
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

A fast MPSoC virtual prototyping for intensive signal processing applications

Rabie Ben Atitallah a,⇑, Éric Piel b,1, Smail Niar a,2, Philippe Marquet c,3, Jean-Luc Dekeyser c,4

a Université de Valenciennes, LAMIH DIM-ISTV2, Le Mont Houy, 59313 Valenciennes Cedex 9, France
b Technische Universiteit Delft, Faculteit EWI, Mekelweg 4, HB 08.080, 2628 CD Delft, The Netherlands
c Université de Lille 1 – Batiment M3, 59655 Villeneuve d’Ascq Cedex, France

a r t i c l e i n f o

Article history:
Available online 26 July 2011

Keywords:
MPSoC
Model of computation
Model of execution
Simulation
Transaction level modeling
Virtual processor

a b s t r a c t

Due to the growing computation rates of intensive signal processing applications, using Multiprocessor
System on Chip (MPSoC) becomes an incontrovertible solution to meet the functional requirements.
Today, Electronic System Level (ESL) design is considered a vital premise to overcome the design com-
plexity intrinsic in the heterogeneity of these devices. However, the development of tools at the system
level is in the face of extremely challenging requirements such as the rapid system prototyping, the accu-
rate performance estimation, and the reliable design space exploration (DSE).

Focusing on the issue of ESL development tools, this paper describes an MPSoC environment design
which targets the Multidimensional Intensive Signal Processing (MISP) application domain. Within this
environment, we have defined first a generic execution model that supports any type of MPSoC. It can
adapt to any parallel application and handle efficiently the scheduling and synchronizations at all the lev-
els of granularity. Second, a new Virtual Processor (VP) based simulation technique is proposed for imple-
menting the execution model. This proposal leverages the high-level specification of the system to
provide a heterogeneous MPSoCs simulation without using an Instruction Set Simulator (ISS). VP-based
simulation is implemented in SystemC at a timed transactional level allowing a good trade-off between
high simulation speed and performance estimation accuracy. The usefulness and the effectiveness of our
MPSoC environment is illustrated through two MISP applications executed on a typical MPSoC. Results
show that our approach enables fast MPSoC virtual prototyping, data transfers and timing analysis,
and reliable DSE for architectural optimizations.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, embedded signal processing applications such as the
one used in networking, multimedia, and communications are
becoming more and more complex. Two main aspects characterize
these applications. The first involves the high complexity of the
data structures, which generally represent multidimensional data
arrays, while the second concerns the potential parallelism avail-
able in the application functionality. These two aspects lead to
the Multidimensional Intensive Signal Processing (MISP) applica-
tion domain. Hence, hardware designers are obliged to come up
with new architecture definition for executing this field of applica-
tions. An inevitable solution to meet the performance goals con-
sists in placing several processors in the same chip, thus creating

MultiProcessor Systems-on-Chip (MPSoC). Today, MPSoCs are
increasingly used to build complex integrated systems [1]. They
must be designed with custom architectures to balance the imple-
mentation constraints between the application needs (i.e.: high
computation rates and low power consumption) and the produc-
tion cost.

MPSoCs have a huge architectural solution space which makes
the Design Space Exploration (DSE) complex and most important
challenge for designers. For instance, architectural parameters
which can be explored include the processor type, the interconnec-
tion network topology, and the mapping of tasks (hardware or soft-
ware) and data. In addition, a huge space of alternatives to
implement and execute the systems is possible, which yields to a
multitude of performance trade-offs in terms of execution time,
power consumption, cost, etc. For MISP applications, this challenge
is especially intensified by the high potential parallelism and the
complex data distribution. The complexity lies mainly on the orga-
nization of the elementary tasks, which compose the application,
and on the access patterns to their input and output data as parts
of multidimensional arrays. These complex access patterns lead to
difficulties to efficiently schedule the applications on MPSoCs. It is
therefore important to define an appropriate MPSoC execution

0141-9331/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.micpro.2011.06.001

⇑ Corresponding author. Tel.: +33 (0)3 27 51 19 47; fax: +33 (0)3 27 51 19 40.
E-mail addresses: Rabie.Ben-Atitallah@lifl.fr (R. Ben Atitallah), e.a.b.piel@tudelft.nl

(É. Piel), smail.niar@univ-valenciennes.fr (S. Niar), Philippe.Marquet@lifl.fr
(P. Marquet), jean-luc.dekeyser@lifl.fr (J.-L. Dekeyser).

1 Tel.: +31 15 278 6338.
2 Tel.: +33 (0)3 27 51 19 48; fax: +33 (0)3 27 51 19 40.
3 Tel.: +33 (0)3 59 57 78 05; fax: +33 (0)3 59 57 78 50.
4 Tel.: +33 (0)3 59 57 78 04; fax: +33 (0)3 59 57 78 50.

Microprocessors and Microsystems 36 (2012) 176–189

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro



Author's personal copy

model that makes profit from MISP application characteristics and
also allows early system exploration.

The challenge of MPSoC DSE is tackled by several frameworks
by means of the development of Electronic System Level (ESL)
tools. The objective is to unify the hardware and software design
and to offer a rapid system level prototyping. Based on the require-
ments like the timing accuracy and the simulation speed of the
system, architects could select an appropriate level of abstraction
to model the software executing on the processor. Fig. 1 shows
the former used models [2] and also our proposed approach called
the Virtual Processor (VP)-based simulation. In the past decade,
commercial tools have succeeded to provide conventional RTL sim-
ulation environments for low level system prototype. This ap-
proach was very useful on one hand to the software developers
for driver debug and integration. On other hand, it allows the hard-
ware engineers to keep their traditional view of the system. How-
ever, the RTL tools cannot adequately support the complexity of
future MPSoC since they are too slow for a meaningful execution
of the software. In an attempt to reduce simulation time, a lot of
research efforts have been put to evaluate the system using Cy-
cle-Accurate (CA) simulators. They simulate the micro-architecture
at the clock-cycle level and are by far the most common type of
simulator used. At a higher abstraction level, an Instruction Set
Simulator (ISS) sequentially executes the instructions and has no
notion of concurrency of micro-architecture. The ISS description
can be enhanced with timing annotations to approximate the exe-
cution time and obtaining a behavioural model. However, simula-
tion speed with CA or behavioural ISS simulators are limited to few
hundred thousands of simulated cycles per second. In addition to
this challenge, as the architecture part must be closely adjusted
to the application needs, frontiers between different domain ex-
perts (hardware, software, compilation, etc.) have to be broken.
During the development process, the hardware/software interac-
tion must be kept and the transition between the different design
steps must be as smooth as possible.

In order to answer the design challenges of MPSoCs dedicated to
MISP applications, a new approach is needed. In this paper, two
contributions in the field of MPSoC ESL design and simulation tools
are made. First, an efficient MPSoC execution model adapted for
MISP applications is defined. It respects a repetitive Model of Com-
putation (MoC) [3], which offers a very suitable way to express and
manage the potential parallelism in the system. Second, a VP-based
simulation technique is presented. It speeds up the time of the sys-
tem verification with a good performance estimation accuracy. VP
technique is implemented at a high-level simulation using the Sys-
temC Transaction Level Modeling (TLM) 2.0 kit. It leverages the
high-level system specification to provide a hardware/software
co-simulation without using an ISS.

This paper is organized as follows. After Section 2 which
presents the related works, Section 3 exposes an overview of the

repetitive MoC on which our approach relies. In Section 4, an expli-
cit execution model is defined in order to obtain a precise imple-
mentation of the MPSoC. Section 5 presents our technique for a
high-level simulation. To evaluate our approach, experimental re-
sults are presented in Section 6.

