
Noname manuscript No.
(will be inserted by the editor)

Parallel Application Sampling for Accelerating MPSoC
Simulation

Melhem Tawk · Khaled Z. Ibrahim · Smail
Niar

Received: date / Accepted: date

Abstract Multi-processor system-on-chip (MPSoC) simulators are many orders of
magnitude slower than the hardware they simulate due to increasing architectural com-
plexity. In this paper, we propose a new application sampling technique to accelerate
the simulation of MPSoC design space exploration (DSE). The proposed technique dy-
namically combines simultaneously executed phases, thus generating a sampling unit.
This technique accelerates the simulation by allowing the repeated combinations of
parallel phases to be skipped. A complementary technique, called cluster synthesis,
is also proposed to improve the simulation acceleration when the number of possible
phase combinations increases. Our experimental results show that this technique can
accelerate the simulation up to a factor of 800 with a relatively small estimation error.

1 Introduction

The next generations of processors will provide a very high degree of integration, which
is necessary for embedding several units (e.g., processors, caches, interconnection net-
works) inside the chip. For designers of such embedded architectures, the challenge is
to find an optimal configuration for these units so that they can react rapidly to the
user’s needs and to increase the performance/power consumption ratio of these embed-
ded systems. The design approach based on intellectual property (IP) [12], which uses
pre-designed and pre-verified cores, is one of the most popular solutions to overcome the
optimal configuration challenge. These cores are based on highly parametric SoC plat-
forms, which are fine-tuned to meet the needs of the applications that will be executed

Melhem Tawk
University of Valenciennes, 59313 VALENCIENNES Cedex 9, France
E-mail: mtawk@melhem-tawk.com

Khaled Z. Ibrahim
Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA
94720
E-mail: KZIbrahim@lbl.gov

Smail Niar
University of Valenciennes, 59313 VALENCIENNES Cedex 9, France
E-mail: smail.niar@univ-valenciennes.fr

2

5	

10	

15	

20	

25	

30	

35	

0	

100	

200	

300	

400	

500	

600	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

Simulated	 K.Instr/Sec	 (le>	 axis)	 Simulated	 K.	 Cycles/Sec	 (right	 axis)	

Fig. 1 Simulation speed in K.instructions/second and the corresponding frequency in
K.cycles/sec for Rijndael executed on MPARM with different number of ARM processor cores

by the SoC. For this purpose, simulators are used to explore the space of all the possi-
ble system configurations at the micro-architectural level. Usually called Design Space
Exploration (DSE), this process involves evaluating the performance (i.e., execution
time) and energy consumption of a large set of possible micro-architectural configu-
rations. The best configurations are then selected for possible implementation in the
ultimate design phase. Nevertheless, the use of conventional cycle-accurate simulation
tools to evaluate Multi-processor System-on-Chip (MPSoC) is problematic because of
the cost of simulation time. Using an experimental MPSoC platform, we found that the
simulation time can increase by a factor of 6 when the number of processors increases
from 1 to 12 to execute the same program, due to the increase in complexity of the
system architecture.

In Figure 1, the simulation speed in simulated cycles per second and the correspond-
ing number of simulated instructions per second, for various configurations executing
the Rjindael application [13], are given. These results were obtained on the simulation
platform that is described in Section 4. The decrease in simulation speed shown in this
figure is due to the increase in run-time task scheduling overheads when more proces-
sors are added into the simulator. Cache and context switches, as well as interprocess
communications, cause such overheads. To tackle this problem, several techniques aim-
ing at reducing simulation time have been proposed in recent years [6,5,28,16,10,20,
22,25,29]. One of these techniques is application sampling, which consists of choosing
one or more representative simulation samples, called phase samples, from the appli-
cation. Corresponding to a small portion of the program, these samples constitute a
subset of the executed instructions; they represent the behavior of the whole applica-
tion on a given hardware platform. Representative samples are either taken periodically
from the application or chosen by a phase classification algorithm. Only these phase
samples are simulated in detailed mode (i.e., cycle-accurate bit-accurate). The rest
of the application is either fast-forwarded by a functional simulator or skipped using
checkpointing to move the simulator from one phase sample to the next. Figure 2,
which depicts the result for the FFT benchmark (another embedded application from

3

Fig. 2 IPC per interval, average IPC, real total IPC and estimation error for FFT on 4
processors.

MiBench suites [13]), shows the advantage of using sampling for embedded system
DSE. In this figure, the x axis corresponds to the number of executed instruction and
the y axis corresponds to the average number of executed instructions per cycle (or
IPC) per interval of 50K instructions, the IPC from the beginning of the application
up to the point x, and finally the IPC of the entire application, which is independent
from x. The error using average IPC for estimating the real IPC is also shown on the
right y axis. In this paper, we use the IPC to determine the execution time since the
total number of executed instructions does not change from one design to another.
As Figure 2 shows, simulating only one consecutive interval of the application cannot
produce an accurate estimation of the real IPC. For instance, to obtain an estimation
error under 10%, at least 37% of the application needs to be simulated, giving a lim-
ited acceleration factor of only 2.7. Application sampling has been studied extensively
for the case of uniprocessor architectures [25,29]. Its use for multi-processor architec-
tures has been less studied, despite the fact that its use is more problematic for these
platforms. For example, in multi-processor architectures, it is difficult to determine
the parallel phases to be executed simultaneously by the different processors. Though
the phases to be simulated can be determined a priori for uni-processor architectures,
this is not true for multi-processor architectures. Due to resource conflicts, the phase
scheduling in the different processors can change completely from one architectural
configuration to another. Figure 3 illustrates the problem for two processors. As shown
in the figure, each application is decomposed into repetitive, similar phases of fixed
length (Section 4) [25]. Application 1 in processor P1 alternates between two phases,
a and b, while application 2 starts with a phase sequence, x x y y y z t, where phases
with the same letter have similar behavior. While running each application individually
(i.e., only one processor is active), the intervals belonging approximately to the same
phase require the same number of cycles (Figure 3.a). On the other hand, when these
two applications run simultaneously on two parallel processors (Figure 3.b), the phases
start affecting each others, which reshapes the phases. Due to shared resources (e.g.,
bus and memory), the performances (i.e., relative speed) of the parallel applications

4

Fig. 3 Simulation phases on a dual processor MPSoC. (a) Individual execution: phase b can
run in parallel with y and z (b) Simultaneous execution with possible contention (processor 1
is delayed in case of contention): phase b run in parallel with t.

