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Modern embedded systems integrate more and more complex functionalities. At the same time, the semicon-
ductor technology advances enable to increase the amount of hardware resources on a chip for the execution.
Massively parallel embedded systems specifically deal with the optimized usage of such hardware resources
to efficiently execute their functionalities. The design of these systems mainly relies on the following chal-
lenging issues: first, how to deal with the parallelism in order to increase the performance; second, how
to abstract their implementation details in order to manage their complexity; third, how to refine these
abstract representations in order to produce efficient implementations.

This article presents the GASPARD design framework for massively parallel embedded systems as a solu-
tion to the preceding issues. GASPARD uses the repetitive Model of Computation (MoC), which offers a power-
ful expression of the regular parallelism available in both system functionality and architecture. Embedded
systems are designed at a high abstraction level with the MARTE (Modeling and Analysis of Real-time and
Embedded systems) standard profile, in which our repetitive MoC is described by the so-called Repetitive
Structure Modeling (RSM) package. Based on the Model-Driven Engineering (MDE) paradigm, MARTE
models are refined towards lower abstraction levels, which make possible the design space exploration. By
combining all these capabilities, GASPARD allows the designers to automatically generate code for formal
verification, simulation and hardware synthesis from high-level specifications of high-performance embed-
ded systems. Its effectiveness is demonstrated with the design of an embedded system for a multimedia
application.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques;
D.2.6 [Software Engineering]: Programming Environments; C.0 [Computer Systems Organization]:
General—Systems specification methodology; C.1 [Computer Systems Organization]: Processor
Architectures; C.3 [Computer Systems Organization]: Special-Purpose and Application-Based
Systems—Real-time and embedded systems; signal processing systems

General Terms: Design

Additional Key Words and Phrases: Embedded system design, system-on-chip, model driven engineering,
MARTE standard profile, parallel programming, repetitive structure modeling

ACM Reference Format:
Gamatié, A., Le Beux, S., Piel, É., Ben Atitallah, R., Etien, A., Marquet, P., and Dekeyser, J.-L. 2011. A
model-driven design framework for massively parallel embedded systems. ACM Trans. Embed. Comput.
Syst. 10, 4, Article 39 (November 2011), 36 pages.
DOI = 10.1145/2043662.2043663 http://doi.acm.org/10.1145/2043662.2043663

Authors’ addresses: A. Gamatié, LIFL (UMR CNRS 8022) lab and INRIA Lille Nord-Europe, France; email:
abdoulaye.gamatie@lifl.fr; S. Le Beux, École Polytechnique Montréal, Montréal (Québec); É. Piel, Technical
University of Delft, The Netherlands; R. Ben Atitallah, UVHC, LAMIH, F-59313 Valenciennes, France; A.
Etien, P. Marquet, and J.-L. Dekeyser, LIFL (UMR CNRS 8022) lab and INRIA Lille Nord-Europe, France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© 2011 ACM 1539-9087/2011/11-ART39 $10.00
DOI 10.1145/2043662.2043663 http://doi.acm.org/10.1145/2043662.2043663

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 39, Publication date: November 2011.



39:2 A. Gamatié et al.

1. INTRODUCTION
Modern embedded systems are becoming more and more sophisticated and resource
demanding. The concerned application domains are numerous: state-of-the-art multi-
media applications such as video encoding/decoding; software-defined radio-detection
systems such as radars, sonars; and telecommunication systems such as mobile
phones, antennas, etc. The performance requirements of such systems are very impor-
tant. The recent technological advances that enable the integration of an increasing
number of transistors (currently up to a billion) on a single chip greatly contribute
to meet these requirements. In this aim, Systems-on-Chip (SoCs) have been a very
promising solution. Because of the physical restrictions in terms of frequency and
voltage, which have a real impact on the computational performance, the expansion
of the processing power of a SoC requires to put multiple and possibly heterogeneous
processors or cores into a single chip. For this reason, the exploitation of the paral-
lelism available in Multi-Processor System-on-Chips (MPSoCs) architectures is a very
attractive solution for the execution of high-performance applications.

1.1 Design Challenges
This section discusses some critical design challenges faced by designers of high-
performance embedded systems. Some of these challenges concern embedded sys-
tems in general and are largely discussed in literature [Sangiovanni-Vincentelli 2007].
From these discussions, a number of important requirements are identified as a basis
to define well-suited design methodologies for these systems.

1.1.1 Need to Deal with Parallelism and Regularity. In the current industrial practice,
hand-coding is still widely adopted in the development of embedded systems. Par-
allelism is managed at a low level by different expert teams, which have a deep
knowledge of the system (both hardware and software parts) in order to meet the
performance requirements. Hand-coding is clearly not suitable for an efficient de-
velopment of large embedded systems because it is very tedious, error-prone, and
expensive. Another way to deal with parallelism consists in using general parallel
programming models such as the distributed memory programming model Message
Passing Interface (MPI) [Message Passing Interface Forum 2009] or the shared
memory model OpenMP [OpenMP Architecture Review Board 2009].

Both programming models provide developers with a set of directives and library of
routines that are used to express parallel computations. An MPI program identifies a
set of processes and explicitly manages low-level communications between them. This
parallelism expression is on one side far from our application structure which mainly
manipulates regular streams of parallel data and, on the other side, far from our target
execution platform which is a hardware platform with a limited amount of operating
system and runtime layers. The same objection applies for OpenMP, although it fo-
cuses on a thread-based execution of parallel iterations rather than on communicative
tasks.

Moreover, in the case of SoCs, the architecture itself has to be specified in order to
satisfy particular design constraints. Recent propositions of data-parallel languages
such as Brook [Stanford Streaming Supercomputer Project 2009] or OpenCL [Khronos
Group 2009] that allow the expression of the algorithmics in our application do not
include any description of the architecture or the application mapping on the archi-
tecture. They rely on a compiler to generate the mapping on a predefined class of
architectures such as GPU in the frame of the GPGPU (General-purpose computing
on graphics processing units) approach, or a set of multicore processors.
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For all these reasons, we believe that the design of high-performance embedded
systems particularly calls for new expressive parallel programming paradigms. Such
paradigms should provide designers with some efficient ways to separately represent,
at a high level, all the potential parallelism that is inherent to both software appli-
cations and hardware architectures. Furthermore, they should be rich enough to ex-
plicitly express different mapping possibilities of the application on the architecture,
taking into account embedded system parallelism.