2. Related works

In an attempt to deal with the parallelism acquired from inten-
sive signal processing applications, most approaches rely on a
specific MoC. In general, such a MoC proposes a high-level formal-
ism in order to exploit the parallelism at the task level in an easy
and efficient way. Among widely used MoC, we can quote Khan
Process Network (KPN) [4], Synchronous DataFlow (SDF) [5], mul-
ti-dimensional SDF (MDSDF) [6] and ARRAYOL [3]. The main
comparison criteria are the allowed data structures (mono-dimen-
sional data flows or multidimensional arrays) and the expressive-
ness of the functions to access these data structures. In our work,
the ARRAYOL model is chosen. As a common point, all these lan-
guages permit a static scheduling in order to build efficient imple-
mentations. The expressiveness of the potential parallelism in
signal processing applications is the vital aspect of ARRAYOL model,
and it hides most of the complexity of scheduling. Furthermore, its
semantic is adopted in the standard MARTE UML profile [7].

For simulation, a MoC is not sufficient, it is necessary to define
the precise order the tasks will be executed, the exact place the
data will be stored, etc. This is defined by the model of execution.
It specifies the behaviour with enough details so that the simula-
tion at the various abstraction levels and the final implementation
all correspond to the same execution order, bus access patterns,
etc. Some works have been proposed to project ARRAYOL to KPN
[8] or to SDF [9], which indirectly leads to an execution model,
via the works of Parks [10] (for KPN) or Buck [11] (for SDF). How-
ever these projections take into account only the application, and
adapt more or less well to the underlying platform. Our work is in-
spired by these proposals, but ensures that this execution model
follows the hardware/software mapping specified by the user. In
addition, our execution model is especially adapted for MPSoC,
focusing on the efficiency of the execution both in terms of execu-
tion time and memory usage.

For an efficient high performance SoC design, in addition to the
specification of the application, the hardware architecture should
also be taken into account. A huge space of alternatives to imple-
ment and execute the system is possible which yields to a multi-
tude of performance trade-offs in terms of execution time, power
consumption, cost, etc. It is therefore important to project the
MoC onto an execution model where the hardware/software per-
formance evaluation is possible. This challenge is set as the topic
of several frameworks by means of a high-level simulation in order
to reduce the evaluation time. SystemC [12] and SystemVerilog [13]
are examples of hardware/software languages which aim to be used
for system description at different abstraction levels. The last few
years, Transaction Level Modeling (TLM) [14] has been embraced
as a primary solution to make the system description easier and
the simulation faster. This is enabled by the abstraction of inter-
module communication into channel objects and the suppression
of micro-architectural details. SystemC TLM 2.0 [12] offers different
coding styles by providing a set of different interface types. The
SoCLib [15] library provides an MPSoC simulation environment at
timed TLM level using ISS. ReSP [16] and the Open Virtual Platform
by Imperas Inc. [17] use the same level of simulation but also tack-
les the simulation speed problem by using advanced techniques for
the software simulation such as OS simulation for the former and
code morphing for the latter. However in our work, while the hard-
ware is also simulated at the TLM level, we introduced the virtual
processor concept to execute the application tasks in an abstractFig. 1. Levels of the processing part modeling [2].

R. Ben Atitallah et al. / Microprocessors and Microsystems 36 (2012) 176–189 177



Author's personal copy

way, allowing higher simulation speed-ups. In addition, heteroge-
neous architectures (i.e.: with several types of processing elements,
such as an ARM9 and a DSP or a Microblaze and a hardware accel-
erator) become increasingly usual but the high level simulation
tools tend to support only homogeneous architectures. In addition
to the simulation of heterogeneous architectures, the advantage
of our method is also to simplify the exploration of such architec-
ture by abstracting a lot of micro-architectural details.

Often, hardware/software co-simulations use the lowest level of
abstraction for the software: every machine instruction is decoded.
Nevertheless, several approaches have been proposed to abstract
the software description, in order to speed up the simulation. Some
approaches rely on the notion of sampling [18,19]: the behaviour
of the software (typically the memory accesses) is observed during
one full execution, and then only a small representative number of
observation samples are replayed later. Although this can highly
reduce the simulation time while still giving accurate values for
the non-functional properties (e.g.: execution time, energy
consumption), the correct behaviour of the application cannot be
verified, and no debugging can take place. In addition, on multipro-
cessor architecture, any modification on the architecture parallel-
ism or re-organization of the software requires to repeat the
consuming pre-processing phase to find the patterns. Another type
of approach is to avoid the cost of the ISS by directly executing the
software on the host processor. Benini et al. [20] proposed an
implementation based on a debugger observing and controlling
the software on the host. Gao et al. [21] extended this technique
to allow accurate estimation of the timing by using hybrid simula-
tion. It combines cache simulation and online trace-driven replay
techniques to accurately predict performance of programmable
elements in an MPSoC environment. To do so, the presented work-
flow puts together a specific ISS execution with native code execu-
tion into one simulation framework for achieving a better trade-off
between high simulation speed and accuracy. Although it provides
generally an error of less than 10% compared to an ISS, the speed-
up is limited to 3–5 times. In addition to this, it requires the pres-
ence of an ISS, which might not be the case for early architectural
exploration. In our approach, the application is simulated without
using ISS. Software tasks, scheduler, and synchronization mecha-
nisms are directly and explicitly executed as part of the simulation,
instead of being a decoded sequence of instructions from the bin-
ary code of the software. In addition, a timing model is defined to
approximate the execution time. However, the communication
part is simulated at the transactional level. Our choices are influ-
enced by the target application domain, which is mainly data-flow
oriented. Honda et al. [22] demonstrated the usage of an additional
software layer pretending to be the operating system to implement
the connection between the hardware and the software. As this
connection reduces the performance, in our contribution, we pro-
pose to avoid its usage by directly replacing the processor compo-
nent by the software it would execute.

3. Repetitive MoC overview

The design of MPSoCs in our work specifically relies on the
repetitive MoC of ARRAYOL [3], which offers a very suitable way to
express and manage the potential parallelism in the system. This
MoC is accessed in our design environment via the MARTE (Model-
ing and Analysis of Real-time Embedded systems) standard profile
[7]. MARTE allows to model both software and hardware of a sys-
tem using UML. The hardware/software mapping can also be rep-
resented using the same repetitive formalism. With the repetitive
MoC semantic applied to task and data parallelism, only the true
data dependencies are expressed in order to specify the full paral-
lelism of the application. Thus, any scheduling satisfying these
dependencies will lead to the same result. Furthermore, this MoC

has a single assignment formalism: no data element is ever written
twice. Data can be read several times, though. The model can be
hierarchical to allow descriptions at different granularity levels,
permitting to handle the complexity of the applications.

For a better understanding of the main repetitive MoC concepts,
we will consider the Downscaler algorithm, largely used in the TV
signal processing field. It allows to scale high definition (HD) TV
frames (1920 � 1080) down to a standard definition (720 � 480).
The algorithm is composed successively of two main tasks: hori-
zontal and vertical filters. The horizontal filter performs a scaling
from the HD frame to the intermediate 720 � 1080 frame. This lat-
ter will be taken as an input for the vertical filter to generate a
standard frame. In our MoC specification, the application is a set
of tasks connected through ports as shown in Fig. 2. Tasks are con-
sidered as mathematical functions reading data from their input
ports and writing data on their output ports.

In the Downscaler application, each of the two filters has a repet-
itive functionality. This repetition is characterized via a multidimen-
sional repetition space called a shape which is noted as a column
vector. For instance, for the horizontal filter task, we need to carry
out the Hfilter sub-task in a repetitive way to cover all the HD frame
blocks. The corresponding shape equals to {240, 1080, 1} which
signifies the Hfilter task is executed 240 times along the first dimen-
sion of the frame and 1080 times along the second dimension while
the third represents the flow of frames (in time). All repetitions of
this repeated task are independent: they can be scheduled in any
order, even simultaneously.

Data exchanged between the tasks are arrays of elements. These
arrays are multidimensional and are characterized by their shape

which specifies the number of elements on each dimension. As
an example in the Fig. 2, the Horizontal filter task has an output array
of pixels with a corresponding shape equals to {720, 1080,1}. This
implies that a flow of two dimensional arrays of size 720 � 1080
are exchanged between the Horizontal filter and the Vertical filter.
The data parallelism of a task is specified in a repetition task. The
hypothesis is that each instance of the repeated task operates with
sub-arrays of the inputs and outputs of the repetition. For a given
input or output, all the sub-array instances have the same shape,
are composed of regularly spaced elements and are placed in the
array in routine fashion. This hypothesis allows a compact repre-
sentation of the repetition and is coherent with the MISP applica-
tion domain which describes very regular algorithms. These sub-
arrays are called patterns. The information needed to create these
patterns is contained in a tiler, associated with each array. A tiler

permits to build the patterns from an input array, or to store the
patterns in an output array. To do so, different information (origin,
fitting and paving) should be specified as shown in Fig. 2.