Core 0  Core 1  Core 2  Core 3 

$0  $1  $2  $3 

Shared Bus 

Shared Mem 
Bank 0 

Shared Mem 
Bank 1 

Shared Mem 
Bank 2 

Shared Mem 
Bank 3 

Fig. 4 Considered Multi-Processor System-on-Chip (MPSoC) Architecture

are interdependent. In this situation, apriori determination of the phases that will be
executed simultaneously by the different processors is impossible.

In this paper, we propose a new technique for accelerating cycle-accurate bit-
accurate (CABA) simulation in MPSoC design space exploration. Our main contribu-
tion to the field is the definition of a new sampling technique that adaptively adjusts
the size of the sample and the number of simulated instructions without the painstak-
ing intervention of the system designer. We mainly focus on symmetric multiprocessor
architecture (Figure 4) where several processors are connected to a single shared main
memory and interconnected using a network-on-chip. A shared bus is used to connect
the processors. In addition, we consider multi-programmed workloads and thus parallel
threads do not share data.

The rest of this paper is organized as follows: Section 2 presents related work and
provides an overview of sampling techniques for multi-processor systems, comparing

5

them to the technique proposed in this article. Section 3 describes our sampling tech-
nique in detail. Section 4 outlines the experimental setup. Our reasons for devising
additional techniques to increase the efficiency of the proposed method by reducing
the number of phase combination are discussed in Section 5. A complementary tech-
nique that increases the efficiency of adaptive sampling, namely cluster synthesis, is
presented in Section 6. Section 7 offers our conclusions.

2 Related Work

In order to find the most appropriate embedded system architectural configuration for
a given application (or a set of applications), it is necessary to explore a large number
of possible architectural configurations. The challenge is to reduce this Design Space
Exploration (DSE) phase in order to reduce the time-to-market for a product. Accel-
erating the DSE can be done at two levels: by reducing the number of architectural
alternatives to evaluate, using smart heuristics to guide the search towards the most
promising configurations [21,11,1], and/or by reducing the time needed for the evalu-
ation of each alternative. In this paper, we deal with the second alternative. Existing
methods for reducing the evaluation time associated with a DSE alternative can be
split into seven groups based on the approach used.

1. Transaction level modeling:
The first group includes methods that use a higher level of abstraction modeling
than the CABA level. Unlike the other groups, CABA simulation is not used in
this group, and parallel processes exchanging complex high-level data structures
are used to represent the MPSoC architectures. Transaction Level Modeling (TLM)
uses this approach [9,2]. In TLM, the simulation time is reduced by increasing the
granularity of the communication operation. For instance, the signal handshaking
used at the CABA level is replaced by transactions using objects (i.e., words or
frames) over the communication channels. Consequently, the overhead associated
with synchronizing the system components and communicating between them is
reduced. Using the TLM method allows performance to be measured early in the
design process. Unfortunately, this method has a low accuracy level, especially when
dealing with complex multi-processor architectures.

2. Input data size reduction:
Simulation here is done solely at the CABA level. In the methods following this
approach [18], acceleration is obtained by using a reduced input data set instead
of real input data sets. The advantage of using a reduced input set is that no
modifications are required to be made in the simulator. KleinOsowski et al. [18]
have proposed a technique that in the first step generates a function-level execution
profile and gives the fraction of the total execution time spent on each function. In
the second step, the technique either truncates the input files or, for applications
without input files, reduces the number of loop iterations by source code analysis.
After each reduction attempt, the function-level profile of the obtained application
is compared to the profile of the reference input set obtained in the first step. The
reduced input set that has the execution profile closest to the profile of the reference
input set is then chosen.

3. Statistical Simulation (SS):
This approach is implemented in three steps [22]:

6

(a) Acquisition of the program characteristics: A set of program characteristics
(e.g., cache miss ratios and instruction type mixes) for the application to be
simulated is computed.

(b) Generation of the Synthetic Program: The characteristics acquired in step 1 are
used to generate a synthetic program (SP) that must have a minimum number
of instructions. Its characteristics must be identical to those acquired in step 1
(i.e., to the application to be simulated).

(c) Execution of the Synthetic Program: the SP obtained is executed on a de-
tailed CABA simulator in order to measure the IPC (instruction per cycle)
and the EPC (energy per cycle) values. The total performance and the total
power/energy consumption of the original application are estimated from these
two values.

The main disadvantage of the methods in the second and third groups is the need
for a long profiling and simulation phase, which is necessary in order to acquire the
characteristics of the data used or the application to execute.

4. Analytic modeling:
The fourth group includes the methods in which performance evaluations are ob-
tained by analytic modeling. Karkhanis and Smith [17] have proposed a two-phase
approach to the problem of performance evaluation. In the first phase, the Cycle
Per Instruction (CPI) value is calculated without taking into account the size of the
processor issue width. In the second phase, penalties for cache and branch predic-
tion misses are added to the CPI. For highly complex multi-processor architectures,
this approach seems difficult to apply.

5. Emulation:
In this approach, performance estimations are obtained by emulating the target
architecture on a reconfigurable system. Del Valle et al. [28] have proposed ac-
celerating the CABA simulation using an emulation framework based on a Field
Programmable Gate Array (FPGA) platform. Their method allows the rapid ex-
traction of a large statistical set for three MPSoC components (i.e., processing
cores, memory and interconnection networks). Experimental results have shown
that this method has a high level of accuracy and simulation acceleration, but it
also requires expensive FPGA platforms [23]. This approach has also been used for
high performance architecture simulation, like in the FAST framework [15] or the
Bee2 project [7].

