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a b s t r a c t

Network-on-Chip (NoC) has been proposed as an alternative to bus-based schemes to
achieve high-performance and scalability in System-on-Chip (SoC) design. Performance
analysis and evaluation of on-chip interconnect architectures are widely based on simula-
tions, which become computationally expensive, especially for large-scale NoCs. In this
paper, a Network Calculus-based methodology is presented to analyze and evaluate the
performance and cost metrics, such as latency and energy consumption. The 2D Mesh,
Spidergong, and WK-Recursive on-chip interconnect architectures are analyzed using this
methodology and results are compared with those produced using simulations. The values
obtained by simulations and by analysis show similar trends in the same order of magni-
tude. Furthermore, WK outperforms the other on-chip interconnects in all considered
metrics.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

System-on-Chip (SoC) has recently emerged as a key technology behind most embedded and smart miniaturized systems
to provide high flexibility and better performance. These systems must provide high-performance while meeting system
requirements, such as a low energy consumption and small area. For example, future mobile communication terminals
should support many applications, which range from web browsing/navigation, to real-time multimedia applications such
as audio and video communication. Therefore, the design of these systems should be highly flexible, adaptable, and meet
stringent time-to-market constraints, while providing high-performance and lower energy consumption.

A key element in the performance and energy consumption in SoCs is the on-chip interconnect (OCI), which allows dif-
ferent SoC components to communicate efficiently. Network-on-Chip has been proposed as an alternative to bus-based
schemes to achieve high-performance and scalability in SoC design. Different OCI-based architectures using packet-switch-
ing have been recently studied and adapted for SoCs. Examples of these architectures are Fat-Tree (FT) [1], 2D Mesh [2], Ring
[3], Butterfly-Fat-Tree (BFT) [4], Torus [5], Spidergon [6], Octagon [7], WK-Recursive [8,9]. However, their increasing com-
plexity makes their design extremely challenging. Furthermore, understanding and studying traffic generated between com-
ponents and traverse the OCI is a crucial task [10]. Therefore, it is useful to perform a traffic analysis in early stages of the
design process, such that the designer can select appropriate parameters for the on-chip interconnect architecture. Indeed,
the selection of the on-chip interconnect architecture, based on traffic patterns that an application specific SoC generates,
allows designers to detect and locate network contentions and bottlenecks.
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Evaluating the performance of NoC architectures are usually performed using simulations [1,11–15]. Generally, the sim-
ulation is extremely slow for large systems and provides little insight on how different design parameters affect the actual
NoC performance [16]. Analytical models, however, allow fast evaluation of performance metrics in early stages of the design
process. This paper extends the work we have done by evaluating the performance (e.g., latency) of three on-chip intercon-
nect architectures using Network Calculus [17]. We show how Network Calculus can be used to evaluate the performance
metrics, energy consumption and area requirements of on-chip interconnects and their design tradeoffs. The main objective
is to illustrate the effectiveness of this methodology in evaluating on-chip interconnect architectures. As a case study, a de-
tailed analysis and evaluation of three on-chip interconnect architectures, the 2D Mesh, WK-Recursive, and Spidergon, under
different traffic loads is presented.

The rest of this paper is structured as follows. In Section 2, we summarize the existing work on performance analysis
methods proposed for evaluating on-chip interconnects. Section 3 provides a brief overview of Network Calculus concepts
and features. In Section 4, we present the on-chip interconnect modeling methodology, and the results obtained using both
simulations and Network Calculus. Conclusions and future work are given in Section 5.

2. Related work

On-chip interconnect architectures adopted for SoCs are characterized by tradeoffs between latency, throughput, commu-
nication load, energy consumption, and silicon area requirements. Several works, such as presented in [18], have demon-
strated that there is a crucial need for system design tools and methodologies to analytically evaluating and comparing
NoC architectures. The authors in [18] have pointed out that the current design tools and methodologies are not suitable
for NoC evaluation, and simulation methods, despite their accuracy, are very expensive and time consuming. Therefore, tech-
niques and tools are required to extract application communication characteristics and to efficiently estimating their perfor-
mance and energy consumption in addition to area requirements for candidate communication architectures.