In MARTE, the concepts presented in this section have been ex-
tended to express the regularity and the parallelism in the whole
embedded system. The MARTE profile allows to describe the hard-
ware architecture in a structural way using the HW_Logical sub-
package. Furthermore, this profile provides the Allocate concept
as well as the Distribute concept specially crafted for repetitive
structures. This latter concept gives a way to express regular distri-
butions from an array of task (resp. data) to an array of processors
or hardware accelerators (resp. memory units). This short overview
of the repetitive MoC is given to help readers for a better under-
standing of the main choices in our proposal of the execution
model. More details are presented in [23,24].

4. Execution model

The MoC we have presented specifies an accurate semantic for
the application. However, for a given application and architecture,
the system can still be implemented and executed in many differ-
ent ways: whichever execution technique is used, the same

178 R. Ben Atitallah et al. / Microprocessors and Microsystems 36 (2012) 176–189



Author's personal copy

outputs will be generated, but with different non-functional prop-
erties such as the time to complete, the memory needed, or the
power consumed. It is therefore important to define an efficient
execution model. This model should be generic enough so that it
can be used on any type of hardware architecture. Let us highlight
that although the user does not choose, nor even parameterize the
execution model, he/she can influence the implementation by con-
trolling the models of the application, the architecture, and the re-
lated mapping. An execution model precisely defined is necessary
for ensuring a realistic behaviour of the MPSoC even when simulat-
ing at high abstraction level where the software is not executed at
a machine code level.

In the context of multiprocessor, the main aspects of the execu-
tion model concern the task scheduling, the synchronization of the
tasks, and the way the data is laid in memory and accessed. In our
work, we define an efficient execution model which is generic en-
ough to support any type of MPSoC.

4.1. Task scheduling

The MoC, used by the user to describe the system, is very
permissive in terms of ordering the task execution: whenever an
instance of task has all its data dependencies cleared (i.e.: all its in-
put arrays are available) it can be executed. The execution model
has to define which task is being executed, for each processor, at
every moment.

For performance reason, a critical aspect in MPSoCs, it is prefer-
able to do static scheduling whenever all the conditions are known
in advance. This avoids the little overhead that a dynamic sched-
uler brings. However, dynamic scheduling is necessary because
not all the behavioural and timing details are present in the model
of the system. The exact behaviour of the hardware cannot be pre-
dicted precisely enough to forecast the exact duration of each task
(especially with respect to conflicts on the buses). Dynamic sched-
uling also permits to keep simple the code of a task which has to
run on several processors. Otherwise, with static scheduling, a spe-
cialized version of the task would be needed for each processor. As
a trade-off, we distinguish two levels in an application, as shown in
the example of Fig. 3:

� The higher level corresponds to the tasks which have depen-
dencies on tasks running on other processors. All the tasks
higher in the hierarchy are also part of this level. This is repre-

sented by the green dotted set in the figure. They are scheduled
dynamically for maximum efficiency, as synchronizations can-
not be predicted with enough precision.
� The lower level corresponds to the hierarchies of task which

have only dependencies with tasks on the same processor. This
is represented by the plain purple set in the figure. As no inter-
action with other processors takes place at this level, it is suffi-
cient to organize the tasks in an order which satisfies the data
dependencies.

This separation between the level is done automatically, based
on the model of the system, and especially the information on
the mapping of the application on the hardware architecture. In
our work, the dynamically scheduled entities are called activity.
An activity corresponds to one leaf in the hierarchy of higher-level
tasks (e.g.: tasks B and C in the figure). The higher nodes of the
hierarchy, composite components, only influence these activities
by adding synchronizations and repetitions. Moreover, as the
application domain is the regular intensive signal processing, there
is no low latency scheduling requirement. Therefore, a simple
cooperative scheduling can be used, instead of the more complex
and costly preemptive scheduling. After a task starts, it is never
interrupted until the computation is finished. The scheduling pol-
icy is also kept simple: the first ready task is executed. Tasks are
executed on the processors they are associated with. When a task
is distributed, it is executed in parallel on each processor. Within a
processor, repetitions of a task are sequentially executed (physi-
cally, there is only one execution thread anyway).

4.2. Synchronization mechanism

In order to enforce the data dependencies between the tasks,
synchronization must take place. The MoC allows several readers
of the same data. As a task can be distributed over several proces-
sors, there can also be several writers to the same data array
(although each element is only written once). Therefore the syn-
chronization mechanism must allow several tasks to wait for a
data being produced, and several tasks to signal they have finished
generating their part of the data.

The MoC does not enforce the level of granularity of synchroni-
zation: one repetition of a task could be executed as soon as all the
input elements it needs are available, even if the whole data array
is not yet entirely ready. However, synchronizing at such a fine
granularity leads to a high overhead: every single read or write

Fig. 2. The Downscaler example.

R. Ben Atitallah et al. / Microprocessors and Microsystems 36 (2012) 176–189 179



Author's personal copy

of an element corresponds to one synchronization. For the context
of intensive signal processing, it is far more effective to synchro-
nize only at the granularity of a data array (i.e.: only at the begin-
ning and end of a task). The mechanism is defined as follows:

� Each consumer waits until all their input arrays are available.
� Each producer waits until every output array can be written

before starting.

In practice, the synchronization scheme selected can be imple-
mented via a FIFO mechanism with multiple readers and shared
writers with a length of 1. For each generated array, one FIFO is
created. Consumers must read one data from each FIFO corre-
sponding to its arrays. Producers write data as soon as they start
their iteration, so they are blocked if the data has not been read
by all the consumers yet.

4.3. Data transfer and address computation

Access to the data is expressed in the MoC as reading or writing
a small part (a pattern) of a bigger array according to the tiler. For
every level of hierarchy, a pattern can itself be separated in smaller
patterns by sub-tasks. This hierarchical access to the data can be
implemented either by copying each pattern of each level into
memory, or by accessing the original array via a series of address
computation. Due to the general restriction of memory in MPSoCs,
and the high access cost, the second alternative has been selected
for the execution model. The only drawback of this scheme is when
several tasks deeply buried in the hierarchy access the same data,
data-copy could be more efficient. In practical terms, assembly
connectors (between two instances) in the application model are
equivalent to a FIFO in the execution model, and delegation con-
nectors (between a component and an instance) are equivalent
to address computation. As a series of tilers can be represented
as just one larger tiler, the implementation is kept simple.

Moreover, address computation must have an additional level
of indirection if the data is spread over several memories (specified
in the association model). In this case, one additional tiler compu-
tation is necessary to determine which memory bank contains the
data. Care has to be taken also when a data array is produced and
consumed by tasks contained inside a task distributed over several
processors. On each processor, the data in the array is different, as
it corresponds to different repetitions of the bigger task. Therefore,
the FIFO used to contain the array is a different one for each
processor.

5. High level SystemC simulation

In this section, we propose an efficient simulation technique
using the standard SystemC and its TLM 2.0 kit. The main

objectives of this proposal are first to verify the functionality of
MPSoC by the means of rapid system virtual prototyping. The sec-
ond objective is to allow software engineers to perform a timing
analysis and to monitor the traffic of patterns over the interconnect
created by the execution of concurrent tasks. For the MISP applica-
tion domain which is mainly data-flow oriented, it is very impor-
tant to customize the software and the hardware according to
the needs. The third objective is to offer a sufficient accuracy level
for a fast and reliable DSE. The simulation is described at the timed
TLM level. In this level, the simulated MPSoC reflects the high level
modeled system (hardware and software) using the MARTE profile.
It simulates the same pattern transfers as similar to the real
system.