Most of the high-performance system examples mentioned previously (multimedia
systems, signal processing in radar and sonar systems, etc.) achieve a huge number of
calculations in parallel and in a regular manner. Typically, in image processing algo-
rithms, filters are often applied modularly and regularly to regions (columns or lines)
of each image. The same holds in radar signal processing where filters are applied to
regular samples of the transformed signals. In the literature, such regular embedded
systems are referred to as “embarrassingly parallel” when the different calculations
performed in parallel are independent. Beyond the algorithmic side, the regularity
can be also found in the architecture topologies of high-performance embedded sys-
tems such as MPSoCs. An example is the Tile64 architecture of Tilera [Tilera Corpo-
ration 2009], which consists of a grid of 64 processing elements. Since the regularity of
these systems is a central feature, we also need parallel programming paradigms that
efficiently exploit this feature. In Gaspard, our models take into account both task
parallelism and data parallelism, as well on the application description side as on the
architecture description side. The data parallelism-level expression is factorized, thus
the expression of “embarrassing parallelism”.

1.1.2 Need of Abstract Models. The design of SoCs is facing today a strong pressure on
reducing time-to-market while the complexity of these systems has been increasing.
In addition to this dilemma, we notice that the initial cost for the physical realization
of the SoC (the mask creation of the chip) is very expensive. Such an outlay strongly
imposes a more careful development of prototypes for design analysis and validation.
System developers have to rely on some costless means allowing them to simulate and
analyze the behavior of designed systems before their realization.

Design abstraction offers a possible solution to address the preceding issues con-
cerning the time-to-market and complexity dilemma, and the SoC development cost.
More concretely, one needs models that capture the strict relevant information de-
pending on the required abstraction level. The global complexity of a system is ad-
dressed from multiple viewpoints or abstraction levels, so that one is able to easily
focus on some specific aspects. Abstract models favor an efficient design reuse, typi-
cally through incremental refinements from higher-level models to lower-level models.
Here, by refinement, we mean a manual or automatic transformation that makes a
given model more concrete with respect to a target representation. On the other hand,
since models are often executable and verifiable, they also serve as an interesting sup-
port for both behavioral simulation and property analysis without having necessarily
the actual implementation of the systems. In some cases, they are even used to au-
tomatically synthesize this implementation. Finally, abstract models enable to deal
with the heterogeneity of a system since its components can be manipulated at high
description levels that suitably abstract away the specific details of each component.

1.1.3 Need of Seamless Methodologies. The development of a SoC usually starts with
the concurrent design, or codesign, of both software application and hardware architec-
ture. Then, the application part is mapped onto the hardware part, during the associ-
ation phase. Finally, simulation models from various abstraction levels are generated
for the whole system. The different aspects of this development process are potentially
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handled by different domain experts who must communicate safely in order to achieve
the resulting design. In such a context, the design and analysis activities become very
difficult due to the ever-increasing complexity of SoCs. As a consequence, the produc-
tivity of designers strongly gets penalized. Another critical aspect concerns the design
space exploration, that is, how the analysis and the simulation results obtained from
the different abstraction levels are exploited for an efficient redesign by modifying the
high-level system models. So, an important challenge here is to find design method-
ologies with supporting tools that adequately address all these issues concerning large
and complex embedded systems.

1.2 Our Proposition: The GASPARD Framework
Over the past five years, we have been extensively working on the definition of a design
framework [Dekeyser et al. 2008] for the development of massively parallel embedded
systems, which addresses the aforesaid challenges. Here, by framework, we mean an
environment that provides designers with at least the following means: a formalism
for the description of embedded systems at a high abstraction level, a methodology
covering all system design steps, and a tool-set that supports the entire design ac-
tivity. Our resulting design framework is referred to as GASPARD1 (Graphical Array
Specification for Parallel and Distributed Computing).

The design of SoCs in GASPARD specifically relies on the repetitive Model of Com-
putation (MOC) [Boulet 2008], which offers a very suitable way to express and manage
the potential parallelism in a system. This MOC is inspired by ARRAYOL [Demeure
and Del Gallo 1998], a domain-specific language originally dedicated to intensive sig-
nal processing applications. It extends the basic notions of this language and offers
an elegant and very expressive way to describe both task parallelism and data paral-
lelism, and the combination of both.

The repetitive MOC is used in GASPARD, via the MARTE standard profile [Object
Management Group 2007a] and more precisely its RSM package, to describe parallel
computations in the application software part, the parallel structure of its hardware
architecture part, and the association of both parts. MARTE stands for Modeling and
Analysis of Real-time and Embedded systems. It is an evolution of the UML SPT
profile [Object Management Group Inc. 2005] and borrows some concepts from the
more general SysML profile [Object Management Group Inc. 2006]. In GASPARD, the
resulting abstract models are enriched with specific information according to the tar-
get technologies. Finally, different automatic refinements from the higher abstraction
level are defined, according to the Model-Driven Engineering (MDE) paradigm, to-
wards lower levels for various purposes: simulation at different abstraction levels with
SystemC [Ben Atitallah et al. 2007b; Piel et al. 2008b], hardware synthesis with VHDL
[Le Beux et al. 2008], formal validation with synchronous languages [Yu et al. 2008],
high-performance computing with OpenMP Fortran and C [Taillard et al. 2008a]. In
this article, we mainly consider the first three facilities to deal with the design space
exploration of high-performance embedded systems, implemented on globally hetero-
geneous architectures with regular and homogeneous multiprocessor parts.

Figure 1 gives an overview of GASPARD according to the used packages. The appear-
ance of the packages varies with the implication of our research group in the definition
of the specification concepts: empty boxes mean no implication in the definition of the
corresponding packages; hatched boxes mean only a partial participation to the defi-
nition of the packages; and dark boxes mean the full definition of the whole packages.
As shown in the figure, GASPARD partly relies on MARTE packages, with additional

1http://www.gaspard2.org

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 39, Publication date: November 2011.



A Model-Driven Design Framework for Massively Parallel Embedded Systems 39:5

Fig. 1. An overview of GASPARD design packages: an empty box means no implication of authors in the
definition of the package; a hatched box means only a partial participation of authors; and a dark box means
definition of the whole package by authors.

packages specified at different abstraction levels in order to deal with concepts, re-
quired to target different technologies via model transformations. Among the MARTE
packages, GASPARD uses the following.