6. Execution interval analysis:
In this group of methods, one or more representative intervals of the application
are chosen [19,25,29]. These representative intervals, or samples, have a reduced
instruction count and represent the behavior of the whole application on the hard-
ware platform. The choice of the samples can be obtained either periodically as in
SMARTS [29], or by interval analysis as in SimPoint [25]. Both of these methods
achieve acceleration by "switching" the simulator between two states: a detailed
simulation state and a functional simulation state, also called Fast Forwarding
(FF). In the first state, the simulation takes the detailed processor structure (e.g.,
pipeline structure, functional unit organization) into account. In the second, be-
cause the simulation does not take the details of the micro-architecture state into
account, the simulator manages to produce a fast functional execution. The ac-
celeration factor of the simulation increases with the number and the length of
“functional samples.” In other words, the greater is the use of functional simula-
tion the higher the acceleration factor. Unfortunately, accuracy goes the opposite

7

direction and decreases with greater use of functional simulation. Since applica-
tion sampling with interval analysis has generally been shown to provide efficient
solutions for reducing simulation time [5,6,28,16,10,24,25], we chose to use this
approach for MPSoC simulation in this study. In the interval analysis approach,
repetitive application phases are detected, and performance is estimated by taking
one sample from the different phases. SimPoint [25] provides a versatile tool for an-
alyzing applications. With this tool, the execution of the application is divided into
intervals with a fixed or variable number of instructions [19]. These intervals are
then examined to determine the similarity of the basic block distribution. A group
of similar intervals constitutes a phase. The interval analysis method exploits the
fact that intervals from the same phase have almost identical behavior and simu-
lating only one sample from each phase is sufficient for estimating the performance
of the whole application.
Recently, several studies have tried to apply this sampling technique to simulta-
neous multi-threaded (SMT) architectures. In the co-phase matrix technique [6],
a sample is taken from all the posssible phase combinations (Figure 5.a). As the
phases partly overlap with different joint scenarios, the number samples is signifi-
cant. More importantly, because the phases are not generally homogeneous, over-
lapping same phases results in multiple performance estimates. Multiple samples
of co-phase overlap are reportedly needed to achieve accurate performance predic-
tion, with the accuracy depending on the number of samples taken for each co-phase
overlap. However, for specific simulation accuracy, it is difficult to determine the
number of samples that are needed a priori.
MPSoC architectures, which are the target of this article, and SMT architectures
are different at several levels. First, MPSoC have a greater number of parameters to
explore during DSE. Consequently, the DSE for these platforms requires a higher
simulation acceleration factor than in SMT. Second, the degree of resource shar-
ing in MPSoC is relatively lower in MPSoC than in SMT. Finally, the number of
processors/cores is usually larger in MPSoC than in SMT, especially for MPSoC
architectures that are dedicated to intensive data processing. These features require
the design of different simulation acceleration methods. Unlike the Co-phase ap-
proach, the technique that we propose in this paper forms phase strings dynamically
from each application such that these phase strings overlap precisely (Figure 5.b).
The string length is dynamically adapted to achieve an overlap that has a repeating
performance, thus alleviating the need for multiple samples. Namkung et al. [20]
have also applied the co-phase approach for multi-processor architectures with a
large number of processors. They noticed that simulation acceleration diminished
due to a rapid increase in the number of phase combinations. To reduce the num-
ber of simulation samples, they proposed synthesizing samples from similar phase
combinations. The cluster synthesis technique that we present in section 6 is based
on a similar approach.

7. Hybrid methods:
Finally, the seventh and last group contains hybrid methods that combine software
simulation and hardware emulation, such as in the Protoflex project[8]. In such
hybrid methods, the time-consuming parts of the architecture (e.g., pipeline op-
erations) are emulated on FPGAs, while the infrequent operations (e.g., I/O) are
offloaded to software simulation.

8

Fig. 5 Simulation phases on a dual processor MPSoC. (a) Co-phase approach with multiple
performance estimate per phase (b) The proposed method for dynamic sampling with one
performance estimate for each phase cluster.

This paper extends our prior work [26] at several levels:

1. A more accurate in-depth experimental evaluation is presented, concerning the
estimation error. In particular, the different error sources are studied and their
effects are analyzed in details .

2. A new section (Section 6) has been added in order to make our method more robust
when the number of phase combinations increases, thus reducing the number of
detected phases.

3. Finally, the related work section has been updated to reflect recent works in the
area of simulation acceleration.

3 Dynamic Adaptive Sampling for MPSoC

In this paper, we propose a fast performance evaluation method for MPSoC design
space exploration, in which multiple micro-architectural configurations can be exam-
ined through simulation. The proposed acceleration method is based on the repetition
of phases while the application is being executed on the MPSoC. As mentioned in
the following sections, our experimental results have shown that not only is there a
reduced number of phases in the applications but the processors also execute the same
combinations of parallel phases several times. Thus, the problem is to find a method
capable of detecting the repeated phase combinations when there is a perfect overlap.
For each application, we propose to use a sequence of phases, called phase strings, that
overlap perfectly, as shown in Figure 5.b. These strings are separated by simulation
barriers, which are artificially injected at run-time. The performance is estimated by
simulating the overlaps of the phase strings that did not show up in earlier application

9

1. First step: Using a phase profiler, generate offline a phase-ID trace file for each of
the concurrent application.

2. Second step: For each already simulated CS, determine if it corresponds to the next
set of strings in the phase-ID traces generated in the first step:
(a) if a match between an already simulated CS and the next phases in the phase-

ID traces is found, the simulation is forwarded and the performance is estimated
based on the found match.

(b) Else, the simulation is performed until dynamic termination of a cluster, as follows:
a. During the simulation, at the end of each interval, the possibility to combine the

string of phases that have been executed in parallel till that point is checked in
order to generate a new CS using simulation barrier criteria.

b. Upon termination, a new simulated CS is defined and stored in a table called CS
table or CST. The performance of the simulated CS is also recorded in the CST
for future match.

3. Repeat the second step till the end of the phase-ID traces.

Algorithm 1: Adaptive Phase Sampling

executions. These sets of phase strings are called clusters of strings.
The proposed technique has the following advantages:

1. The desired accuracy/simulation speed ratio can be indicated by the system de-
signer by specifying the maximum wait time authorized at simulation barriers.

2. The overlap of phase strings has a repetitive performance that reduces the need for
multiple samples for the same overlap.

This technique has the potential to achieve reasonable accuracy across different design
space configurations without needing to repeatedly fine-tune the simulation sampling
percentages. In fact, the sampling percentage is determined dynamically based on the
number of phase strings that occur during the simulation and not on a predetermined
static sampling percentage. This dynamic adaptive sampling is a key simplification
of the design space exploration that is most needed to improve the time-to-market
of embedded systems. Our dynamic adaptive sampling technique for forming phase
strings is done in 2 steps. Algorithm 1 summarizes the role of each step. In the next
section each of the two steps is detailed and illustrated through examples.