Recently, there has been a great deal of interest in the development of analytical performance models for NoC design.
Approaches proposed in the literature can be classified in four main categories: deterministic approaches, probabilistic ap-
proaches, physics based approaches, and system theory based approaches. In the first category, approaches are mainly based
on graph theory used successfully in many software and computer engineering domains. For example, in [19], a model using
a cyclo-static dataflow graph was used for buffer dimensioning for NoC applications. Deterministic approaches assume that
the designer has thorough understanding of the pattern of communication among cores and switches.

Most of the work to date using probabilistic approaches are based on queuing theory. For example, an analytical model
using queuing theory was introduced in [20] to evaluate the traffic behavior in Spidergon NoC. Simulation results to verify
the model for message latency under different traffic rates and variable message lengths have been reported. A queuing-the-
ory-based model for evaluating the average latency and energy consumption of on-chip interconnects was proposed in [21].
The results from the analytical model were validated with those obtained when using a cycle-accurate simulator. Most queu-
ing approaches consider incoming and outgoing traffic as probability distributions (e.g., Poisson traffic) and allow designers
to perform a statistical analysis on the whole system in order to evaluate certain network metrics, such as average buffer
occupancy and average buffer delay in an equilibrium state. However, NoC applications exhibit traffic patterns that are very
different compared to Poisson distribution used in queuing model [22,12]. More precisely, the Poisson model fails to capture
some important network characteristics like self-similarity or long-range dependence [23].

In [24], the authors suggested statistical physics and information theory for NoC design and evaluation. Unlike stochastic
approaches that make Markovian assumptions about the network behavior, statistical physics can model the interactions
among various components while considering the long-term memory effects. A quantum-like approach was proposed in
[24] to model the information flow and buffers behavior in NoCs. The main concept in this model is that packets in the net-
work move from one node to another in a manner that is similar to particles moving in a Bose gas and migrating between
various energy levels as a consequence of temperature variations. The authors have focused on the buffer sizing issue, which
is a major factor that affects the energy consumption and the silicon area requirements.

The fourth category uses system theory that is successfully applied to design electronic circuits. Network Calculus fea-
tures are derived from system theory so that performance bounds (e.g., end-to-end delay) in networks such as the Internet
can be modeled and evaluated [25,26]. The attractive feature of Network Calculus is its ability to capture all traffic patterns
with the use of bounds. In other words, based on shapes of the traffic flows (by analogy, signals in system theory), designers
are able to capture some dynamic features of the network. For example, in [27], we have presented a performance analysis
methodology using Network Calculus to analyze and evaluate performance metrics of 2D Mesh on-chip interconnect. Sim-
ulations are performed and results are compared with those from the Network Calculus-based methodology in order to
underline its usefulness for evaluating on-chip interconnects.

In this paper, the Network Calculus-based methodology is used to evaluate other performance metrics (e.g., load and
throughput) as well as cost metrics (e.g., energy consumption and area overhead). Three on-chip interconnects, that are
the 2D Mesh, WK-Recursive, and Spidergon, are evaluated and compared under different traffic loads. Results show the effec-
tiveness of Network Calculus as a useful tool for NoC design and evaluation. It is worth noting that we have selected 2D
Mesh, WK-Recursive, and Spidergon because they outperform other on-chip interconnects, such as FT and Ring, in all per-
formance and cost metrics [9,28].
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3. Network Calculus: an overview

Network Calculus [25,26] is a modeling framework that allows designers to specify a system as a mathematical model
and evaluate main performance bounds such as end-to-end delay. This theory is based on (min,+) algebra for deterministic
network performance analysis, especially for worst-case analysis [25]. Based on shapes of the traffic flows, designers are able
to capture some dynamic features of the network. In this section, we briefly introduce Network Calculus, in particular service
and arrival curves that represent traffic patterns, as well as some performance bounds.

We consider that any system can be composed of one or several components that exchange traffic in order to accomplish
a given task. The traffic pattern of the system can be defined by arrival curves of incoming traffic flows to each component of
the system. Let us consider f a data flow characterized by an input function denoted by R(t), which represents the cumulative
data units (e.g., packets, bits) of f arriving at the component C within the time interval [0,t]. Let us consider R*(t) the output
function (see Fig. 1), which represents the cumulative amount of data that leaves the component during the time interval
[0,t], R(t) P R*(t). Having the input and output functions, we can derive the following two quantities of interest, the backlog
and the virtual delay [25]. The backlog x(t) is the amount of data units that are held inside the system, x(t) = R(t) � R*(t). The
virtual delay d(t) is the delay that would be experienced by a data unit arriving at time t if all units received before it is served
before it, d(t) = inf{s P 0, R(t) = R*(t + s)}.

