, energy and power constraints are considered as major
challenge when the system runs on batteries. Thus, designers
must take these constraints into account earlier in the design
steps. Furthermore, the complexity of the systems leads to
develop high level methods and tools to help the designer to
make good decisions at each design step.

The goal of the Open-People project consists in proposing
a global framework that helps designer to obtain earlier power
and energy consumption estimation. First, a power modeling
methodology has been defined to address the global system
consumption that includes processors, memories, reconfig-
urable circuits, operating system services, etc. Secondly, these
power models are integrated in a global power component
library in the context of multi-level design space exploration:
to refine power and energy estimations, they are used in
conjunction with simulation tools at different abstraction levels
[57], [58].

This paper presents the framework and illustrates a specific
case study for the JPEG application implemented in the XUP
Virtex II Pro circuit. Our approach was used to define the
power and energy consumption models for every hardware and
software component in our application. A global estimation
methodology was proposed, to finally provide the system’s
global power and energy estimation.

With those different estimations, the designer can explore
several implementation choices (monoprocessor, homogeneous
and heterogeneous multiprocessor). Thanks to fast SystemC
simulations, it is also possible to quickly evaluate the applica-
tion implementation on new custom hardware architectures.

The future works for this project will focus on more
complex heterogeneous platforms, for example OMAP 3530
which corresponds to the actual MPSoC platform used by

the industrials. Furthermore, in order to obtain more accurate
power estimations, some power model refinements must be
realized. This is the case for the data exchanges between hard-
ware and software tasks respectively executed on hardware
resource and on processor which are currently estimated at
high level of abstraction.
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