— the GCM (Generic Component Model) package for application design. This package
contains basic concepts such as data flow ports and components;

— the HRM (Hardware Resource Modeling) package for architecture representation.
It specializes the concepts of GCM into hardware resource such as memory,
processor, etc.

— the Alloc package for the representation of the mapping between applications and
architectures;

— the RSM (Repetitive Structure Modeling) package for repetition specification in an
application, an architecture and the mapping of the two;

— the NFP (NonFunctional Properties) package for the specification of nonfunctional
properties such as the frequency of a processor;

— the VSL (Value Specification Language) package for the structuring and specifica-
tion of values;

— the time package for the specification of temporal properties such as clock
constraints (the use of this package in GASPARD is not in the scope of this article).

The purpose and meaning of the remaining packages, which are specific to GAS-
PARD, are presented further in the article.

More generally in this article, the main contribution is the presentation of a de-
sign framework that supports a high-level model with automatic transformations. The
supported model provides an efficient high-level representation of massively parallel
embedded systems. This representation hides the various cumbersome low-level tech-
nological specificities (e.g., hardware accelerators, processors) that developers usually
have to cope with. The automatic transformations of the model target various ab-
straction levels and technologies as a support for a fast design space exploration. Our
framewok aims at strongly contributing to increase the productivity of designers.
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1.3 Outline of the Article
The overall organization of the article can be decomposed into four main parts, them-
selves composed of sections, as follows.

— Preliminary: related works and introduction of a case study. This part starts
with Section 2 describing some important related works about the design of high-
performance embedded systems. This section points out the major limitations of
these works, which are addressed in the GASPARD framework. To understand how
this is achieved, a typical massively parallel embedded system, corresponding to a
Digital Signal Processing (DSP) system from the multimedia domain, is introduced
in Section 3. It is considered along the article to illustrate our contribution.

— Design concepts and refinement in GASPARD. Here, Section 4 introduces the repet-
itive MoC on which rely the GASPARD modeling concepts presented in Section 5.
More precisely, these two sections show how the different parts of a system are
designed with GASPARD: functionalities and hardware architectures, their associa-
tion, and their deployment with existing platform-specific components. The refine-
ment of the high-level models obtained before is addressed in Section 6. Different
transformation chains are implemented towards various analysis and simulation
target technologies in GASPARD.

— A design methodology. Based on the previous design concepts and refinement fa-
cilities of GASPARD, we propose a multilevel design space exploration methodology,
explained in Section 7. This methodology is illustrated on our running example (i.e.,
the case study) in Section 8 so as to explore the design space.

— Concluding remarks. In order to assess the contribution of the article, Section 9
discusses our proposition by highlighting its advantages and weakness for the de-
sign of massively parallel embedded systems. Finally, the conclusions are given in
Section 10.

2. RELATED WORKS
We first present some high-performance programming models that deal with massively
parallel systems in general. Then, we discuss methodological aspects through some
outstanding paradigms: hardware-software codesign approaches for embedded sys-
tems and model-driven engineering. In both paradigms, abstract models and model
refinements are central.

2.1 High-Performance Programming Models
The programming of high-performance systems has been extensively investigated
through the last decades. Among the proposed solutions, we have already mentioned
the parallel programming models offered in MPI and OpenMP.

More recent languages are StreamIt [Thies et al. 2002], Brook [Stanford Streaming
Supercomputer Project 2009], and OpenCL [Khronos Group 2009]. They promote new
parallel programming models and introduce the notion of stream, a flow of data, and
the notion of kernel, a function that is applied on a stream in parallel.

Their main objective is to provide a model of computation that abstracts the new
model of architecture provided by GPU (Graphics Processing Unit) in the frame of the
GPGPU (General-Purpose computing On GPU) approach, or by multicore processors.
Despite their indisputable advantage with respect to the previous low-level program-
ming of these architectures, these languages are by nature limited to the targeted
architecture they implicitly defined in their models. No definition of the architecture
and no definition of the mapping of the computation (for example, the kernel or the
stream) on an architecture can be expressed by the programmer. An implicit mapping
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is defined and the compiler generates the code based on this mapping. Thus, similarly
to MPI and OpenMP, they also have the inconvenience to be not well adapted for SoC
design in which one needs to program specialized architectures.

An interesting high-level language is the data-parallel formalism ALPHA [Wilde
1994], which is very close to ARRAYOL. It manipulates polyhedra instead of arrays.
This leads to different specification styles. ALPHA particularly suits for the specifica-
tion of systolic architectures which are a specific case of massively parallel architec-
tures. As a result, it does not offer a satisfactory solution to the design of other types
of architecture models as it is needed here for SoCs.

2.2 Hardware/Software Codesign Approaches for Embedded Systems
There are several codesign methodologies for embedded systems that start from high-
level designs from which the system implementation is produced after some automatic
or manual refinements.

The first methodologies for hardware-software codesign of systems were based
on system synthesis methods. They consist in transforming, through successive
refinements, the original sequential specification into a concurrent one defining all
the implementation details. This relies on the use of high-level languages. At the
beginning, a system is represented only as a network of processes according to a MoC
such as KPN (Kahn Process Network) [Kahn 1974] or SDF (Synchronous DataFlow)
[Lee and Messerschmitt 1987]. It is then rewritten in languages such as C (for the
software part) and in languages such as VHDL (for the hardware part). COSMOS
[Ismail et al. 1994], Chinook [Chou et al. 1995], and Specsyn [Gajski et al. 1998]
are among the first projects that proposed automated transformations from a high
abstraction level to a lower one. However, one of their main drawbacks is that the
translations from an abstraction level to a lower one are not complete and are very
tedious to be manually achieved. These proposals were more about methodologies to
guide the designer through the refinement process, but none of them addressed the
usage of multiprocessor.