In order to calculate the delay and the backlog, the input and output functions have to be defined. Their definition is based
on (min,+) convolution and deconvolution principles defined as follows. Given f and g wide-sense increasing functions and
f(0) = g(0) = 0, their convolution is defined as (f � g)(t) = inf06s6t{f(t � s) + g(s)} and their deconvolution is defined as
(f øg)(t) = supsP0{f(t + s) � g(s)}.

Each input function can be characterized by an arrival curve as follows. An arrival curve a(t) characterizes a traffic flow
R(t), iff it upperbounds the amount of arriving data of this traffic flow during any time interval [0,t]. More formally, given a
wide-sense increasing function a(t) defined for t P 0, we say that a flow R(t) is constrained by a iff for all s 6 t:
R(t) � R(s) 6 a(t � s). It is also said that R has a as an arrival curve, or also that R is a-smooth [25]. Using (min,+) convolution,
a is an arrival curve of an input function R iff R 6 R � a. An example of the arrival curve is a leaky bucket controller, which
enforces an arrival curve constraint a(t) = rt + b. It means that no more than b data units can be sent at once and r bit/s
on long-term.

The output function R*(t) can be calculated after the modification of the input function R(t) by the component C described
by the service curve b(t) of that component. We say that C offers to the flow R a service curve b (non-decreasing function such
that b(0) = 0) iff: " t P 0, R*(t) P inf06s6t{R(s) + b(t � s)}. Using (min,+) convolution of these two functions, b is a service curve
of flow R iff R* P R � b. An example of the service curve is rate latency function b(t) = R(t � T)+, where R denotes a guaranteed
service rate and T is the maximum latency caused by the component [29]. The expression (x)+ equals to x when x > 0 and 0
otherwise. Fig. 1 shows a component with input/output curves, service curve, delay and backlog.

Knowing the service curve b(t) offered by a component C, the output curve a*(t) of R*(t), can be calculated as follows:
a*(t) = (aøb)(t). For example, assuming that a flow is constrained by an arrival curve a(t) = rt + b and C provides a guaranteed
service curve b(t) = R(t � T)+ to the flow, the output bound can be calculated as follows: a*(t) = a(t) + rt. These curves, a(t) and
a*(t), act like bounds on the input and output traffic flows respectively, and are used to compute the delay bound D and the
backlog bound B as follows. The delay D for a data flow R(t) constrained by an arrival curve a(t) that receives the service b(t)
to produce a data flow R*(t) constrained by the arrival curve a*(t) is upper-bounded by: d(t) 6 supsP0(inf{s P 0: a(s) 6
b(s + s)}). The backlog x(t) can be upper-bounded by: x(t) 6 sups60{a(s) � b(s)},"t.

An example is illustrated in Fig. 2 that shows the delay and the backlog bounds of a component receiving a traffic flow
characterized by an arrival curve a(t) = rt + b and providing a service curve b(t) = R(t � T)+, where R P r is the guaranteed
bandwidth, and T is the maximum latency of the service. Using these curves, the backlog B and delay bounds D can be ex-
pressed as follows: B = b + rT and D = b/R + T.

4. OCIs exploration

In this section, three on-chip interconnect architectures are selected for analysis and evaluations, 16-node configurations
are used. Fig. 3 shows these configurations with application data flows generated as a case study (e.g., in 2D Mesh, f1 =
(c8,s8,s12,c12)). As shown in this figure, there are three important elements in NoC: cores, routers (or switches), and bidirec-
tional links. Each core can be either a source or a sink, in which flits are constructed or consumed. Each ingress port in a
switch has a buffer for temporary storage of information. When a flit arrives at a switch, it must go into the buffer that

Fig. 1. Arrival and service curves in Network Calculus with delay and backlog bounds.
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corresponds to a Drop-tail queue with an FIFO queue management mechanism. The rest of this section presents the Network
Calculus-based model and how it is used to evaluate the performance and cost metrics.