Fig. 4 highlights the differences between our approach (right)
and the traditional hardware/software simulation approaches
(left). In our approach, all the hardware architecture but the pro-
cessing elements is simulated as in the traditional TLM simulation.
While the processing elements (the application) are usually simu-
lated with an ISS, in our approach the application is simulated
without this level of indirection. Software tasks, scheduler, and
synchronization mechanisms are directly and explicitly executed
as part of the simulation, instead of being a decoded sequence of
instructions from the binary code of the software. This allows
improvements not only in the simulation speed but also in the ease
of observation and debugging. A timing model is defined to
approximate the execution time. These different aspects will be
elaborated in the upcoming subsections.

5.1. Hardware description

In order to simulate most of MPSoC architectures easily with
timed TLM, several generic hardware components have been
developed for this level of abstraction. Our library includes param-
eterized data and instruction caches, a generic bus, a crossbar
interconnection network, SRAM modules, several hardware accel-
erators, etc. These components are generic, allowing easy DSE.
The description of the component interfaces is sufficiently flexible
so that a variety of communication protocols can be implemented,
such as the OCP [25] standard. In addition, our components are
TLM 2.0 compliant to facilitate IP integration from other libraries
and vice versa. More details on the hardware component design
are presented in [26].

5.2. The virtual processor

Processors are simulated in a special way. Instead of using an
ISS, the processor corresponds only to the software it would
execute, compiled specifically for the machine hosting the

Fig. 3. Task scheduling depending on the hierarchical level and the mapping.

180 R. Ben Atitallah et al. / Microprocessors and Microsystems 36 (2012) 176–189



Author's personal copy

simulation, plus a set of methods in charge of implementing the
low-level functionalities such as read, write, or idle.

The main advantage of this approach is that the simulation can
be highly speeded up, as the software is directly compiled for the
host instead of being interpreted instruction by instruction.
Besides, it provides other appealing advantages. In particular, it
provides a high flexibility for simulating any type of processors,
even those for which an ISS is not yet available. For example, when
starting the exploration of the hardware architecture, it is useful to
test different topologies and different types of processors, includ-
ing mix of processor types. This can be done by simply defining
the properties of each type of processor (e.g.: size of a word,
frequency, cycles to execute an address computation), without
having to create or acquire an ISS for each type tested. Another
advantage concerns the tooling. For the software developer, it per-
mits to debug the application with all the usual debugging tools for
the host machine, which in general have a more complete feature
set and to which the developer is more accustomed to. It also al-
lows to keep the relationship between the data passed on the inter-
connects and the data patterns expressed in the high-level model.

This type of simulation can be applied to hardware accelerators
as well. Typically, hardware accelerators provide very high perfor-
mance for a specific task, part of the whole application. The ele-
mentary tasks which are mapped on such processing resource
are written in a hardware description language such as VHDL or
Verilog. Traditionally, the simulation has to be done at a low level
such as RTL, or via a specially crafted software simulator. When
using the Virtual Processor technique, the simulation component
is generated in a similar way as for the processors: it is replaced
by the tasks which are mapped on it, wrapped with the same small
set of low-level functionalities.

Let us note that this approach is made possible by several spec-
ificities of the context, principally by the fact the system is mod-
eled at a high level of abstraction, and by the fact we are
targeting intensive signal processing systems. A simulation can
be generated without manual modifications in the software source
code or in the model of the system because:

� All the data transfers between the processor and the rest of the
system are explicit: the reads and writes from/to the memory
are expressed in the model via the tilers.
� All elementary components are available in a sufficiently high-

level language (typically, C), so that they can be compiled for
any type of processor architecture. This, nevertheless, does not
prevent an optimized version of the components to also be avail-
able for the target processor. Both implementations can be pro-
vided, and the more fitting one for the target will be selected.

The simulation keeps a good accuracy because instruction and
synchronization transfers via the interconnect are largely smaller

than the data transfers. This condition is met in the MISP domain:
the same computations are repeated on a very large number of
data, so the instruction cache of the processor has a very low rate
of misses. To keep a high simulation accuracy, elementary tasks
should access amount of data not too large so that it always fit in
the data cache. This is because the cache misses caused by the code
of the elementary tasks are not simulated.

The implementation principle relies on the newly defined con-
cept of virtual processor. A virtual processor provides a defined set
of methods corresponding to the primitive functionalities of a pro-
cessor (e.g.: read, write). At initialisation, the core of the virtual
processor component calls the starting function of the software,
which has been compiled for the machine hosting the simulation.
The software has been adapted to use the processor primitive
methods where necessary. In other words, the software is executed
directly on the host processor, excepted for the instructions affect-
ing the external behaviour of the component, which are simulated
by calling the virtual processor special methods.

In our implementation, only three primitive functions are pro-
vided by the virtual processor: read, write, and idle. The first
two functions, quite intuitively, allow to read a word from a given
address or write a word to a given address (Listing 1, line 30). The
idle function is used when the software has nothing to do (typically
because it is blocked, waiting for some data to be generated). This
function informs the rest of the SystemC components that for a short
time this component will not generate any output and therefore
does not need to be simulated. This allows to speed up the simula-
tion by avoiding active polling during these moments. In a general
case, there could be additional methods to allow configuring and
receiving hardware interruptions, but this was not implemented
as the execution model does not make use of this mechanism.

Listing 1 presents an example of virtual processor. The method
run is used by SystemC to start the component’s simulation. It calls
the main function of the application schedule, which takes care of
executing the tasks composing the application (as presented in the
next subsection). A task (for example task_C) is always generated
according to the execution model. It begins with a nested set of
synchronizations and repetitions, corresponding to the high-level
hierarchy. Then the input patterns are read, corresponding to the
tilers. Then comes the static code corresponding to the low-level
of hierarchy, which in its most simple form (like in this example)
consists in solely calling the elementary function. Finally, the out-
put patterns are written, and the synchronizations are used to in-
form other tasks that the data is available.

5.3. Scheduling and synchronization

As tasks are executed directly on the host, it is possible to opti-
mize further the simulation by also executing the low-level
software management directly on the host. More precisely, this is

Fig. 4. Schematised simulation using the traditional approach (left) and the virtual processor approach (right).

R. Ben Atitallah et al. / Microprocessors and Microsystems 36 (2012) 176–189 181



Author's personal copy

the part of the software added by the execution model: the sched-
uling and synchronization mechanisms. This avoids to spend time
simulating the synchronization (which is often based on shared
memory accesses) and permits to more easily observe the applica-
tion while debugging.

The implementation of a synchronization follows very much the
implementation used for lower levels of abstraction: a tuple is
shared in memory and accessed atomically in order to track the
number of writers and readers of a data array. Instead of being con-
tained in the memory of the simulated system, each tuple is actu-
ally one global variable shared between all the virtual processor
instances.

As defined in Section 4, the task scheduling is composed of two
parts. The lower tasks in the hierarchy are statically scheduled.
Each set of statically scheduled tasks constitutes an activity. Activ-
ities are dynamically scheduled, according to the higher part of the
task hierarchy. In the SystemC implementation, each activity corre-
sponds simply to the concatenation of the code of all the sub-tasks.
The simulation of the dynamic scheduler relies on the POSIX threads
in order to schedule and unschedule the activities. Although the
thread technology is usually used to run concurrently several tasks,
here it is used only to manage efficiently the context swapping
while being architecture-independent.5 The implementation en-
sures that, for each processor, there is never more than one activity
running at the same time (similarly to the execution on the actual

processor). Each thread is by default blocked and unblocked one at
a time by the scheduler, according to the scheduling policy. The
scheduling policy algorithm is written as a separate function, and
can therefore be independent of the abstraction level. When all the
activities are blocked on a synchronization, the scheduler uses the
special idle method of the virtual processor in order to simulate
idle time (and skipping the unneeded simulation cycles). The sched-
uler is also in charge of detecting when all the activities have fin-
ished running. This permits to detect the end of the simulation:
when the activities on every processor have terminated.