3.1 First step: program tracing and phase identification

In this first step, a phase-ID trace is generated for each concurrent application to be
executed by the system. Each application is executed separately on a rapid functional
simulator in order to detect the basic blocks in each execution interval. A basic block
is a stream of instructions with only one entry point and one exit point with no branch
instruction in between. Two intervals are considered similar if they have the same basic
block distribution and are represented by the same identifier in the phase-ID trace. The
obtained traces are neither dependent on the execution of the other processors that
execute in parallel nor on a specific MPSoC architectural configuration. They depend
solely on the application and its input data. This step is accomplished once for all
the evaluated configurations in the DSE. Since a rapid functional simulation is used
in this step, the execution time is relatively short. Depending on the benchmark to be
executed, the corresponding phase trace is obtained in 1 to 3 hours.

10

Table 1 Phase-ID trace example for two processors generated by profiling the applications.

Interval (in K instructions) P0 phases P1 phases
0-50 a x

50-100 b y
100-150 c z
150-200 d w
200-250 a w
250-300 b x
300-350 f y

... ... z

Table 1 gives an example of two trace files generated for a 2-processor (P0 and P1)
MPSoC, with interval size set at 50K instructions. According to this table, the processor
P0 executes the same basic blocks (i.e., the same instructions) in the intervals 0-50K
instructions and 200K-250K instructions. These two intervals are thus similar and have
the same phase-ID a.

3.2 Second step: generation and utilization of clusters

The second step is performed during run-time, using all the phase-ID traces that were
generated in the first step. For each processor, consecutive phases are combined together
to form a phase string, with the number of phases within the string being determined
dynamically. A cluster of strings (CS)-consisting of P parallel phase strings, where P is
the number of processor cores in the MPSoC-is thus also generated dynamically. Each
new CS corresponds to an entry in the cluster of strings table(CST). The idea behind
our technique is that clusters containing the same parallel phase strings will have the
same behavior and thus will provide the same performance in terms of execution time
and power consumption. Further details about the second step are provided in the
following subsections.

3.2.1 Using simulation barriers for CS generation

At the end of every simulation interval, each processor estimates the remaining cycles
needed for all other processors to finish the intervals in progress. As shown in algorithm
2, in order to estimate the remaining cycles (∆C) of each processor, both the number
of executed instructions (Iproc) and the total number of cycles (C) from the beginning
of CS are needed. The IPC of the processor (IPCproc) is estimated using these two
values. In addition, these two values can be used to estimate the number of cycles
(∆C) needed for the processor to reach the end of its interval. Due to the difference in
the IPCs, this value (∆C in Figure 6) is different from one processor to another.
The pseudo-code for the proposed sampling is shown in algorithm 2. In this algorithm,
Interval corresponds to interval length in instructions, Iproc and IPCproc correspond
respectively to the number of executed instructions and to the IPC of the processor
proc for the current interval. These values are given by the simulator at run-time. Thus,
if the ratio of the remaining cycles to the execution cycles is less than a given thresh-
old for all other processors at the end of the current interval, the processors stop the
simulation and wait for the other processors at the simulation barrier. This threshold
is called the Waiting time Threshold at Simulation Barrier (WTSB). On the other

11

hand, if the wait time for one of the other processors is estimated to be larger than the
WTSB, the processor proceeds to execute its following interval. If, at the end of an in-
terval, a processor decides to wait because all the other processors will soon terminate
their interval, this constitutes a simulation barrier, and all the other processors will be
obliged to stop the simulation at the end of their current intervals.
When a simulation barrier is created, the phase strings executed in parallel are com-
bined to create a new CS. Due to the wait state of some processors at these barriers,
phase scheduling may be slightly different from the real situation without barriers.
This shift in phase scheduling can add an additional error to the error due to phase
identification in the first step. Since the IPCs for each application executing in parallel
are not the same, the number of intervals executed by each processor in a cluster can
be different. As Figure 6 shows, the processors test the threshold constraint at the end
of each interval. For instance, at the end of the interval b, P0 decides to wait, while at
the end of intervals a, x and y, the processor decides to continue simulation. As shown
in Algorithm 2 and Figure 6, CSs are created dynamically depending on the way each
processor interacts with the shared resources. CSs are separated by simulation barriers,
and each string of phases corresponds to the phases that are executed by the corre-
sponding processor (Figure (Figure 5.b). The combinations of phase identifiers that are
executed in parallel represent a unique CS identifier. Table 2 shows possible CSs for
the application phases given in Table 1. The first generated CS is denoted a,b-x,y,z
and contains two phase strings: a,b (for P0) and x,y,z (for P1). The CST is updated
dynamically: as soon as a new CS is simulated, a new entry is added to the CST and
its performance metrics (i.e., the number of cycles and the total energy consumed) are
recorded.

∆C = 0
for proc = 0 to P-1

if(proc != my_proc)
∆C = max(∆C,(Interval-Iproc)/IPCproc)

Endif
Endfor
if ∆C/C < WTSB

Start barrier synchronization for all proc’s
Endif

Algorithm 2: Synchronization barrier generation. P is the number of processors,
my_proc corresponds is the processor number, interval is the interval size in in-
structions, Iproc and IPCproc are respectively the number of instructions and the
corresponding IPC in processor proc at the end of interval.

3.2.2 Using CST for simulation acceleration

As shown in step 2 of Algorithm 1, at the end of each CS, if a match is found between
one CS in the CST and the following phases in the traces, these phases are skipped
and the corresponding CS entry in the CST is updated. The number of instructions
that each processor must be fast-forwarded is thus read from the CST (see Table see

12

Fig. 6 Simulation barrier for CS generation in step 2.(b).a of the algorithm 1. here we assume
that, at the end the intervals: a, x and y, the simulation criteria is not verified.

Table 2 CST content for the example in Table 1

Cluster Inst. count P0 in K inst Inst. count P1 in K inst Cycles Energy Repetition
a,b-x,y,z 100 150 200 100 2
c,d-w,w 100 100 300 150 1

Table 2), and a rapid functional simulation is used to move the program context to the
end of the CS. Otherwise, if no match is found, then a detailed CABA simulation is
performed until the new CS terminates at the simulation barrier.
The Cold Start Hit [4] is used as a warmup technique to start the detailed simulation. A
warmup bit is added to each cache block to signify the first time an entry is addressed.
When starting a CS simulation, the first access to a cache block is assumed to be a
hit. Since the miss rates for our benchmarks are generally very low, this simple method
provides a good performance. As shown in Tables 1 and 2, the cluster a,b-x,y,z recurs
after the first two CSs have been simulated. Since this cluster already exists in the
CST, it is fast-forwarded through a rapid functional simulation. Thus P0 will be fast-
forwarded 100K instructions (2*50K) and P1 will be fast-forwarded 150K (3*50K).
Please note that the next set of strings in the phase-ID traces can be matched with
only one entry in the CST. The performance is estimated at the end of the simulation
of the whole application based on the CS information given in CST.