4.1. Network Calculus-based model

In order to analyze and evaluate the performance of each OCI, we need to build a model for the entire system. The NoC
architecture can be viewed as a distributed system composed of autonomous nodes that communicate by exchanging mes-
sages through an on-chip interconnect [30]. The on-chip interconnect can be described as a graph OCI(V,E) whose nodes v 2 V
represent switches or cores and whose edges ‘ 2 E represent the communication links between two neighboring nodes u and
v. For each node v 2 V, rv is the injection rate and for each link ‘ 2 E, R‘ denotes the guaranteed service rate or the link band-
width. Similarly, an application can be represented by an acyclic digraph, called Task Graph TG, where each v 2 V represents a

Fig. 2. Example of backlog bound B (a) and delay bound D (b).

s12 s11 s10 s9 

s5s6s7s8 

s13s14s15s16

c4c3c2c1

c12c11c10c9

c5c6c7c8

c13c14c15c16

s4 s3 s2 s1 

(b) 

f1

f1 f1 f1

f1

f2

f2f2f2

f2 f3 f3

f3

f3

f4

f4 f4

f4

f4

f5

f5 f5

f5

f5f1

f2
s8 s7 s6 s5 

s12s11s10s9 

si

s15s14s13

c4

 C8

c3c2

c1 c8

C16

c7

c6c5
c12

2

c11

c10c9
c16

c15c14c13

s4 s3 s2 s1 

f5

f5

f5

f1

f1

f1

f3

f3

f3

f3

f4

f4

f4

f4

f2

f2

f2

f2

f3

ciSwitch IP core Link 

s16

fi

(c)

Data flow 

s8 s7 s6 s5 

s12s11s10s9 

s16s15s14s13

c4

8

c3c2c1

c8c7c6c5

c12c11c10c9

c16c15c14c13

s4 s3 s2 s1 

f2       f2f2

f1 f1

f1

f2

f4

f4f4
f4

f4

f4

f5

f5

f5

f3
f3

f2

f5

f3

f3

(a) 

f3

Fig. 3. On-chip interconnects with data flows: (a) 2D Mesh, (b) Spidergon, (c) WK (4,2)-Recursive.

M. Bakhouya et al. / Simulation Modelling Practice and Theory 19 (2011) 1496–1505 1499



Author's personal copy

task and each ‘ = (u,v) 2 E is a communication flow edge having one attribute �a‘ðtÞ, the input arrival curve that represents
the data flow sent by u to v.

After a random mapping of the TG on the OCI, as illustrated in Fig. 3, the cores (c6,c8,c11,c15) are selected to be traffic
sources. Cores (c1,c5,c12,c13), considered as sinks, are selected according to the following communication locality principle
in which 25% of the traffic takes place between neighboring cores and 75% of the traffic is uniformly distributed among
the rest. We can see, in this traffic pattern, that c8 is selected two times as a traffic source and c12 is selected two times
to be a traffic sink. Data flows are represented by sequences of hops from a source core ci to a destination core cj. These data
flows are computed using a deterministic routing protocol to direct flits between switches.

Having these data flows, we can express the input and output arrival curves, �asi
ðtÞ; �aci

ðtÞ, and �a‘ðtÞ of each switch si, core ci,
and link ‘ respectively. The maximum data flow sent to a switch si is constrained by the arrival curve �aiðtÞ ¼ rit þ bi, where bi

is the maximum burst size of the data flow and ri is its average rate. Using this arrival curve, a node can send bi bits at once,
but without exceeding ri bit/s over the long run. Each switch also provides a guaranteed service constrained by the service
curve bi(t) = Ri(t � Ti)+, where Ri denotes the guaranteed service rate and Ti is the maximum latency caused by the switch si.
This service curve is called the rate-latency service curve in which data is delayed by a fixed time Ti and then routed out at a
rate Ri. These two curves are widely used in evaluating systems [31–34]. We use these curves to evaluate and compare the
considered OCIs.

After defining data flows and nodes participating in transmitting and/or receiving data, the entire network can be de-
scribed to obtain the performance model by merging all arrival and output flows. For example, Fig. 3b shows the 16-nodes
configuration of the Spidergon on-chip interconnect. As shown in this figure, five data flows are selected as follows: f1 =
(c8,s8,s9,s10,s11,s12,c12), f2 = (c8,s8,s7,s6,s5,c5), f3 = (c6,s6,s5,s13,c13), f4 = (c11,s11,s3,s2,s1,c1), f5 = (c15,s15,s14,s13,s12,c12).