5.4. Time modeling

To provide performance estimation for DSE, a timing model is
integrated in our simulation. The performance estimation method-
ology must be able to adapt to different architecture topologies
such as distributed memory and hierarchical systems. In addition,
the solution must consider timing issues such as those associated
with the processor’s synchronization, or the contentions in the
interconnect and communication protocol specifications. At the
early development stage for which this abstraction level is used,
it is neither useful nor possible to obtain an accuracy of one cycle
or even one instruction. The accuracy needed is at the granularity
of a data-access pattern: so that it is possible to know in which or-
der are the requests on the bus and whether some overlaps.

On the hardware simulation side, the proposed timing model is
compatible with the TLM 2.0 kit model. Every transaction is timed.
To keep track of the time on the software side, several timing con-
cepts are introduced, such as the local timer which is attributed to
each processor or hardware accelerator. Its value is incremented
after each task execution (Listing 1, line 17), and after external
transaction from the component (such as a read, line 34 of Listing
1). The main advantage of using these local timers is to allow time
decoupling between the different processors. Thus, the simulation
can be faster by reducing overheads of switching often between
the execution of each processor component.

Furthermore, in order for a processor to know the time elapsed
during a transaction, a time parameter is used in the transaction
payload. It is incremented by every component through which
the transaction passes, from the request until the response. When
the response reaches the processor, the information is used to
increment the processor’s local timer (Listing 1, line 35). For exam-
ple, in the case of data cache hit, the elapsed time corresponds to
the cache read time. In the case of a data cache miss, the cache ini-
tializes a new request that is transmitted via the interconnect to
the corresponding target. The elapsed time equals the sum of the
transmission time, the cache read (or write) time, and the memory
access time. This technique allows to handle cases where the trans-
mission time is not constant. For instance, network contentions
may slow down the transaction. Before transmitting a request to
a target, the interconnection network polls all input FIFOs to com-
pare time parameters of the present transactions and determines
which one will be selected for servicing. This allows to simulate
contentions and therefore to correctly evaluate the request waiting
time at the interconnect level.

This strategy requires the component’s developer to identify
for each component the pertinent activities concerning the time.
In particular, this includes the execution of each elementary task
for a given processor or hardware accelerator, data hits and
misses for the caches, transmission/reception of a packet on the
interconnect, read and write access for the shared memory mod-
ules, etc. Execution time estimation requires attributing an aver-
age delay value to each type of activity. In our approach,
execution times for the hardware are either measured from a
physical characterization of the hardware component or from
an analytical model at a low abstraction level (using tools such

Listing 1. Pseudo-code of a virtual processor.

5 Using SystemC threads here would not work, as these threads are handled by the
SystemC scheduler, while we need to provide a specific scheduler per processor, with
a specific scheduling policy.

182 R. Ben Atitallah et al. / Microprocessors and Microsystems 36 (2012) 176–189



Author's personal copy

as CACTI [27]). The execution times for the software can be either
measured by executing each elementary tasks once on an ISS or
by estimation from the number of executed instructions. For
the hardware accelerator, the usual simulation tools at the RTL le-
vel are used to estimate accurately the execution time of each
task. Precise informations such as architecture pipelines, instruc-
tion latencies are all comprised in these average execution times.
These values are stored as deployment information in the model,
so that they are automatically used in the simulation.

6. Experimental results and evaluation

This section illustrates the usage of our approach to perform
DSE. For this purpose, two case studies are used: the Downscaler
application, which has already been briefly presented in Section
3, and the H.263 encoder application, which is also a typical MISP
application. The possible architecture to execute these applications
has several parameters which can vary: the number of processors
(4–16), the number of memory banks (1, 2 and 4), and the cache
size (2–64 kB). As the applications are based on several tasks, with
potential parallelism present at several granularities, the mapping
of the application on the hardware can be varied in many different
ways as well, included asymmetric distributions. Therefore, both
systems require a vast DSE to find the minimal architecture and
the most efficient mapping.

After a more detailed description of these two case studies, and
an overview on how the simulator is generated, the virtual proces-
sor approach will be compared against two other simulation ap-
proaches: a cycle accurate simulation (CA) which can be
expected to be slow but to have a good precision, and the one
provided by the OVPSim tool6 which aims at a fast simulation.
Primarily, the approaches are compared in terms of the two proper-
ties: simulation speed, and precision of the results. Later on, we will
present via a case study how our approach allow precise observa-
tions of the various global properties of the system required to per-
form efficiently high ESL prototyping such as data accesses to the
memory or network contentions over the time. A last case study will
demonstrate the ability of our approach to simulate heterogeneous
architectures, which mix both processor and hardware accelerator
cores.

6.1. Example systems

To design the systems, the choice of a given mapping for our
applications and the architecture on which they will be executed
can not be done arbitrarily. In fact, this depends on the application
requirements in terms of computation and communication re-
sources. For instance, running the Downscaler with a rate of 15 f/
s, 30 f/s or 50 f/s corresponds respectively to an execution time
of less than 66 ms, 33 ms or 20 ms per frame. Depending on the
frame rate required the computing power which must be provided
by the architecture will be different. Profiling the application first
on a simple architecture with only one 150 MHz MIPS processor
showed that the total processing time per frame (400 ms) is widely
greater than the application requirements. Thus, using a multipro-
cessor architecture is mandatory. For the communication require-
ments, based on the application task graph (Fig. 2), the quantity of
data load (read and write) from memory can be approximated for
each task based on input/output ports and the corresponding
shape.

Fig. 5 represents a possible mapping of the Downscaler applica-
tion onto the architecture which has 4–16 processors with private
caches, one or several memory banks as storage resource, and a

crossbar for the interconnections between these components. The
workload (horizontal and vertical filters) is distributed on the pro-
cessor by separating the data processing at the component level of
the frame. The first processors execute the parts in charge of the
luminance, while the rest of the processors handle the Cr and Cb
components. For data mapping, a memory bank can be allocated
for each frame component in order to reduce the conflicts between
simultaneous accesses to the same bank. The complete specifica-
tion of this case study, as well as the GASPARD2 environment used
to generate the simulation are publicly available for download
and testing [28]. Of course, these mapping and architecture
sketched are solely one possible implementation.

The second example application is the intra part of an H.263 en-
coder. It receives a QCIF frame and encodes it. It is mapped on an
architecture similar to the one used for the Downscaler. Tasks
are distributed homogeneously in such a way that each processor
handles a given set of frame blocks [23]. Further on, we will also
present the H.263 encoder mapped and simulated on a heteroge-
neous architecture.

6.2. Design environment and simulation generation

As stated previously, the VP-based simulation is facilitated by
the fact that the system is modeled at a high-level, via the MARTE
profile. Our environment GASPARD2 [28] allows to design the high-
level MPSoC specification and to generate automatically the VP-
based simulation implemented in SystemC. This is particularly per-
tinent for DSE since this permits implementations to be automati-
cally regenerated, after modifications in the high-level system
specification. Our environment relies on an efficient design meth-
odology called Model Driven Engineering (MDE) [29]. This method-
ology reduces the development and maintainability efforts of
MPSoC design tools, and provides a high-level abstraction to the
designer. Fig. 6 details how our tool generates the SystemC simula-
tion (which is only one among several targets). The MPSoC model
in UML is the input of a chain of transformations which go through
several intermediary models until reaching the simulation source
code. The simulation can then be compiled and executed to obtain
the results. More details about the chain and the advantages of
MDE for SoC design tools are presented in [30].

Concerning the generation of the simulation code, first, we have
measured the elapsed time taken to generate the system simulator
code starting from the high-level specification of the Downscaler
system for various sizes of the MPSoC. Let us note that in all these
studies, a computer equipped with a 2.33 GHz Xeon processor and
4 GB SDRAM is used. The code generation time was approximately
3 s, independently from the size of the system. This small duration
associated with the ease to change the high-level model ensures a

Fig. 5. Example of Downscaler mapping onto a homogeneous MPSoC.

6 http://www.ovpworld.org/

R. Ben Atitallah et al. / Microprocessors and Microsystems 36 (2012) 176–189 183



Author's personal copy

fast DSE. For instance, changing the number of processors or the
memory banks only requires to modify two numbers in the model
and the Distribute link parameters. The generation time is constant
because the system’s representation is kept factorized all along the
transformations. Independently of the number of instances, the
code size remains the same. Approximately 1450 lines of code
were generated.