Further methodologies can also be mentioned such as SynDEx [Grandpierre and
Sorel 2003], the Space Codesign framework [Chevalier et al. 2006], Ptolemy [Lee
2001], PeaCE [Ha et al. 2007], or HOPES [Ha 2007]. The SynDEx codesign method-
ology is referred to as algorithm architecture adequation. It covers the design steps
from the specification of functionalities to the deployment on target multiprocessor
architectures including specific integrated circuits. The system implementation code
can be automatically generated. A main limitation of SynDEx is that it does not ef-
ficiently handle massively parallel architecture topologies or computation structures.
The space codesign framework allows to model hardware-software systems at high
abstraction level and to refine them until FPGA implementation. However, this frame-
work does not manage factorized expression of parallelism. Thus, it does not scale for
massively parallel systems. Unlike the previous two approaches, Ptolemy is rather
devoted to the modeling, simulation, and design of embedded systems by integrating
different models of computation (e.g., synchronous/reactive, continuous time, etc.) in
order to deal with concurrency and time in a heterogeneous system description. The
PeaCE approach is built upon Ptolemy to address the hardware-software codesign for
multimedia embedded systems. Its design flow includes an interactive design space
exploration framework based on a hardware-software cosimulation at both TLM and
RTL levels, and an automatic code generation for hardware and software. The HOPES
approach extends the PeaCE codesign methodology by mainly introducing a new ab-
straction layer, called Common Intermediate Code (CIC), within the code generation
process. The CIC representation is independent from any communication architecture

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 39, Publication date: November 2011.



39:8 A. Gamatié et al.

and operation system. It offers enough flexibility to target code generation for
different MPSoC architectures. Compared to the PeaCE and HOPES frameworks,
GASPARD enables a more powerful modeling of parallelism in data-intensive com-
putation by using MARTE RSM concepts instead of SDF variants. In addition, the
other MARTE packages used in our framework offer a richer set of concepts for
architecture description. The automatic model transformations and code generation
achieved in GASPARD also include intermediate representations that are retargetable.
They can be seen as a generalization of the idea of using the CIC representation in
HOPES.

The approaches adopted in Koski [Kangas et al. 2006], SystemCoDesigner (SCD)
[Keinert et al. 2009], and System-on-Chip Environment (SCE) [Dömer et al. 2008] are
also close to our work in that they propose frameworks for SoC design. They provide
supports for automated design space exploration and synthesis. The GASPARD frame-
work also aims at an easy design space exploration by making it possible to automati-
cally produce input code for existing analysis, simulation, and performance evaluation
tools. Koski uses a UML-based modeling (more precisely the TUT Profile, see next
section) of system specification expressed as KPNs. It supports automatic back an-
notations and modification of system models based on simulation and performance
evaluation results. In Gaspard, modifications of system models after exploration are
currently only manually possible. The SCD framework considers as input the SystemC
behavioral model of a system, expressed in an annotated actor-oriented style. It auto-
matically extracts the useful information from this model and performs multi-objective
design space exploration. The exploration process is entirely automated within the
synthesis of SoC implementations in SCD. In the SCE environment (successor of Spec-
syn), a comprehensive and automated refinement approach addresses the design of
MPSoCs from abstract specifications to implementation. At each design step, specific
decisions can be manually entered in order to automatically generate refined system
models. These models are described in SpecC and the decisions are taken based on
design exploration via simulation and performance evaluation. As a global remark,
we can observe here that neither Koski nor SCD nor SCE considers a high-level and
expressive modeling formalism, such as the MARTE profile, to adequately deal with
massive parallelism.

The Platform-Based Design (PBD) approach [Sangiovanni-Vincentelli and Martin
2001] is another typical example of methodology. Its main idea is to facilitate the
design task by enabling successive refinements of high-level specifications of system
functionality and architecture with reusable components so as to rapidly meet the
implementation requirements of the system. The principles of PBD are found in
frameworks such as Metropolis [Balarin et al. 2003] of Berkeley, VCC [Martin and
Salefski 1998] of Cadence, the Artemis workbench [Pimentel 2008], and CoFluent
studio [Calvez 1993]. Except the former, which considers several MoCs, each of these
frameworks adopts a particular MoC and provides the designers with a library of
domain-specific components for platform instantiation. While PBD helps to shorten
the time-to-market and to reuse verification, it may potentially reduce the flexibility
of design, since the space of choices is limited to the available system components.
Furthermore, in the case of SoCs, which are composed of heterogeneous components
that are often developed with dedicated tools (e.g., an ARM processor with the ARM
environment, a hardware accelerator with a high-level synthesis tool), it is highly
desirable to have a single design model that covers the whole system description. But,
most of PBD approaches combine different design models that capture various aspects
of a system. For instance, the Artemis workbench that is devoted to multimedia
domain considers Simulink representations for functionality description and KPN
MOC for architecture description.
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2.3 Model-Driven Engineering for Embedded Systems
Another interesting design paradigm that is very close to PBD is the already
mentioned MDE approach. It has been increasingly adopted for the design of
embedded systems in general [Schmidt 2006]. The basic modeling formalism is
the general-purpose language UML, which offers attractive graphical specification
concepts. Because of its generality, UML is refined by the notion of profile to address
domain-specific problems.

There are currently several profiles for the design of embedded systems such as
SysML [Object Management Group Inc. 2006], UML SPT [Object Management Group
Inc. 2005], UML-RT [Selic 1998], TUT Profile [Kangas et al. 2006], ACCOR/UML
[Lanusse et al. 1998], and Embedded UML [Martin et al. 2001]. Among these pro-
files, only SysML and UML SPT have been standardized by the Object Management
Group (OMG). SysML is a general-purpose modeling language for system design, while
UML SPT is dedicated to the modeling of time, schedulability, and performance-related
aspects of real-time systems. The UML-RT and ACCOR/UML profiles are less rich in
terms of concepts than UML SPT. The embedded UML profile has been defined within
VCC as an experimental proposal that goes beyond the real-time field. It also includes
aspects from the hardware-software codesign field. This last field is mainly taken
into account in the TUT profile, which defines concepts allowing one to model appli-
cations, platforms, and their mapping. Among the few profiles that specifically focus
on SoC modeling, we mention UML4SystemC [Riccobene et al. 2005] and the OMG
UML4SoC profile [Hasegawa 2004]. They offer an abstraction of the RTL level. This
abstraction accelerates the simulation of the software and hardware parts of a system.
Because all these profiles may potentially overlap, significant standardization efforts
have been recently realized by the OMG, resulting in the single unified and effective
MARTE standard profile on which GASPARD relies.