Based on these data flows, the input and output curves of each switch are iteratively calculated. For example, �a15ðtÞ and
�a�15ðtÞ respectively have to be calculated first. We have then, �a15ðtÞ ¼ rt þ b and �a�15ðtÞ ¼ rt þ bþ rT . The output bound of the
switch s15 is an input to the switch s14, so �a14ðtÞ ¼ rt þ bþ rT and �a�14ðtÞ ¼ rt þ bþ 2rT. In the second iteration, input and out-
put curves �a8ðtÞ are calculated as follows, �a8ðtÞ ¼ 2rt þ 2b and �a�8ðtÞ ¼ 2rt þ 2bþ 2rT . In the third iteration, the input and
output curves of �a7ðtÞ and �a9ðtÞ respectively have to be calculated in the same manner according to data flows. The calcu-
lation will be repeated with nodes s6,s5,s13,s10,s11, s12,s3, s2, and s1, till we obtain the following equations:

�a1ðtÞ ¼ rt þ bþ 9
2 rT �a9ðtÞ ¼ rt þ bþ rT

�a2ðtÞ ¼ rt þ bþ 7
2 rT �a10ðtÞ ¼ rt þ bþ 2rT

�a3ðtÞ ¼ rt þ bþ 5
2 rT �a11ðtÞ ¼ 2rt þ 2bþ 3rT

�a5ðtÞ ¼ 2rt þ 2bþ 4rT �a12ðtÞ ¼ 2rt þ 2bþ 6rT
�a6ðtÞ ¼ 2rt þ 2bþ 2rT �a13ðtÞ ¼ 2rt þ 2bþ 5rT
�a7ðtÞ ¼ rt þ bþ rT �a14ðtÞ ¼ rt þ bþ rT
�a8ðtÞ ¼ 2rt þ 2b �a15ðtÞ ¼ rt þ b

ð1Þ

In the same manner, the arrival curve, �aci
ðtÞ, of each core ci, and the arrival curve, �a‘ðtÞ, of each link ‘ can be calculated. One of

the main advantages of using Network Calculus is that the designer can model the data flows of an application and their
interactions (i.e., flows are dependent to each other) which are necessary for NoC design and evaluation.

SoC applications generally have broad computation and/or communications requirements. Understanding application
communication patterns is critical for efficient use of SoC resources within a given set of constraints such as area, power
and performance. In the rest of this section, we will show how to evaluate the performance, the energy consumption, and
the area requirements based on the OCI model describing the arrival curves of each switch, core, and link. Analytical and
simulation results are compared using the same traffic pattern to confirm the usefulness of Network Calculus for NoC design
and evaluation. Simulations are conducted using a simulator developed in [14].

In the simulation, we consider that an application is represented as communicating parallel processes. Each process is
linked with a traffic generator that injects flits according to the CBR (Constant Bit Rate) model at a deterministic rate r, which
is varied between 25 Mbps and 100 Mbps. It is worth noting that, in this evaluation, we have used Network Calculus theory,
which is mainly proposed to study lossless system, i.e., with the assumption that no flits are ever lost. Once a flit is injected in
the NoC, it will eventually reach its destination. When the injection rate is above 100 Mbps, a lot of flits are lost. This is the
reason why at this rate the network becomes congested and router start dropping flits. The maximum service rate R is fixed
to 200 Mbps in this simulation and same for each switch. In NoCs, the maximum service rate was expected to be in the order
of Gigabits/s. However, because of the limitations from real conditions and since an event simulator not cycle-accurate sim-
ulator (event can represent many cycles that allow this high bandwidth) is used, and processor power limitation, the max-
imum service rate can only add up to 200 Mbps.

In the analytical evaluation, the arrival curve we have used for each node i is a leaky bucket controller which enforces an
arrival curve constraint a(t) = rt + b. Using this arrival curve, a node i can send b bits at once, but without exceeding r bit/s
over the long run. One of the applications using arrival curve is in the Generic Cell Rate Algorithm (GCRA) with two param-
eters, target inter-arrival time of packets T, and s the tolerance that quantifies how early packets may arrive with respect to
the ideal spacing T [25]. A CBR connection is defined by one GCRA with parameters (T,s), in which b ¼ Sf ðsT þ 1Þ and r ¼ Sf

T ,

1500 M. Bakhouya et al. / Simulation Modelling Practice and Theory 19 (2011) 1496–1505
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where Sf is the flit size. In the simulator we have used, the CBR was implemented with s equal to 0, therefore, b is all time
equal to the flit size fixed.