The code is not intended to be modified by the user directly.
Nevertheless, the generation was designed to create clear code
which can be easily associated with the objects defined in the
high-level model, so the debugging can be easily performed.
Although it makes no doubts that manual coding could yield some
improvements of the simulation speed, in most cases, these poten-
tial improvements would likely remain small. With the current
implementation of the environment, the code is compact and
benefits from some loop optimizations in the application applied

during one step of the transformation chain. If required, additional
transformations steps could be added to automatically optimize
further the simulator. To give an insight on the appearance of the
code to the reader, an extract of a generated code for the connec-
tion between repeated memory banks and the interconnect is
presented in Listing 2.

6.3. Accuracy and performance of the simulation

In order to evaluate the Virtual Processor-based simulation, we
compare it to two other simulation techniques:

� A CA technique written manually in SystemC (for the hardware)
and C (for the software). Such technique is currently in use
industrially and is expected to provide good accuracy of the
results but takes a long time to run.
� A high-level technique using the OVPSim tool [31] which aims,

as our technique, at rapid system level virtual prototyping. The
architecture was developed based on the code provided with
the tool. Unfortunately, within this version only the binary code
of the platform is available which prevented us to accurately
match some timing parameters such as the buses and memory
latencies with the ones modeled in the other simulations. The

Fig. 7. Estimated execution time of the Downscaler with the VP, CA and OVPSim simulations, for different numbers of processors and memory banks.

Listing 2. SystemC generated code.

Fig. 6. Transformation chain towards SystemC.

184 R. Ben Atitallah et al. / Microprocessors and Microsystems 36 (2012) 176–189



Author's personal copy

software was an adapted version of the C manual implementa-
tion. OVPSim is a very fast simulator since processors are not ISS
but use code morphing and just-in-time (JIT) compilation [17].

In order to evaluate the simulations, two main characteristics
were measured: the simulation time, to compare the simulation
speed, and the estimated execution time for a given set of input,
to compare the precision of the techniques.

First, with respect to the precision, Fig. 7 summarizes the esti-
mated execution time of the Downscaler system for the three types
of simulations, with the number of processors varying from 4 to 16.
For the CA- and VP-based simulations, the architecture varied be-
tween 1, 2, and 4 memory banks (noted respectively 1 M, 2 M,
and 4 M). This represents a basic exploration of the architecture
space for the system. Similarly, Fig. 8 summarizes the estimated
execution time of the H.263 system for the three types of simula-
tions with one memory bank and a number of processors varying
from 4 to 16.

From Fig. 7, several remarks can be drawn. First, between 0.7%
and 30% of under-estimation can be noted on the VP-based simu-
lation compared to the CA simulation. Investigation using more de-
tailed information (as presented in the next subsection) showed
that the maximum error is obtained when a communication bot-
tleneck occurs in the interconnection network for a long period
of time. This is the case of configurations using only 1 memory
bank (noted 1 M). On the other hand, the OVPSim simulation
over-estimated the execution time between 8% and 44%. In the
case of the H.263, between 8% and 32% of under-estimation is
found with the VP-based simulation as shown in Fig. 8, while the
OVPSim simulation over-estimates the execution time between
22% and 43%.

As a side note, we can validate the assumption mentioned in
Section 5, that MISP applications have much less bus transactions
for the instructions than for the data, by observing the ratio in
the CA simulation. This ratio was respectively of 0.17% and 0.7%
for the Downscaler and the H.263 encoder.

One important observation to make is that, although VP tends
to underestimate the execution time compared to CA, the relative
order between the configurations is respected. In particular, both
simulations show that a 12-processor architecture gives the best
execution time for the Downscaler application. This is explained
by that the fact that due to the conflicts for accessing the data
memory, increasing the number of processors is inefficient. This
confirms the correctness of the proposed execution model for per-
formance estimation and hence the reliability of exploration. For
the H.263 encoder results, we have captured the same behaviour.
This is not the case for the OVPSim simulation, which showed a
much different profile, estimating that 12 and 16 processors lead
to the worse configurations, and 8 processors provided the fastest
execution. For the architecture exploration, OVPSim did not have a
sufficient accuracy.

The plots allow to find the appropriate architecture with mini-
mum resources. For instance, an 8-processor architecture with two
memory banks seems suitable to run the Downscaler at a 15 f/s
rate. The H.263 encoder requires 12 processors.

The second part of the study consists in comparing the simula-
tion speeds. Fig. 9 represents on a logarithm plot the acceleration
factor of the simulations compared to CA. All the architectures
have one memory bank, and a number of processors varying from
4 to 16. Here, OVPSim shows a large advantage with an accelera-
tion factor between 350 and 1000 over CA, compared to our ap-
proach which brought an acceleration with a factor of 12–37. We

Fig. 8. Estimated execution time of the H.263 with the VP, CA and OVPSim simulations, for different numbers of processors with 1 memory bank.

Fig. 9. Acceleration factor of the VP simulation and OVPSim over the CA one for H.263 and Downscaler applications, for different numbers of processors.

R. Ben Atitallah et al. / Microprocessors and Microsystems 36 (2012) 176–189 185



Author's personal copy

can note that OVPSim’s acceleration tended to be lower with more
processors. In absolute values, this simulation was three times
slower for 16 processors than for 4 processors. On the contrary,
the VP-based simulation had a higher speed-up for a higher num-
ber of processors. In absolute values, this simulation took almost
always the same time to run, independently of the number of pro-
cessors. For instance, the H.263 system was simulated in 17 s per
frame with 4 processors, and in 15 s per frame with 16 processors.

To evaluate more specifically the VP technique, we have manu-
ally modified the 16-processors VP simulation to use the ISS com-
ponent of the CA simulation. While with the ISS the H.263
simulation took 47 s per frame of which 6.7% of the time was di-
rectly related to processor simulation, with VP the simulation took
15 s of which only 0.9% was spent on the processor components.
This technique permits to reduce the simulation of the processor
to a negligible part of the whole simulation. Indirectly, more time
is saved because the VP-based simulation also reduces the over-
head of the SystemC kernel by avoiding a synchronization after
each simulated instruction.

To summarize, our prototype implementation of the Virtual
Processor approach allowed to increase the speed of the simulation
by a factor of 12–37 compared to a Cycle Accurate simulation. This
is far less than the highly optimized OVPSim tool which showed
speed-up factors of up to 1000. Nevertheless our approach showed
better precision in the results from the simulation, important to lo-
cate the most adequate configuration of a solution space. More-
over, the speed-up in the VP approach comes directly from the
highly increased speed of the processor simulators, and indirectly
from the reduced number of context switches between the

components of the simulator. Consequently, the simulation tech-
nique adapts very well to the increasingly common parallel archi-
tectures. Another advantage of our technique is that the
components simulating the other parts of the architecture can be
kept as is from the lower abstraction level simulations in SystemC.
This interoperability is vitally needed for an efficient ESL design.

6.4. Architectural optimizations

As one of the final objective of the VP technique is to provide
values accurate enough to guide the architectural optimization.
Here, two case studies are presented to demonstrate how our ap-
proach can permit such optimization.

Firstly, we present the observation of contentions over the
interconnection network to select the optimal number of memory
banks. This experiment is done with the Downscaler application on
a 12-processor architecture. During the simulation, pertinent infor-
mation about the system execution can be recorded into files for
later analysis. Fig. 10 shows the number of contentions in the inter-
connection every 1 ms of execution time when using different
number of memory banks, with the VP simulation. It shows that
with one memory bank, the interconnection was saturated all
along the execution. All configurations using only one memory
bank can therefore be eliminated from the solution space without
simulating the system with other parameters modified. With a
higher number of memory banks, similar analyses permit to pick
the best data distribution, and the optimal channel size.

In a second case study, we determine the minimal processor
cache size of a 4-processor MPSoC. Fig. 11 shows the data memory

Fig. 10. Contentions in the network on a 12-processor MPSoC.