13

Table 3 MPARM processor configuration

I-cache 8KB direct mapped, 1 cycle latency
D-cache 4KB 4-way set-associative, 1 cycle latency
Memory 64-cycle latency
Core Arm version 7

4 Simulation Speedup Factor with Adaptive Dynamic Sampling

To evaluate the usefulness of our adaptive phase sampling technique for MPSoC DSE,
several experiments were conducted. Five different benchmarks, taken from the MiBench
suite [13] and the H264, were ported to our MPSoC experimental platform. For each
of these benchmarks, both the "encode" and the "decode" versions were used. During
the experiments, the number of processor cores varied from 2 to 12. The maximum
value for the processor cores in the version of the MPSoC simulator used was 12. Half
of the processors executed the "encode" version of the application and the other half
executed the "decode" version of the application. However, for the H264 benchmark,
all the processors executed the same application.
The MPARM simulation framework was used in these experiments [3]. This framework
included several ARM7 cores connected to shared RAM modules via a standard shared
AMBA bus. All these components are described in SystemC at the cycle-accurate and
bit-accurate (CABA) level. The processor configuration that was used in the exper-
iments is shown in Table 3. The simulation acceleration factor is defined as the
ratio of the total number of instructions executed by all the processors to the number
of instructions simulated in the detailed (or CABA) mode. The fast-forwarding time
was not taken into account in the following figures.
During the experiments, we used a 50K-instruction interval size, (SOMETHING IS
MISSING HERE??SMAIL) chosen based on the results of several experiments. With
a small interval size, there is a high probability of detecting repetitive phases, which
improves the acceleration; however, with a large interval size, the clustering algorithm
is able to find a good interval distribution [14]. Our choice of interval size was thus a
compromise between these two constraints. To generate the phase-ID trace, we adapted
the profiler proposed by Simpoint to our architecture and allowed this profiler a max-
imum of 10 different phases for each benchmark.
A complete detailed simulation for a benchmark takes several hours, depending on the
MPSoC configuration. For instance, a complete detailed simulation on a configuration
of 8 processors takes about three days to finish on a 3GHz Pentium 4 platform.

4.1 Effect of WTSB on Simulation Acceleration

When the WTSB value is large, the probability for a given processor to generate a
synchronization barrier becomes high. In this case, the average CS size in terms of
number of phases is generally small. However, the total number of CS increases, thus
increasing the probability of repetition of CSs and consequently producing a better
acceleration factor. Figure 7 shows that the simulation acceleration factor increases as
the WTSB value increases with configurations of 2, 4, 8 and 12 processors. For each
application, the acceleration factor consistently increases with the value of WTSB.
Three applications; blowfish, rijndael and h264, have relatively high acceleration fac-

14

Fig. 7 The variation of simulation acceleration (in log) with four WTSB values. Same appli-
cations duplicated on 2, 4, 8, 12 processors.

tors. The best factor for blowfish is roughly 783, while the best factor for rijndael is
roughly 280. These values are due to the fact that blowfish.encode, blowfish.decode,
rjindael.encode and rjindael.decode have the lowest number of phases. In other words,
in these two applications, a reduced number of different basic blocks are executed. For
the H264 benchmark, since the same application is duplicated on all the processors,
the CSs are all of the same size-generally, 1 phase for each processor-for all the WTSB
values. Consequently, the acceleration factor for the different processor configurations
is almost constant, close to 300.

The acceleration factor for gsm in an 8-processor configuration decreases to 1.5. The
reason for this weak performance is the high number of phases and the aperiodicity
of gsm decode and encode. Consequently, the average size of clusters is very large
with little repetition. A WTSB of 50% for gsm in the 8-processor configuration (not
shown in Figure 7) allowed the average CS length to be reduced, thus increasing the
unclassified number of CSs generated; the higher the number of CSs generated, the
higher the probability of encountering a repeated CS. The acceleration increased to
97.7 without sacrificing accuracy. The error remained close to 4.5%. Setting the WTSB
value automatically based on the application’s behavior, as proposed in the perspective
section of this paper, will keep the acceleration factor high for applications that behave
like gsm. The average time for the detailed simulation of an entire application of one
of our benchmarks in a 12-processor configuration was 5 days. As Figure 7 shows,
the simulation acceleration in a 12-processor configuration normally varies from 18
gsm to 300 for blowfish. Using our technique, the simulation time for the 12-processor
configuration drops to 6 hours for gsm and 24 minutes for blowfish, with a negligible
estimation error.

15

Fig. 8 The error in IPC estimation with four WTSB values. Same applications duplicated on
2, 4, 8, 12 processors.

4.2 Effect of WTSB on Performance Estimation

The error in estimating the instruction-per-cycle or IPC is calculated as follows:

ErrorIPC =
abs(IPCReal − IPCEstimated)

IPCReal
(1)

IPCReal is obtained by executing the concurrent applications completely, whereas
IPCEstimated is obtained using the presented sampling method. A similar formula is
used for estimating the Energy-Per-Cycle (EPC) value.

The error in performance estimation comes from two different sources. The first
source is the association of the IPC of each repeated cluster with the IPC of the first
repeat occurrence. Remember that the first occurrence of the CS is simulated and
used for performance estimation of all subsequent similar CS. However, the intervals
identified by the profiler as belonging to the same phase can differ slightly, which affects
the assumption of similar CS IPCs. The second source of error is the due to injected
wait cycles when simulation barriers are used. These wait cycles cause two problems:
first, the estimated IPC is lowered because no instructions are committed during the
wait cycle; second, the overlap between the applications is slightly different from the
overlap without barriers.