The flit is an elementary unit of information exchanged in the communication network in a unit of time (e.g., clock cycle),
but a packet is an element of information that an IP core sends to another core, which consists of a variable number of flits. The
size of flits can be 8, 16, 32 or 64 bits, but in our evaluation, we keep the flit size to 8 bytes. The size has influence on the per-
formance and cost metrics but not on the comparison results between on-chip interconnects. It is worth noting that, the
length of packet, number and size of flits and the buffer size are all parameterized during the design space exploration. More
precisely, after comparing different on-chip interconnects the designer can customize the suitable one by selecting appropri-
ate parameters, such as the maximum service rate, the buffer size for each input port, and flit size, given a specific application.

In this evaluation study, we have considered latency, throughput, and communication load, which are the most important
performance metrics used in evaluating on-chip interconnects [1,3,11,13]. Another performance metric is the loss rate not
considered in this study because we are analyzing lossless NoCs. In addition to these performance metrics, cost metrics that
are energy consumption and area requirements are considered.

4.2. Performance metrics

In this section, performance metrics, mainly the latency, throughput, and communication load, will be evaluated using
the input and output arrival curves �aci

ðtÞ; �a‘ðtÞ, and �asi
ðtÞ.

4.2.1. Latency
Latency is defined as the time that elapses between the injection start of the flits into the network at the source core and

its arrival at the destination core. For a flit to reach the destination cores (e.g., processing elements), it must travel through a
path consisting of a set of links and switches. Using Network Calculus, the latency Lsi

in each switch si constrained by an
arrival curve rit + bi can be calculated as follows [25]:

Lsi
¼ bi

Ri
þ Ti ð2Þ

where Ri is the service bandwidth and Ti is the maximum latency of the service at a switch si. Therefore, the average latency
can be calculated based on Eq. (2). For example, as shown in the previous section (see Eq. (1)), in Spidergon, since
�a7ðtÞ ¼ rt þ bþ rT;D7 ¼ r

Rþ 1
� �

T þ b
R, if the injection rate is r = 100 Mbps, R = 200 Mbps, b = 64 bits, and the flit size is

Sf = 8 bytes, then D6 = 0.8 ls, where T = Sf/R. After computing the delay bound of each switch, the total delay, called end-
to-end delay bound, Dfi of each data flow fi (from the source to the sink) can be calculated by summing up the delay of each
participating switch. It is defined as the time that elapses between the injection start of the flit into the network at the node
source and its arrival to the destination node. For example, since Df3 ¼ D5 þ D6 þ D13, if r = 75 Mbps, then Df3 ¼ 4:2 ls. The
calculation continues in the same manner with Df1 ;Df2 ;Df4 , and Df5 to find the average end-to-end delay.

Fig. 4 compares the average latency of the three on-chip interconnect architectures under different injection rate using
Network Calculus (analysis) and simulation. As shown in this figure, when increasing the injection rate, the network be-
comes more congested with heavy traffic and hence queues become full causing more flits to wait, and therefore increasing
the latency. We can also see that the latency obtained using Network Calculus analysis (i.e., a worst-case analysis) is in the
same order of magnitude as the latency obtained using simulations, i.e., both show a deviation of less than 14% on average.
Furthermore, regardless of the injection rate used and in both simulation and analysis results, the Spidergon has higher aver-
age latency compared to the Mesh and WK because of high average number of hops flits traversed. We can also see that WK
is less sensitive to the injection rate increases and has lower average latency.

4.2.2. Network load
Communication load is a relative value of arrival rate versus departure rate on all links. Let us consider DrðtÞ is the max-

imum number of flits that can possibly, under ideal circumstances, be transmitted over all links at time t, and ArðtÞ is the
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actual number of flits that have arrived over all links at time t [14]. The communication load LðtÞ can be defined as the ratio
between the departure rate DrðtÞ and the arrival rate ArðtÞ as follows:

LðtÞ ¼ ArðtÞ
DrðtÞ

¼
PN‘

i¼1
�a‘i
ðtÞ

N‘Rt
ð3Þ

where �a‘i
ðtÞ is the number of flits arrived in the link ‘i, R is the bandwidth of each link ‘i, and N‘ is the number of unidirec-

tional links involved in transporting flits. We consider that all links have the same bandwidth, R.
The results depicted in Fig. 5 show the variation of communication load under different traffic rates for the three OCIs. The

communication load obtained using Network Calculus analysis is in the same order of magnitude as the load obtained using
simulations with a deviation of less than 28%. Furthermore, regardless of the injection rate used, in both simulation and anal-
ysis results, the Spidergon has a higher communication load compared to the Mesh and WK. Furthermore, WK is less sen-
sitive to the injection rate increases and has a slightly lower load.