Fig. 11. Data reads on a 4-processor MPSoC.

186 R. Ben Atitallah et al. / Microprocessors and Microsystems 36 (2012) 176–189



Author's personal copy

load (reads in kB), sampled every 1 ms of execution time, for differ-
ent processor cache size ranging from 2 kB to 64 kB. In general,
caches with high size reduce the main memory accesses and thus
improve the overall system performances. As here all processors
execute the same tasks, we explore only symmetrical cache sizes.
However, for configurations where the data structures are not
the same on all processors, asymmetrical cache sizes could be
tested as well. In our example, the move from 2 kB to 8 kB im-
proves the execution time by 17% (from 123 ms to 102 ms). Over
16 kB, the performance almost did not improve, so increasing the
cache size further than 8 kB would be useless. This is due to the
limited number of communicating tasks of the Downscaler appli-
cation (mainly two). Still, every cache size lead to a different pat-
tern of load, showing that our simulation technique permits to
observe transactions at a granularity fine enough to perform archi-
tectural optimization.

6.5. Heterogeneous MPSoC case study

So far, the case studies which have been described all involved an
homogeneous architecture, with identical processors. In this part,
we present how VP-based simulation can benefit also to systems
with a heterogeneous architecture. The OVPSim tool can simulate
heterogeneous multiprocessor platforms such as a 2-processor
architecture with a MIPS and an ARM cores. In our approach, this as-
pect is extended to include processor and hardware accelerator
cores. In addition, the system (application and architecture) descrip-
tion is generated automatically from the high-level specification
allowing a rapid system level prototyping. With OVPSim, the archi-
tecture and the application are developed manually. Hand-coding is
not suitable for an efficient development of large embedded systems
because it is tedious, error-prone and expensive.

Previously, simulation results have shown that the H.263 enco-
der requires 12 processors with 4 memory banks to be run at a
15 f/s rate. To reduce hardware resources, design space is further
explored by introducing an hardware accelerator to support the
DCT task, in addition to the MIPS processors.

The choice of the hardware accelerator was driven principally
by the comparison of processor usage for each task. GASPARD2 can
report for each software component the time spent to execute it
on the processors, and the time spent in synchronisations between
all processors (i.e.: waiting for data, synchronization barriers). In
the VP simulation, as the tasks are still explicitly separated, such
measurements are straightforward to perform. Fig. 12 illustrates
the processor usage percentage of the main tasks of the H.263 case
study and of the parallel overhead, depending on the number of
processors in the architecture. The DCT task is the most time con-
suming. This observation is compatible with other simulation

results found in the literature [32,33] about the H.263 encoder.
The DCT task is known to be efficiently executed by hardware
accelerators.

In GASPARD2, a special transformation chain which targets VHDL
[34] is used to generate the DCT hardware accelerator. The accu-
rate timing information extracted from an RTL simulation of this
generated component is used to annotate at the higher system le-
vel for the DCT Virtual Processor. Using this DCT hardware acceler-
ator, a new architecture is modeled and the application mapped on
it, as schematised in Fig. 13. The VP-based simulation is then used
to observe four variations of this system: with 1 to 8 MIPS proces-
sors. The DCT hardware accelerator is simulated in a similar way
than the general-purpose processors, excepted that the timing
information for the DCT task contains the values measured by
the low-level simulation. The simulation results are shown in
Fig. 14. The selection of the appropriate implementation is driven
by the application requirements and/or constraints on the hard-
ware resources. For instance, the results of the simulations show
that a heterogeneous 2-processor architecture with the generated
DCT accelerator should be suitable to run the H.263 encoder at a
15 f/s rate. While this curve was obtained in approximately
10 min, the same result with usual synthesis tools from a corre-
sponding VHDL code would require several hours. Hence, perform-
ing short estimations of the RTL models of each component
followed by VP-based simulations of potential system configura-
tions permits to accelerate the design space exploration.

7. Conclusions

Targeting the MISP application domain, we have presented a
new ESL simulation approach, adapted to the MPSoC design. Our
approach speeds up the simulation by leveraging the high-level
modeling provided by novel contributions such as MARTE. It intro-
duces the notion of Virtual Processor which, in its essence, consists
in replacing the processors by the software tasks which are mappedFig. 12. Processor usage per frame for the intra part of the H.263 encoder.

Fig. 13. Example of H.263 mapping onto a heterogeneous MPSoC.

Fig. 14. Virtual processor simulation with heterogeneous MPSoC architecture.

R. Ben Atitallah et al. / Microprocessors and Microsystems 36 (2012) 176–189 187



Author's personal copy

on it and adding a wrapper to translate external behaviour of the
processor. Performance can be further optimized by executing also
on the host the scheduling and the synchronizations. In order to
ensure the same behaviour between the high-level simulation
and the final implementation, an execution model adapted to MISP
applications was introduced. In addition to the performance advan-
tages, the VP approach also simplifies the debugging, facilitates
timing analysis and transfer patterns observation, handles hetero-
geneous architectures, and allows to deal with processors which
do not yet have a simulator component available.

In the case study, the approach was put into the context of DSE
with the usage of two typical examples: the Downscaler and the
H.263 encoder. The simulation offers at least a 10-fold speed-up
over a traditional CA simulation, while providing a relatively better
precision than faster simulations such as in OVPSim. Coupled with
our environment, our simulation is well adapted for rapid proto-
typing of MPSoC systems, permits a reliable hardware/software
DSE, and is compatible with the TLM 2.0 kit to facilitate IP integra-
tion. Hence, our approach contributes to increase the productivity
of MPSoC designers.

Future research will focus on several areas. First, we will enhance
our VP-based simulation with power estimation tools for multi-
objective DSE. Second, it could be interesting to target SystemC sim-
ulation at lower abstraction level to explore solutions selected with
VP-based simulation. Third, we would like to evaluate the possibility
to integrate the VP technique with simulations of hardware compo-
nents at higher levels. Finally, we plan to automate the DSE phase so
that simulation results can pilot modifications of the input model
and control the target simulation level.

References

[1] W. Wolf, A.A. Jerraya, G. Martin, Multiprocessor System-on-Chip (MPSoC)
technology, IEEE Transactions on CAD 27 (10) (2008) 1701–1713.

[2] T. Meyerowitz, Transaction Level Modeling Definitions and Approximations,
2005. <http://www.eecs.berkeley.edu/�alanmi/courses/2005_290A/reports/
290a_modeling.pdf>.

[3] P. Boulet, Formal semantics of Array-OL, a domain specific language for
intensive multidimensional signal processing. Research Report RR-6467, INRIA
(March 2008). URL <http://hal.inria.fr/inria-00261178/en/>.

[4] G. Kahn, The semantics of a simple language for parallel programming, in: J.L.
Rosenfeld (Ed.), Information Processing 74: Proceedings of the IFIP Congress
74, IFIP, North-Holland, 1974, pp. 471–475.

[5] E.A. Lee, D.G. Messerschmitt, Synchronous data flow, Proceedings of the IEEE
75 (9) (1987) 1235–1245.

[6] M.J. Chen, E.A. Lee, Design and implementation of a multidimensional
synchronous dataflow environment, in: Proceedings of the IEEE Asilomar
Conference on Signal, Systems, and Computers, 1995.

[7] Object Management Group, A UML profile for MARTE, 2007. <http://
www.omgmarte.org>.

[8] A. Amar, P. Boulet, J.-L. Dekeyser, F. Theeuwen, Distributed process networks
using half FIFO queues in CORBA, in: ParCo’2003, Parallel Computing, Dresden,
Germany, 2003.

[9] P. Dumont, Spécification multidimensionnelle pour le traitement du signal
systématique, ThÃ̈se de doctorat. PhD Thesis, Laboratoire d’informatique
fondamentale de Lille, UniversitÃ� des sciences et technologies de Lille,
December 2005.

[10] T.M. Parks, Bounded scheduling of process networks, PhD Thesis, EECS
Department, University of California, Berkeley, CA, December 1995. URL
<http://ptolemy.eecs.berkeley.edu/publications/papers/95/parksThesis/>.