Figure 8 shows the error in IPC estimation for four different WTSB values and six
applications executed on 2, 4, 8 and 12 processors. These applications are the same
as those in Figure 7. For each architectural configuration, the error increases as the
WTSB value increases. In fact, when the WTSB increases, the number of generated CSs
increases, making the number of simulation barriers increase. Thus, the error due to
injecting wait cycles at the synchronization barriers also increases. The IPC error varies
irregularly, errors do not add up, in two cases: the case of adpcm on 12 processors and
the case of gsm on 2 processors. These irregular variations are due to mutual negation
for the two sources of error mentioned above. In these two cases, the error needs to be
compensated for because the association error is large and the barrier error increases
slightly with the WTSB.
For the H264 application, the error is constant in all the configurations because the

16

Fig. 9 The variation of simulation acceleration with four WTSB values and different appli-
cations executed on 4, 8, 12 processors.

total number of CS does not change with the WTSB, as explained in Section 4.1.
The wait time at barriers is the same for all the four WTSB values. We have the same
situation for fft&ifft; where the error stabilizes when the WTSB value is greater than
10%. The reason behind this is the constant number of simulation barriers (i.e., the
same CSs are generated so the number of wait cycles injected does not change). The
error associated with fft&ifft increases from 4% to 9% on 4 processors, from 4% to 18%
on 8 processors and from 5% to 26% on 12 processors when the WTSB increases. In this
case, the user must select a WTSB value to decrease the error without sacrificing the
acceleration. For instance, choosing a WTSB of 5% will reduce the error to 4% while
still obtaining an acceleration factor close to 36 for 4 processors, to 9 for 8 processors
and to 3 for 12 processors (Figure 7).
Accordingly, it is important to choose the best WTSB value dynamically in order to
achieve both accuracy and acceleration. Our results indicate that, using our technique,
the amount of detailed simulation needed is adjusted adaptively based on the dynamics
of the applications. For a WTSB value of 5%, the error percentage for IPC estimation
is less than 4%, while error percentage for the detailed simulation ranges from 1.5%
to 21%. In contrast, other sampling techniques either lose simulation acceleration by
setting the sampling percentage to a fixed high value or lose estimation accuracy by
setting the sampling percentage to a fixed low value.

5 Adaptive sampling for heterogeneous applications

Figure 9 shows the variation of simulation acceleration with 4 different WTSB val-
ues for 5 application combinations executed on 4, 8 and 12 processors. Four different
applications- the “decode” and “encode” versions of two different applications-were ex-
ecuted in parallel. These applications were chosen because they behave differently in
terms of IPC, memory access and miss rates. These differences in behavior and per-

17

formance are referred to as “heterogeneity”. Clearly, the acceleration factor for these
applications is very low. For instance, the acceleration factor for bf and adpcm on a
4-processor configuration shown in Figure 9 is close to 1.3 due to the increase in the
number of string combinations.
Generally, when applications with different resource requirements are executed in par-
allel, the degree of heterogeneity between the concurrent applications is high. In this
situation (Figure 9), long phase strings are generated, increasing the number of unique
CSs and thus reducing the number of similar phase strings. As a result, the number
of simulated instructions remains high and the acceleration factor becomes very low.
For instance, the acceleration factor for the four applications in Figure 9 is close to
1.3. These low acceleration factors highlight the need for an additional technique to
reduce the number of simulated clusters, thus improving the acceleration factor when
concurrent applications exhibit heterogeneous behavior.

Two factors increase the number of phase combinations. The first is the number of
phases in each application; the second is the size of the phase string, which is generally
large in heterogeneous applications. Thus, the applications with a low cache miss rate
have a large phase string length when executed in parallel with applications with a
large cache miss rate. For instance, the phase string of gsm is 20 times larger than
that of Rijndael when these two applications are executed in parallel. Similarly, when
adpcm and blowfish are executed in parallel, the adpcm phase strings may contain up
to 10 phases for each blowfish phase.
Our experiments demonstrated that when the concurrent applications are heteroge-
neous, the observed CSs are unbalanced. Consequently, the number of phase com-
binations increases and the number of repeat CSs is limited. In this situation, the
acceleration factor obtained is lower. In a previous paper [27], we proposed a multi-
granularity sampling technique to deal with this problem. Our previous method chooses
dynamically between multiple granularities of the sampling phase. The similarities of
the execution phases for all possible granularities are first analyzed; then the transi-
tions between phase overlaps are discretized. To facilitate the detection of repetitions,
one phase, with an appropriate granularity, is chosen per process. Even though the
performances obtained with this technique are worthy of note, the main problem with
the multi-granularity sampling technique is the time needed to analyze and profile the
different granularity sizes of the different applications. In order to decrease the num-
ber of phase combinations and thus improve the acceleration factor for heterogeneous
applications, while still reducing the time needed to profile the application, we propose
an additional technique, we call cluster synthesis.

6 Cluster Synthesis

The cluster synthesis technique is intended to increase the number of CS occurrences
when heterogeneous applications are executed. Cluster synthesis treats CSs with little
phase variation as CSs that have the same performances in terms of IPC and energy
consumption. A phase sequence in the processor phase-ID trace is considered as similar
to a simulated CS in the CST if the percentage of phases that are different is less than
a specified threshold. In other words, cluster synthesis replaces phases while respecting
the same phase order in both strings.
With a synthesis percentage of n%, the next phase combination in the traces is con-
sidered to be similar to a simulated CS in the CST, if the percentage of phases that

18

Table 4 The table shows the maximum number of phases that can be replaced for a given
phase string size at a given synthesis percentage. The matrix shows four possible CSs synthe-
sized from the CS by a percentage of 25% from the CS ab-xyzw which contains two string of
phases ab and xyzw

. With a percentage of 25%, the string "ab" can not be synthesized.
hhhhhhhhhhhhStrg-size

Synth-percent 25% 50% 75%

1 0 0 0
2 0 1 1
3 0 1 2
4 1 2 3

a
b
−
x
y
z
w

a a a a
b b b b
− − − −
x x x y
y y z y
z w z z
x w w w

Fig. 10 Distribution of the 3 present CSs when adpcm and fft are executed concurrently on
4 processors.

are different in the two strings is less than or equal to n/l, where l is the length of
the phase string. The matrix in the right side of Table 4 gives an example of a 25%
synthesis. This matrix shows four possible synthesized CSs with a percentage of 25%
from the previous CS ab-xyzw. The four CSs are considered to be similar to ab-xyzw
because the percentage of phases that are different in the second phase string of each
CS is less than or equal to 1. The value 1 is estimated based on n/l of the second phase
strings, where n=25% and l=4 (see the matrix in Table 4). The phases are replaced,
while still respecting the order of phases in the string xyzw.