4.2.3. Throughput
The throughput for each core ci represents how many bits arrive at that core per second (bps). The aggregate throughput

T ðtÞ is the sum of throughput of each destination core ci during the interval [0,t]. It can be calculated as follows:

T ðtÞ ¼
XNd

i¼1

�aci
ðtÞ ð4Þ

where Nd is the number of cores selected as destinations (i.e., sinks), and �aci
ðtÞ is the arrival curve that represents the accu-

mulated number of bits arrived (i.e., accumulated) at the destination core ci until time t.
In the example depicted in Fig. 3, cores (c1,c5,c12,c13) are selected to be sinks. Using, the OCI model of the Spidergon, the

arrival curve �aci
ðtÞ of each core ci can be calculated, for example, �ac1 ðtÞ ¼ rt þ bþ 11

2 rT and �ac5 ðtÞ ¼ rt þ bþ 3rT. Fig. 6 shows
the variation of aggregate throughput under different injection rates for the three OCIs. The throughput increases linearly
when the injection rate increases because of the number of flits generated. Furthermore, the throughput obtained using anal-
ysis is slightly similar to all OCIs and is in the same order of magnitude as the throughput obtained using simulations with a
deviation of less than 5%.

4.3. Cost metrics

This section presents the analytical evaluation of cost metrics, mainly the average energy consumption and area over-
head. Analytical results are also compared to those obtained using simulations.

4.3.1. Energy
The total energy can be decomposed into the energy consumed on the switches (traversal of input and output switches)

and energy consumed per wires or links between cores and switches. The total energy EðtÞ, can be calculated as follows:

EðtÞ ¼
XN‘

i¼1

�a‘i ðtÞE‘i
þ
XNs

j¼1

�asj
ðtÞEsj

ð5Þ

where �a‘i
ðtÞ and �asj

ðtÞ are the number of bits arrived until time t to the link ‘i and sj respectively. N‘ and Ns are the number of
links and switches involved in transporting the application flows. Therefore, the first term represents the energy consumed,
at time t, on all links involved, and the second term represents the energy consumed inside the switches [28]. E‘i

is the en-
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ergy consumed during transporting one bit on a link ‘i, and Esj
is the energy consumed during buffering and routing oper-

ations of one bit inside each switch sj.
The values of E‘i

and Esj
depend mainly on the switch architecture and the link characteristic such as the width and the

length. In this evaluation, we use the values already estimated in the energy model proposed in [35] in which the average
amount of energy required for a single bit to pass a switch is equal to 0.9776 pJ/bit and the average amount of energy re-
quired for a single bit to cross a link ‘ is (0.39 + 0.12L‘) pJ/bit, where L‘ is the length of the link ‘. To calculate L‘, we consider
that the link between each core and its corresponding switch is of length 1 mm. We consider that all links (horizontal or
vertical) between neighboring switches are of length 2 mm. For example, as shown in Fig. 3, WK (4,2) has 16 links of length
1 mm, 20 links of length 2 mm, and 10 links of length 4 mm. However, only 5 links of length 1 mm, 5 of length 2 mm, and 5 of
length 4 mm are involved in transporting flits.

Fig. 7 shows the energy consumption using analytical evaluation and simulations. This figure shows that the energy con-
sumption increases linearly when the injection rate increases. This increase can be explained by the big number of flits gen-
erated as the injection rate increases. Furthermore, regardless of the injection rate used, in both simulation and analysis
results, the Spidergon has higher average energy consumption compared to the Mesh and WK. This increase can be explained
by the higher number of hops traversed by flits. We can also see that the energy obtained using analysis is in the same order
of magnitude as the energy obtained using simulations, i.e., the difference between simulation and analysis is about 1%.