While these profiles allow to specify a system with high-level models, refinements
from such models towards low-level models have to be achieved. Typically, from
the specification of an embedded system with a profile, one would like to gen-
erate executable implementations of the system. For instance, the UML4SoC and
UML4SystemC profiles manipulate concepts that are very close to the implementation
level, and are thus mappable to the targeted languages, for example, SystemC or
SystemVerilog. This reduces the flexibility when considering other targets because
the overall mapping has to be redefined. Some alternative propositions use specific
notations instead of using profiles, defining an entirely executable model semantics
[Alanen et al. 2006; Nguyen et al. 2004; Riccobene et al. 2006]. Such expressive
notations allow one to define models with sufficient information so that the specified
system can be completely generated. However, here also, the code is directly gen-
erated from the specifications, without any intermediary representation. The same
is observed in the VHDL code generation from UML [Björklund and Lilius 2002;
Coyle and Thornton 2005], where the code is obtained directly by mapping the UML
concepts to the VHDL syntax. While these approaches rely on an abstraction of the
system by using high-level models, they only exploit a little of its benefits by directly
being dependent on target languages or abstraction levels.

From the previously presented profiles, only a subset has been proposed as de facto
industrial standards normalized by OMG. They are implemented in commercialized
modeling tools such as Rhapsody and TAU of IBM/Telelogic, MagicDraw of No Magic,
and RSA of IBM. Among these specific profiles, SysML and MARTE appear as the
most popular. UML4SoC and UML SPT are also intended for industrial usage but
they have less success than the previous two. All the other profiles are rather academic
experimental prototypes with dedicated tools, with a very limited impact in practice.
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Fig. 2. Informal representation of the intra part of the H.263 encoder.

3. A TYPICAL DSP EMBEDDED SYSTEM
A typical embedded system dedicated to signal processing application is presented in
this section. Our objective is to illustrate the design challenges faced by developers in
terms of architecture topology, application task mapping, and hardware and software
component reuse. We consider the H.263 video codec standard [Cote et al. 1998;
International Telecommunication Union (ITU) 2005]. We focus on the intra part of
the encoder, which performs regular and massively parallel computations. Most of the
examples used in this article are extracted from this application.

The intra part of the H.263 encoder application sketched in Figure 2 is composed
of three tasks: the Discrete Cosine Transform (DCT), the quantization (QUANT), and
the Huffman Coding (HC).

The encoding algorithm deals with the input stream of QCIF frames by dividing
each frame into macroblocks. Since the processing of each macroblock can be done
independently from the others, this data structure confers to the H.263 algorithm a
potential parallelism in terms of data computation. This is an embarrassingly parallel
algorithm that is executable in a regular way.

The execution of the intra part of the H.263 encoder in an embedded system im-
plies several constraints. For instance, depending on the frame rate (e.g., 10 or 30
frames per second) to achieve, the encoder is executed more or less efficiently. Its ex-
ecution architecture thus has to exploit the potential parallelism of the algorithm in
order to reach satisfactory performances. Figure 2 represents a possible architecture
including four processors, a hardware accelerator, a memory, and a bus. The workload
of QUANT and HC tasks is equitably shared between the four processors. The DCT
task is mapped onto the hardware accelerator, which is an electronic circuit allowing
a maximal parallelization of the computation needed to execute an application.

The architecture and the mapping sketched in this figure are only one possible im-
plementation solution. For instance, an architecture only composed of processors as
computing resources could be an interesting alternative. A high number of proces-
sors may provide a sufficient computing power enabling one to avoid the usage of a
hardware accelerator. The choice among these various solutions mostly relies on the
knowledge of embedded system designers. However, the current design methodologies
based on designer’s know-how are no more adapted to address the exploration of wide
design spaces.

To solve this bottleneck, we believe that it is useful to manage the three challenges
mentioned in Section 1. It is necessary to exploit the potential parallelism available
in applications when designing the architecture and the mapping of the former on
the latter. High-abstraction-level representations of embedded systems enable one to
deal with their complexity. A methodology in which implementations are generated
from such representations enables to rapidly explore wide design spaces without the
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Fig. 3. Factorized (left) and unrolled (right) regular structure.

drawbacks of manual implementations. These aspects are key points for the design of
tomorrow’s high-performance embedded systems.

4. THE REPETITIVE MODEL OF COMPUTATION
Modeling high-performance embedded systems requires concepts that allow us to de-
scribe the regularity of a system structure in a factorized way. Such concepts provide
the designer with a way to efficiently and explicitly express models with a high num-
ber of identical components. The repetitive structures are the basis of the repetitive
MOC originally inspired by ARRAYOL, which is dedicated to multidimensional signal
processing [Demeure and Del Gallo 1998].

ARRAYOL is a domain-specific language enabling the specification of intensive sig-
nal processing applications manipulating large amounts of data, in the form of mul-
tidimensional (and possibly infinite) arrays. The potential parallelism available in
an application is captured via data dependencies. The specification of an application
consists of two views: global and local models. A global model is a directed acyclic
graph where nodes represent tasks and edges represent data dependencies labeled by
multidimensional arrays. Therefore, it permits to represent task parallelism. The lo-
cal model rather describes data parallelism in an application by using the notion of
repetition explained in the sequel.

Since a few years, we have been significantly extending ARRAYOL so as to enable
the design of high-performance embedded systems based on the model-driven engi-
neering approach [Cuccuru et al. 2005]. This extension led to the repetitive MOC
[Boulet 2008; Glitia et al. 2009], which enables the description of regular system struc-
tures or topologies beyond the application level (as it is the case with ARRAYOL):
hardware architectural topologies, hardware-software association, data allocation in
memory. A benefit of such a description is that it is specified in the same factorized
way and at a high abstraction level.

The following description of the repetitive MOC is independent from application
and architecture considerations. Among the presented notions, the shape, reshape and
interrepetition concepts are part of our extension of ARRAYOL.

4.1 Repetition and Shape
A structural element T is replicated into several structural elements. The repetition
space is defined by a vector. The number of iterations is determined by multiplying the
coordinates of this vector. The left-hand side of Figure 3 represents a repetitive struc-
ture. H is a hierarchical structure, the dashed box t:T is a repeated structural element.
{2,2} corresponds to the repetition space of this structural element. The right-hand
side corresponds to the unrolled (i.e., explicitly enumerated) equivalent representa-
tion. Each dashed box ti, j:T, referred to as a repetition, corresponds to a structural
element associated with a given iteration in the repetition space.
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Fig. 4. Tilers express multiple link topologies in a factorized way.

In other words, a repeated structural element t is a set of repetitions {tk}, each cor-
responding to the same functionality and structure. The number of repetitions is the
cardinal of the repetition space associated with t.