Figure 10 shows the phase distribution in the executed CS for three synthesis
percentages: 25%, 50% and 75%. In this figure, adpcm and fft are executed in parallel
on 4 processors (P0, P1, P2, and P3). There are three CS patterns containing 4 different
string sizes. The notation (l0, l1, l2, l3) corresponds to a CS with 4 strings whose lengths
are respectively l0, l1, l2, and l3. P0 and P1 execute respectively adpcm encode and
adpcm decode, while P2 and P3 respectively execute fft and ifft. As the figure shows,
the CS distribution does not change if the synthesis percentage is less than 50%.
The left side of Table 4 shows the maximum number of phases that can be replaced
for four different string sizes with three synthesis percentages. For instance, with a
synthesis percentage of 2%, one phase can be replaced in each group of 4 phases.

19

Fig. 11 The acceleration variation (in log) with four synthesis percentages. Different applica-
tions executed in parallel on 4, 8 and 12 processors with a WTSB value equals to 20%.

6.1 Effect of synthesis on Simulation Acceleration

Figure 11 gives the acceleration factors that were obtained using our cluster synthesis
technique. A WTSB of 20% was used. Please note that cluster synthesis was not used
in the case of 0% synthesis percentage. In this case, the results are those in Figure 7
for a WTSB of 20%.
In this Figure 11, the acceleration increases with the synthesis percentage due to the
decreasing number of phase combinations. In the case of a synthesis percentage of 100%,
each of the phases in the CS can be replaced by another phase. For this percentage, only
the first CS is simulated and then the simulated CS is used to estimate the performance
of the whole application. Thus, the acceleration factor and the error are both large. As
Figure 11 shows, our cluster synthesis technique increases the simulation acceleration
factor significantly. For example, for the adpcm benchmark, the acceleration factor
changes from 1.5 (without synthesis) to 90 (with a synthesis of 50%).

6.2 Effect of Synthesis on Performance Estimation

As expected, our experimental results demonstrated that the error increases with the
increase in the synthesis percentage. When the synthesis percentage is high, the CSs
considered to be similar contain phases that behave and perform differently. In ad-
dition, the CSs that are skipped do not verify the WTSB constraint, presented in
Section 3.2.1. Figure 12 shows the IPC estimation error for different heterogeneous
application combinations on configurations of 4, 8 and 12 processors with four synthe-
sis percentages. For these calculations, the WTSB value was set at 20%. As mentioned
above, the error increases with the synthesis percentage. For 2 application combi-
nations -rjindael&blowfish executed on 8 processors and rjindael&gsm executed on
4 processors-the error varies irregularly because of the cancellation between the two
sources of error, phase association and wait cycles at the simulation barrier.
Figure 13 gives the values for these two sources and the total error as a function of the
synthesis percentages. The simulation barrier error increases slightly with the synthesis

20

Fig. 12 The variation of the IPC error and the IPC corrected error percentage with four
synthesis percentages. Different applications executed in parallel on 4, 8 and 12 processors
with a WTSB value equals to 20%.

Fig. 13 The variation with four synthesis percentages of the three types of IPC error: associa-
tion error, barrier error and total error. The application rjindael&gsm executed on 4 processor
and WTSB value equals to 20%.

percentage while the association error varies irregularly.

Avrwait−cyc =
(
∑NbCS

i=1 Estwait−cyci ∗ Freqi)
Nbproc

(2)

21

CorIPC =
Totalinstr

(Totcycles −Avrwait−cyc)
(3)

To conclude the above discussion, estimation error with phase synthesis must be
reduced. In this context, it is important to note that the average wait cycle at the
simulation barriers can be estimated using formula (2), where Avrwait−cyc is the av-
erage wait cycle. This value is calculated from the number of wait cycles in each CS
(denoted by Estwait−cyci) multiplied by the corresponding frequency (denoted Freqi).
Formula (3) provides the new IPC estimation, which corrects the old IPC estimation
by taking Avrwait−cyc into account. The new estimation is called the "corrected IPC"
and denoted CorIPC . Here, Avrwait−cyc is simply subtracted from the total number
of cycles (denoted Totcycles).
Figure 12 shows the original and corrected IPC estimation error for the benchmarks
executed on 4, 8 and 12 processors, with four synthesis percentages. The WTSB value
was set at 20%. The variation of the corrected IPC error is similar to that of the IPC
error without correction. Both increase with the synthesis percentage. However, the
corrected IPC error for rjindael&bf executed on 4 processors is slightly greater than
the IPC error without correction because of the interaction between the phase associ-
ation error and the simulation barrier error. When the simulation barrier error is very
small, eliminating the wait cycles at barriers makes the corrected IPC error larger.
However, as Figure 11 and 12 demonstrate, using our cluster synthesis and error re-
duction techniques allows the simulation acceleration factor to be increased and the
estimation error to be maintained at an acceptable level.

In some cases, the performance estimation correction works very well, as it allows
the error to be reduced by a factor of 99% for rjindael&gsm with a synthesis of 25% on
a 4-processor configuration. For a synthesis of 50%, the average error reduction is 37%
for gsm&fft, 46% for adpcm&fft, 59% for rjindael&gsm and 52% for blowfish&adpcm.
Thus, the IPC error obtained is less than or equal to 5% for a synthesis of 50% (Figure
12), with the WTSB set at 20%.

7 Conclusion

In this paper, we proposed a technique to accelerate cycle-accurate simulation for MP-
SoC DSE. The technique adaptively adjusts sampling intervals and sampling amount
without sacrificing the accuracy of the performance estimation. This technique forms
phase strings by overlapping the phases of concurrent applications. These overlapping
phases can superimpose with small differences. Our technique adapts the sampling
amount, as well as the parts of the application to be simulated, based on the applica-
tion’s dynamic nature.
Our experimental results show that when concurrent applications behave differently
and/or when the number of processors increases, the number of phase combinations
increases. Consequently, the probability of repeated phase overlaps as well as acceler-
ation decreases. Thus, we propose a complementary technique to improve simulation
acceleration by applying cluster synthesis. This technique improves the simulation ac-
celeration by a factor of up to 100 while still maintaining an acceptable performance
estimation error.
We demonstrated that the proposed techniques are able to accelerate the simulation

22

greatly, making it interesting for large DSE in embedded systems. We think that in-
tegrating the two techniques, adaptive sampling, and cluster synthesis can provide an
efficient MPSoC design framework for DSE.