4.3.2. Area
In NoC design, three sources of area overhead can be identified, switches, cores, and links. Switches have two main com-

ponents: the buffers to temporally store flits and logic to implement the routing algorithm. Area overhead of links depends
on their lengths inside the chip [36]. The total area value can be then calculated as follows:

A ¼
XNs

i¼1

AsðiÞ þ
XNc

j¼1

AcðjÞ þ
XN‘

k¼1

A‘ðkÞ ð6Þ

where Ns is the number of switches, Nc is the number of IP cores, N‘ is the number of bidirectional links, AsðiÞ and AcðjÞ, and
A‘ðkÞ is the area requirement for the switch i, core j and link k respectively. The average on-chip interconnect area Av will be
determined by the average link area A‘, the average switch area As, and the average IP core area As. We consider the average
since the resources (e.g., DSP, FPGA, Memory) are heterogeneous, the length of links are different, and the size of switches
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depends on their emplacement in the on-chip interconnect (e.g. degree). We use the architectures’ layout presented in [28]
to determine these values, in particular As and A‘. So the average area A can be derived from Eq. (6) as follows:

Av ¼ NsðRs þ asdgSf BsÞ þ NcAc þ a‘N‘L‘ ð7Þ

where Bs is the average buffer size, as is the area required for one byte, Sf is the flits’ size in bytes, a‘ and L‘ is the average
width and the average length of each link ‘, Rs is another switch silicon area, such as routing table and logic to implement
the routing algorithm, and dg is the average degree of the on-chip interconnect, which represents the average number of buf-
fers inside the switch.

It was demonstrated in previous works, for example in [36,37], that a dominant part of the NoC area is due to the buffer
sizes. To calculate the average buffer size Bs, we have to calculate the buffer size Bsi

of each switch si as follows. As described
above, each switch si is constrained by an arrival curve in the form �asi

ðtÞ ¼ rit þ bi and provides a guaranteed service curve
bi(t) = Ri(t � Ti)+ to each flow. Therefore, Bsi

can be calculated as follows [25]:

Bsi
¼ bi þ riTi ð8Þ

where ri is the core injection rate and Ti is the maximum latency of the service at the switch si. For example, in Spidergon,
since �as1 ðtÞ ¼ rt þ bþ 9

2 rT;Bs1 ¼ 11
2 rT þ b, if the injection rate is r = 75 Mbps, R = 200 Mbps, b = 64 bits, and the flit size is

Sf = 8 bytes, then Bs1 ¼24.5 bytes (�3 flits), where T = Sf/R.
Fig. 8 shows the area requirements (in mm2) for zero flits drop (i.e., lossless system) under different injection rates. In this

evaluation, the area required to store the routing table and other related area are considered constant, Rs = 1 mm2, and
as = 0.005 mm2, a‘ = 0.02 mm, Ac = 2 mm2, Rs = 1mm2. We also consider that the chip size is of 20 mm � 20 mm. The value
of L‘ is calculated based on the architectures layout [28]. As shown in Fig. 8, when injection rate increases, the area require-
ment increases because the network becomes more congested with heavy traffic and so more space is needed to absorb dif-
ferences in speed and burstiness between the IP cores. In other words, as the injection rate increases more space is needed to
avoid flits from being dropped. We can see, that the WK and Spidergon require more area because of the additional links and
more buffer size respectively, when compared with the Mesh. Furthermore, area obtained using analytical evaluation is in
the same order of magnitude as the area obtained using simulations, i.e., the difference between simulation and analysis is
about 1.5%.

5. Conclusions and future work

In this paper, a Network Calculus-based methodology is presented to evaluate on-chip interconnects in terms of perfor-
mance (i.e., latency, communication load, throughput) and cost metrics (i.e., energy consumption and area requirements)
based on a given traffic pattern. The main objective is to illustrate the practical use of the Network Calculus approach to ana-
lytically evaluating on-chip interconnects. The 2D regular Mesh, Spidergon, and WK on-chip interconnect architectures are
compared and evaluated using a given traffic pattern. The results show that this approach can provide the designer with ini-
tial insight on on-chip interconnects and the relationship between application traffic and performance. The results show that
WK-Recursive outperforms the 2D Mesh and Spidergon on-chip interconnects in all considered metrics.

Further work concerns the development of a design space exploration software tool that will be built around Network
Calculus and integrated with a simulation and experimental environment. This software tool allows designers to rapidly ex-
plore design options over a wide range of energy budget and performance requirements. The utility of this tool will be dem-
onstrated via several prototypes that are created using reconfigurable platforms based on the FPGA technology where actual
performance can be measured. Combining applications characterization, performance simulation and analysis, and imple-
mentation in one software tool allows filling the gap between pure simulation that may be too slow and analytic methods
that are not accurate enough to be used in a design space exploration of SoCs.
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