Structural elements handle information in the form of arrays materialized by ports.
The shape of a port defines the shape of the corresponding array and specifies how
the information are structured. Dependencies are defined between the arrays handled
by different structural elements. A repeated structural element manipulates subsets
of such arrays, which are referred to as patterns. The dependencies between arrays
and patterns are expressed with the three repetitive link topologies, Tiler, Reshape, and
InterRepetition, detailed next.

4.2 Data Dependencies and Communications

4.2.1 Tiler. A Tiler connector expresses how a multidimensional array is tiled by pat-
terns. For this purpose, it connects an array to the patterns of a repeated structural
element, as illustrated in the left-hand side of Figure 4. In this example, i1 and o1 are
the ports of the H structural element. They represent the multidimensional arrays of
H. The ports i2 and o2 represent the patterns of the t:T repeated structural element.

Boulet [2008] gives a formal description of tilers. In this article, we adopt an intu-
itive approach to explain how tilers work. The right-hand part of Figure 4 is an equiv-
alent but not factorized expression of the Tilers illustrated on the left-hand side. All the
repetitions (e.g. t0,0:T, t0,1:T) of the repeated structural element are made explicit. Each
one manipulates its own patterns: the pattern corresponding to i2 is a bidimensional
array whereas the one corresponding to o2 is a scalar. The patterns are built according
to the arrays of the H structural element, as indicated via arrows. The 2×2-patterns
i2 are constructed from elements contained in the 3×3-array i1. Symmetrically, the o2
scalars are used to build the 2×2-array o1.

The way patterns are built from an array depends on a tiling operation which re-
quires the origin, paving, and fitting attributes. The origin vector specifies the origin of
the reference pattern in the array. The paving and fitting matrices, respectively, specify
how an array is covered by patterns and how the patterns are constructed with array
elements. In the remainder, for shortcut, we denote the origin vector, the paving, and
fitting matrices by o, P, and F, respectively.

Figure 5 precisely describes the dependencies between patterns and array elements.
The vector r denotes iteration steps in the repetition space: each r =

( i
j
)

in Figure 5
identifies the corresponding ti, j:T in Figure 4. For each iteration, the elements high-
lighted in the 3×3-array i1 are used to build the corresponding 2×2-pattern i2. For
example, the four elements on the bottom left-hand side of the array are used to build
the pattern of the t0,0:T structural element. Thus, the scalar element in the middle of
the array is used to build each of the four patterns. In the same way, the right-hand
side of Figure 5 illustrates the dependencies between o2 and o1.

The paving and fitting operations considered in a repetition and illustrated in
Figure 5 are formally defined as follows.
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Fig. 5. Dependencies between patterns and array elements: the left-hand side and the right-hand side show
how the input and output patterns are respectively built.

For each repetition instance, one needs to specify the reference element refr of its
associated pattern. The reference pattern (of the initial repetition instance) is deter-
mined by considering the origin vector of a tiler. The patterns associated with the other
repetition instances are built relatively to the reference pattern. As previously, their
coordinates are built as a linear combination of the vectors of the paving matrix as
follows. We have

∀ r, 0 ≤ r < srepetition, refr = o + P × r mod sarray, (1)

where srepetition is the shape of the repetition space, o is the origin vector, P the paving
matrix, and sarray the shape of the array.

Now, given a pattern, let its reference element, ref, denote the initial point from
which all its other elements are determined. The coordinates of these elements, rep-
resented by ei, are built as the sum of the coordinates of the reference element and a
linear combination of the vectors in the fitting matrix, the whole modulo the size of the
array (since arrays may be toroidal) as follows. We have

∀ i, 0 ≤ i < spattern, ei = ref + F × i mod sarray, (2)

where spattern is the shape of patterns, sarray is the shape of the array, and F is the fitting
matrix.

According to its attributes (origin vector, paving, and fitting matrices), a Tiler ex-
presses dependencies between a M-dimensional array and N-dimensional patterns.
These dependencies are not limited to compact and parallel to axis patterns (e.g., rect-
angular shaped patterns). Dependencies are usually expressed via indexes in lan-
guages. It is the case in ALPHA [Wilde 1994]. The explicit manipulation of indexes
in specifications is tedious and error-prone: the implied complexity dramatically in-
creases with the number of dimensions and the shape of patterns. Tilers avoid these
drawbacks.

4.2.2 Reshape and InterRepetition. A Reshape enables us to express complex link topolo-
gies in which the elements of a multidimensional array are redistributed in another
multidimensional array. For this purpose, a Reshape connector links two ports of struc-
tural elements included in the same hierarchical structural element (as opposed to the
Tiler which links a port of a repeated element to those of a hierarchical one). In fact, a
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Fig. 6. Representation of the Reshape (left) and the InterRepetition (right) dependencies.

Reshape is a combination of two Tilers. It enables the factorization of complex dependen-
cies between two arrays. The left-hand side of Figure 6 represents a Reshape connector
that expresses dependencies between the o and i ports.

The InterRepetition connector links a pattern of a repeated structural element with
another pattern of the same repeated structural element, as illustrated in the right-
hand part of Figure 6. It therefore induces a partial order on the execution of these
repetitions. The usefulness of the InterRepetition link topology is illustrated later in the
article.

The concepts manipulated in our repetitive MOC have been first defined in a profile
[Cuccuru et al. 2005] for the GASPARD framework. Today, they are fully adopted in
the MARTE standard profile via its RSM package. A complete description of all these
concepts can be found at Object Management Group [2007a].

In the following section, we demonstrate the suitability of MARTE for the modeling
of high-performance embedded systems in GASPARD.

5. MODELING CONCEPTS
This section presents the concepts provided by MARTE for the description of inten-
sive signal processing applications, hardware architecture, and the mapping of the
former on the latter. Additional information corresponding to implementation details
are provided through a deployment mechanism. All these concepts are illustrated in
the modeling of an embedded system dedicated to the execution of the H.263 encoder.

5.1 Application Functionality

5.1.1 Components. The targeted application functionality generally consists of data-
intensive computation algorithms as in the H.263 encoder application. There are basi-
cally three kinds of task components that are used to specify application functionality.
An elementary component defines a task as an atomic function. A repetitive compo-
nent expresses a data-parallel task in an algorithm. Finally, a hierarchical component
enables to specify complex functionalities in a modular way; in particular, task par-
allelism is described using such a component. All these components are modeled by
combining the concepts provided in the MARTE GCM, VSL, and RSM packages used
in GASPARD (see Figure 1).