References

1. G. Ascia, V. Catania, A. G. D. Nuovo, M. Palesi, and D. Patti. Efficient Design Space
Exploration for Application Specific Systems-on-a-Chip. Journal of Systems Architecture,
53, Jan. 2007.

2. R. B. Atitallah, S. Niar, S. Meftali, and J.-L. Dekeyser. An MPSoC Performance Estima-
tion Framework Using Transaction Level Modeling. The IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA), Aug. 2007.

3. L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri. MPARM: Exploring the
Multi-Processor SoC Design Space with SystemC. The Journal of VLSI Signal Processing,
41, july 2005.

4. M. V. Biesbrouck, B. Calder, and L. Eeckhout. Efficient sampling startup for simpoint.
IEEE Micro Magazine, 26, Aug. 2006.

5. M. V. Biesbroucky, L. Eeckhout, and B. Calder. Considering All Starting Points for Simul-
taneous Multithreading Simulation. The IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Mar. 2006.

6. M. V. Biesbroucky, T. Sherwoodz, and B. Caldery. A Co-Phase Matrix to Guide Simulta-
neous Multithreading Simulation. The IEEE International Symposium On Performance
Analysis of Systems and Software (ISPASS), Mar. 2004.

7. C. Chang, J. Wawrzynek, and R. W. Brodersen. Bee2: A high-end reconfigurable comput-
ing system. IEEE Design and Test, 22, Aug. 2005.

8. E. Chung, E. Nurvitadhi, J. Hoe, K. Mai, and B. Falsafi. Accelerating architectural-level,
full-system multiprocessor simulations using fpgas. International Symposium on Field-
Programmable Gate Arrays, 2008.

9. A. Donlin. Transaction level: flows and use models. The international Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), Sep. 2004.

10. M. Ekman and P. Stenstrom. Enhancing multiprocessor architecture simulation speed
using matched-pair comparison. The IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Mar. 2005.

11. T. Givargis, F. Vahid, and J. Henkel. System-level exploration for Pareto-optimal configu-
rations in parameterized system-on-a-chip. The IEEE/ACM international conference on
Computer-aided design (ICCAD), Nov. 2001.

12. D. Goodwin, C. Rowen, and G. Martin. Configurable multi-processor platforms for next
generation embedded systems. Proceedings of the 2007 conference on Asia South Pacific
design automation (ASP-DAC), Jan. 2007.

13. M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
MiBench: A Free, Commercially Representative Embedded Benchmark Suite. The 4th
IEEE Annual Workshop on Workload Characterization (WWC), Dec. 2001.

14. G. Hamerly, E. Perelman, and B. Calder. How to use simpoint to pick simulation. SIG-
METRICS Perform. Eval. Rev., Mar. 2004.

15. N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderlich, S. Chen, J. Kim, B. Falsafi,
J. C. Hoe, and A. G. Nowatzyk. Simflex: a Fast, Accurate, Flexible full-system simulation
framework for performance evaluation of server architecture. SIGMETRICS Performance
Evaluation Rev., 31, 2004.

16. S. Kanaujia, I. E. Papazian, J. Chamberlain, and J. Baxter. FastMP: A Multi-core Simu-
lation Methodology. The annual Workshop on Modeling, Benchmarking and Simulation
(MOBS), Jun. 2006.

17. T. S. Karkhanis and J. E. Smith. Automated design of application specific superscalar
processors: an analytical approach. In ISCA ’07: Proceedings of the 34th annual interna-
tional symposium on Computer architecture, pages 402–411. Association for Computing
Machinery, Jun. 2007.

18. A. KleinOsowski, J. Flynn, N. Meares, and D. J. Lilja. Adapting the SPEC 2000 Bench-
mark Suite for Simulation-Based Computer Architecture Research. 2001.

23

19. J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder. Motivation for Variable
Length Intervals and Hierarchical Phase Behavior. The IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), Mar. 2005.

20. J. Namkung, D. Kim, R. Gupta, I. K. J. Bouget, and C. Dulong. Phase Guided Sam-
pling for Efficient Parallel Application Simulation. The 4th international conference on
Hardware/software codesign and system synthesis (CODES+ISSS), Oct. 2006.

21. S. Niar, N. Inglart, M. Chaker, S. Hanafi, and N. Benameur. FACSE: a Framework for
Architecture and Compilation Space Exploration. The IEEE International Conference on
Design and Technology of Integrated Systems in nanoscale era (DTIS), Sep. 2007.

22. S. Nussbaum and J. E. Smith. Statistical Simulation of Symmetric Multiprocessor Systems.
The 35th annual Simulation Symposium (Ss), Apr. 2002.

23. J. Schnerr, O. Bringmann, and W. Rosenstiel. Cycle Accurate Binary Translation for
Simulation Acceleration in Rapid Prototyping of SoCs. The Design, Automation and Test
in Europe (DATE), Mar. 2005.

24. T. Sherwood, E. Perelman, and B. Calder. Basic Block Distribution Analysis to Find
Periodic Behavior and Simulation Points in Applications. In International Conference on
Parallel Architectures and Compilation Techniques, Sept. 2001.

25. T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically Characterizing
Large Scale Program Behavior. The 10th international conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), Oct. 2002.

26. M. Tawk, K. Z. Ibrahim, and S. Niar. Adaptive Sampling for Efficient MPSoC Architecture
Simulation. The 15th of the IEEE international Symposium on Modeling Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS), Oct. 2007.

27. M. Tawk, K. Z. Ibrahim, and S. Niar. Multi-granularity sampling for simulating con-
current heterogeneous applications. Proceedings of the 2008 international conference on
Compilers, architectures and synthesis for embedded systems (CASES08), 2008.

28. P. G. D. Valle, D. Atienza, I. Magan, J. G. Flores, E. A. Perez, J. M. Mendias, L. Benini,
and G. D. Micheli. Architectural Exploration of MPSoC Designs Based on an FPGA
Emulation Framework. The Conference on Design of Circuits and Integrated Systems
(DCIS), Dec. 2006.

29. R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. Smarts: Accelerating Microar-
chitecture Simulation via Rigorous Statistical Sampling. The 30th International Sympo-
sium on Computer Architecture (ISCA), Jun. 2003.