[11] J.T. Buck, Scheduling dynamic dataflow graphs with bounded memory using
the token flow model. Ph.D. thesis, University of California at Berkeley, 1993.
URL <http://ptolemy.eecs.berkeley.edu/publications/papers/93/jbuckThesis/>.

[12] Open SystemC Initiative, SystemC, World Wide Web document, 2008. URL
<http://www.systemc.org/>.

[13] IEEE, System Verilog, 2005. <http://www.systemverilog.org>.
[14] L. Cai, D. Gajski, Transaction level modeling: an overview, in: Hardware/

Software Codesign and System Synthesis, 2003, pp. 19–24.
[15] The SoCLib project: an open modelling and simulation platform for system on

chip design. <http://soclib.lip6.fr/>.
[16] G. Beltrame, L. Fossati, D. Sciuto, ReSP: a nonintrusive transaction-level

reflective MPSoC simulation platform for design space exploration, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 28
(12) (2009) 1857–1869.

[17] B. Bailey, System level virtual prototyping becomes a reality with OVP
donation from imperas, Tech. rep., EDA, June 2008.

[18] R. Wunderlich, T. Wenisch, B. Falsafi, J. Hoe, SMARTS: accelerating
microarchitecture simulation via rigorous statistical sampling, in: 30th Annual
International Symposium on Computer Architecture, San Diego, USA, 2003.

[19] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, B. Calder, Discovering and
exploiting program phases, IEEE Micro 23 (6) (2003) 84–93. doi:http://
doi.ieeecomputersociety.org/10.1109/MM.2003.1261391.

[20] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, M. Poncino, SystemC
cosimulation and emulation of multiprocessor SoC designs, Computer 36 (4)
(2003) 53–59.

[21] L. Gao, K. Karuri, S. Kraemer, R. Leupers, G. Ascheid, H. Meyr, Multiprocessor
performance estimation using hybrid simulation, in: DAC ’08: Proceedings of
the 45th Annual Design Automation Conference, ACM, New York, USA, 2008,
pp. 325–330.

[22] S. Honda, T. Wakabayashi, H. Tomiyama, H. Takada, RTOS-centric hardware/
software cosimulator for embedded system design, in: Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS’04),
Stockholm, Sweden, 2004.

[23] E. Piel, R. Ben Atitallah, P. Marquet, S. Meftali, S. Niar, A. Etien, J.-L. Dekeyser, P.
Boulet, GASPARD2: from MARTE to SystemC simulation, in: Modeling and
Analysis of Real-Time and Embedded Systems with the MARTE UML profile
DATE’08 Workshop, 2008.

[24] P. Boulet, P. Marquet, E. Piel, J. Taillard, Repetitive Allocation Modeling with
MARTE, in: Forum on specification and design languages (FDL’07), Barcelona,
Spain, 2007, pp. 280–285, invited Paper.

[25] I.P. OCP, Open core protocol specification 2.0, 2003. <http://www.ocpip.org/>.
[26] R. Ben Atitallah, S. Niar, S. Meftali, J.-L. Dekeyser, An MPSoC performance

estimation framework using transaction level modeling, in: The 13th IEEE
International Conference on Embedded and Real-Time Computing Systems
and Applications, Daegu, Korea, 2007.

[27] N. Jouppi, CACTI home page. <http://www.hpl.hp.com/research/cacti/>.
[28] DaRT Team LIFL/INRIA, Lille, France, Graphical array specification for parallel

and distributed computing (GASPARD2), 2008. <https://gforge.inria.fr/projects/
gaspard2/>.

[29] D.C. Schmidt, Model-driven engineering, IEEE Computer 39 (2) (2006) 41–47.
[30] E. Piel, P. Marquet, J.-L. Dekeyser, Model transformations for the compilation

of multi-processor Systems-on-Chip, Generative and Transformational
Techniques in Software Engineering II 5235/2008 (2008) 459–
473.

[31] Imperas Inc., OVP World home page. <http://www.ovpworld.org/>.
[32] A. Ben Atitallah, P. Kadionik, F. Ghozzi, P. Nouel, N. Masmoudi, H. Levi, HW/SW

Codesign of the H. 263 Video Coder, in: Canadian Conference on Electrical and
Computer Engineering (CCECE’06), 2006, pp. 783–787.

[33] S. Jang, S. Kim, J. Lee, G. Choi, J. Ra, Hardware-software co-implementation of a
h.263 video codec, IEEE Transactions on Consumer Electronics 46 (1) (2000)
191–200.

[34] S. Le Beux, P. Marquet, J.-L. Dekeyser, Model driven engineering benefits for
high level synthesis, Research Report 6615, inria (2008). URL <http://
hal.inria.fr/inria-00311300/en/>.

Rabie Ben Atitallah is currently an Associate Professor
in Computer Science at the University of Valenciennes
and member of LAMIH laboratory within the DIM
(Decision, Interaction, and Mobility) team. He is also an
associated member of DaRT project at the INRIA Lille-
Nord Europe research institute. He is an IEEE member
and a member of High Performance and Embedded
Architecture and Compilation (HiPEAC) European Net-
work of Excellence. Previously, he received his PhD
degree in Computer Science from the University of Lille1
in March 2008. Between March 2008 and August 2009,
he had a post-doctoral position at INRIA Lille-Nord

Europe and the University of Valenciennes. His research interests include Embed-
ded system design, MultiProcessor System-on-Chip (MPSoC), Low power-aware
design, Virtual prototyping, Simulation, and Dynamic reconfigurable computing.

É ric Piel born in France, is currently post-doc in
Software Technology Department of the Delft University
of Technology (The Netherlands) working in the
Poseidon project, in partnership with Thales Nederland.
The subject of the research is to ease and improve the
integration of large-scale component-based systems.
Previously, he received his PhD in 2007 at INRIA
Lille (France) on the subject of embedded system
specification and model transformations, and his
engineer diploma in Computer Science at the Univer-
sity of Technology of Compiégne (France) in 2003.
He has also worked in the industry in the R&D

department of Bull on the subject of mixing Real-Time capabilities and parallel
processing.

188 R. Ben Atitallah et al. / Microprocessors and Microsystems 36 (2012) 176–189



Author's personal copy

Smail Niar is a Professor in computer science at the
Institut des Sciences et des Techniques de Valenciennes
(Valenciennes - France). His research activities are done
at LAMIH – ‘‘Information, Decision Making & Embedded
Systems’’ Research group. He is also a member of INRIA-
Lille DaRT Project and member of High Performance and
Embedded Architecture and Compilation (HiPEAC), the
European Network of Excellence FP7-ICT programme.

Philippe Marquet is currently an assistant professor at
the University of Lille, France and a researcher within
the INRIA, the French institute for research in computer
science. Philippe MARQUET has received a PhD in
Computer Science from the University of Lille in 1992.
His research interests include the design of parallel,
embedded and reconfigurable architectures, the defini-
tion of programming models, languages and compilers
dedicated to parallel computing. He also worked on the
definition and implementation of real-time operating
systems for SMP architectures. Recently he has worked
on the design of a massively parallel architecture on a

chip. He (co-)advised 11 PhD thesis.

Jean-Luc Dekeyser received his PhD degree in com-
puter science from the University of Lille 1 in 1986;
afterwards, he was a fellowship at CERN Geneva. After a
few years at the Supercomputing Computation Research
Institute in Florida State University, where he worked
on high performance computing for Monté-Carlo
methods in High Energy Physics, he joined the Univer-
sity of Lille 1 in France as an assistant professor, in 1988.
There he worked on data parallel paradigm and vector
processing. He created a research group working on
High Performance Computing in the CNRS lab in Lille.
He is currently Professor in computer science at Uni-

versity of Lille 1 and is also heading the DaRT INRIA project at the INRIA Lille Nord
Europe research center. His research interests include embedded systems, System
on Chip co-design, synthesis and simulation, performance evaluation, High Per-
formance Computing and Model Driven Engineering.

R. Ben Atitallah et al. / Microprocessors and Microsystems 36 (2012) 176–189 189