We introduce next the H.263 encoder application designed with the MARTE profile.

5.1.2 Modeling the H.263 Encoder. In Figure 7, the H263Encoder component corresponds
to the task that reads a QCIF frame in order to produce a compressed frame. A QCIF
frame is decomposed into the three arrays materialized by the ports lumin, cbin, and crin
(one port for the luminance and two ports for the chrominance). The compressed frame
produced is decomposed into arrays materialized by the ports mbout and size, denoting
respectively the compressed data and the compression level.

In the application part of a MARTE model, a repetition space on a task expresses
data parallelism. On Figure 7, the multiplicity {11,9} associated with the H263mb
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Fig. 7. The main application components of the H.263 encoder.

instance of the H263MacroBlock component (noted as H263mb:H263MacroBlock) denotes such
a data-parallel task. Each repetition of the task H263mb consumes three input pat-
terns ( lumin, crin, and cbin) and produces two output patterns (mbout and size). A pattern
corresponds to a subset of the overall frame. Each iteration step within the task rep-
etition space consumes and produces patterns. Their construction relies on the data
dependencies expressed via the Tiler connectors.

The hierarchical component H263MacroBlock is formed of three tasks, which corre-
spond to the three steps of the H.263 encoder algorithm: DCT, QUANT, and HC. The DCT
component contains both data and task parallelisms. The aim of this component is
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to apply the DCT transformation algorithm to the luminance and chrominance mac-
roblocks. For this purpose, the Elementary-DCT task is instantiated. It consumes a 8×8
array of pixels in order to produce a 8×8 array of spatial frequency coefficients. Since
this task is elementary, its behavior is provided according to additional information
included in the deployment described later on.

At the top level of the application model, the received video streams are encoded
according to a global repetition around the H263Encoder component. This repetition
infinitely applies the encoding algorithm to the successive video frames.

5.2 Hardware Architecture

5.2.1 Architecture Modeling. Compared to UML, the MARTE profile allows one to de-
scribe hardware characteristics in a more precise way [Taha et al. 2007]. The hardware
architecture is described in a structural way. In GASPARD, only the HW_Logical sub-part
of the HRM package in MARTE is used. This subpackage describes typical hardware
components (e.g., HwRAM,HwProcessor,HwASIC,HwBus), their nonfunctional properties (e.g.,
operating frequency, power consumption). More generally, it allows one to represent
any architecture topology.

Similarly to the application modeling, the hardware architecture is also modeled
using the repetitive concepts of the MARTE RSM package. This is very useful when
describing a grid of processing elements, such as the Tile64 architecture of Tilera [Tilera
Corporation 2009]: the model is kept factorized.

In MARTE, some hardware architecture modeling concepts [Taha et al. 2007] are
inspired by the initial UML-based propositions in GASPARD for system architecture
modeling.

5.2.2 Architecture Models. Figure 8 shows a model of an MPSoC architecture. The
main component of this architecture, called QuadriPro, is composed of four processing
units specified using the repetition concept, four RAM modules specified as a 2×2-grid,
a ROM, and a crossbar that interconnects these components together. The Reshape
connector (whose attributes are not displayed in this figure for the sake of simplicity)
between the dbus port of MultiProcessingUnit and the master port of the crossbar specifies
how processors are connected to the communication network. Similarly, the Reshape
connectors relating the slave port of the crossbar to the bus ports of memories specify
how the repetition of the ports are linked to the ports of the memories. Repeated
memory components correspond to several memory banks accessible from the same
address space, with a linearly increasing base address for each bank.

An important remark is that the MARTE concepts inherited by GASPARD for hard-
ware architecture description enable to model any topology (e.g., graph topology).
Among these topologies, regular ones are those which fully take advantage of the effi-
cient expression of the parallelism offered by the repetitive concepts.

5.3 Allocation

5.3.1 Mapping Concepts. Since hardware architecture and application functionality
are independently modeled, the allocation (also referred to as association) is in charge
of expressing the mapping of the application onto the architecture. More precisely,
the Allocate stereotype provided in the MARTE Alloc package allows one to specify
the mapping of the computations on processing resources and the mapping of data on
memory units. In order to define allocation on models containing repetitive structures,
a notion of distribution is also provided in MARTE. The Distribute stereotype proposes
a way to express regular distributions from an array of task (respectively, data) to an
array of processors (respectively, memory units). It expresses, in a compact way, for
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Fig. 8. Architecture of a shared memory MPSoC.

each repetition of the task which processor executes it [Boulet et al. 2007]. Similarly,
it defines for each element of a data array which memory bank contains it.

5.3.2 Application Mapping on Architecture. The components on the top and bottom of
Figure 9 correspond to two different hierarchical levels of the H.263 encoder applica-
tion model. In the middle of Figure 9, the main component of a hardware architecture,
as seen previously in Figure 8, is shown. The whole H263mb task is mapped on the
processors of the QuadriPro hardware architecture via the Allocate links. The Distribute
stereotype (whose attributes are not shown in the figure) specifies precisely the distri-
bution of the 99 repetitions of H263mb onto the four processors. Informally explained,
the distribution linearizes the 11×9 repetitions and maps them on the array of the
processors via a modulo function. Consequently, 25 repetitions out of the 99 ones are
assigned to each processor, except the fourth one which receives only 24 repetitions.

Similarly, all the data handled in the H263Encoder application are mapped onto the
DataMemory. Since the modeled architecture is shared memory, the distribution does not
require to closely fit the distribution of the tasks. A simple one, allocating a quarter of
each data array to each memory unit, is selected. Moreover, the data array allocation
can be more precise. For example, the luminance and the chrominance parts of the
overall frames can be distributed independently by directly allocating the lumin, cbin,
and crin ports of the H263mb task onto memories.

5.4 Deployment Using IPs

5.4.1 Deployment Concepts. In order to generate an entire system from a high-level
specification, all implementation details of every elementary component have to be
specified. IPs are used to ease component reuse. They correspond to specific imple-
mentations of a given functionality, either hardware or software. For instance, dif-
ferent IPs can be provided for a given application component and may correspond to
either an optimized version for a specific processor or a version compliant with a given
language.

Although the notion of deployment is present in UML, the SoC design has special
needs not fulfilled by this notion. Hence, GASPARD extends the MARTE profile with
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Fig. 9. Mapping onto a processor-based architecture.

the Deploypackage (see Figure 1) to allow deploying elementary components with IPs.
For this purpose, we have introduced the concept of VirtualIP as a generic wrapper that
captures various implementations of a given elementary component (either software
or hardware), independently from the usage context. A VirtualIP is implemented by one
or several IPs, each one used to define a specific implementation at a given abstraction
level and in a given language. Finally, the concept of CodeFile is used to specify, for a
given IP, the file corresponding to the source-code and its required compilation options.
The used IP is selected by the SoC designer by linking it to the elementary component
through the Implements dependency. Some IPs provided by the SoC industry can be
parametrized. These parameters are specified using the Characteristic concept.

5.4.2 Deployment Example. Figure 10 represents the deployment of the Elementary-DCT
elementary component onto the VirtualDCT VirtualIP. The VirtualDCT may be implemented
by two different SoftwareIP. The DCT-VHDL IP corresponds to VHDL code for an imple-
mentation at the RTL level. The DCT-C IP corresponds to C code that is executed on
a processor. A CodeFile is associated with each of these two IPs. Thus, designers can
choose among the two implementation options.
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Fig. 10. Deployment of the Elementary-DCT task.

In this figure, the implements dependency from DCT-C to Elementary-DCT specifies that
DCT-C is selected as the implementation of Elementary-DCT. This dependency also allows
one to parametrize the IP by setting the size characteristic to 8. Here, 8 corresponds to
the array size needed to execute the DCT functionality. The other implements dependen-
cies indicate how the ports of VirtualDCT (respectively, DCT-VHDL and DCT-C) are linked to
the ports of Elementary-DCT (respectively, VirtualDCT).

Such a deployment mechanism allows one to easily modify the selected IP or
its corresponding characteristics, without any modification of the application or the
architecture.

6. MODEL REFINEMENT
Model-driven engineering relies on two concepts: metamodel and transformation. A
metamodel precisely expresses the semantics of the concepts and the relations between
them in order to state the characteristics of a valid model: a model conforms to a
metamodel. A model transformation defines how to produce a model conforming to a
target metamodel from another model conforming to a source metamodel. The target
metamodel is usually more specialized than the source one and manipulates concepts
closer to the code. A successive application of several model transformations yields a
transformation chain and allows code generation from high-level models.

In this section, we present the refinement of the previous high-level models, via
the transformation chains implemented in GASPARD. These chains have already been
separately described and published in some articles [Le Beux et al. 2007; Piel et al.
2008b; Taillard et al. 2008a; Yu et al. 2008]. In this article, we describe Gaspard as
a multipurpose framework underlying the unity and the complementarity between
the chains. Figure 11 presents an overview of these chains in GASPARD. The top of
this figure corresponds to the high-level modeling concepts described previously with
the MARTE profile: Application, Architecture, Association, and Deployment. Then, different
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Fig. 11. GASPARD transformation chains.

transformation chains are defined, which transform high-level models towards specific
technologies, identified in the bottom side of Figure 11.

From the functional viewpoint, the pieces of code generated in synchronous lan-
guage, SystemC, OpenMP Fortran/C, and VHDL, corresponding to the same high-level
system model have strictly the same behavior. In other words, the same inputs always
lead to the same outputs. This is ensured by the fact that all functional dependen-
cies specified at the highest modeling level in GASPARD are entirely preserved by each
transformation chain. For instance, for the functional correctness of the code gener-
ation in synchronous languages, the reader may refer to Gamatié et al. [2008] for
details. It is the case for all the other chains. From the nonfunctional viewpoint, this
does not hold. Typically, the execution/simulation duration of the different pieces of
code may differ from one target technology to another.

6.1 GASPARD Transformation Chains
The first step is the same in each transformation chain of GASPARD. It consists in
targeting the Deployed metamodel. This metamodel corresponds to an intrinsic defini-
tion of the concepts, identified in the MARTE profile extended with the deployment
concepts without taking into account the UML concepts on which they rely. Models
that conform to this metamodel can be modified using refactoring functions [Glitia
and Boulet 2008]. These functions consist of classical loop transformations (i.e., fusion,
collapse, etc.). They modify, create, or delete the hierarchy according to the regular par-
allelism. They can thus be used to adapt the design provided by the user while keeping
the functionality unchanged, for example in order to optimize the execution. The other
intermediate metamodels are described in the corresponding transformation chains.

6.1.1 Transformation Chain towards Synchronous Languages. The goal of this transforma-
tion chain is to provide GASPARD designers with the possibility to address functional
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correctness issues. Indeed, MARTE does not provide the semantics necessary to for-
mally validate the designed system. Synchronous languages [Benveniste et al. 2003]
are well-known for their formal aspects and their richness in terms of tools for valida-
tion and verification at the functional level. Safe array assignment and causality in
data dependencies [Gamatié et al. 2008] are examples of functional properties that are
checked in an application designed with MARTE.

The synchronous equational metamodel, proposed in the Synchronous package of
GASPARD (see Figure 1), gathers synchronous programming concepts and is generic
enough to be transformed in different synchronous dataflow languages [Yu et al. 2008]:
Lustre, Lucid Synchrone, and Signal. More precisely, it enables to describe systems of
equations over variables called signals. Such equations specify relations between the
values and the logical instants at which the signals occur. The generated code mainly
serves to check functional properties of the applications described with MARTE.

6.1.2 Transformation Chain towards SystemC. This chain leads to the generation of a
SystemC-based simulated embedded system [Piel et al. 2008b]. The targeted abstrac-
tion level is PVT (Programmer View Timed). Furthermore, in intensive signal pro-
cessing applications, instruction and synchronization transfers via the interconnection
network are largely smaller than the data transfers [Ben Atitallah et al. 2007a]. For
this reason, in our implementation, only data transfers are simulated. Consequently
to these two points, at the PVT level, instead of using an instruction set simulator
for the software execution, the internal architecture of the processors is replaced by
application parts. Thus, only data accesses (i.e., the low-level functionalities such as
read/write), or the idle mode are really implemented in the processors. The GASPARD
implementation of a system at the PVT level is useful for a fast functional analysis, an
execution time estimation, the bus contention monitoring, and the identification of the
most consuming application parts.

The polyhedron metamodel, proposed in the Polyhedron package of GASPARD (see
Figure 1), presents the association mechanism from the architecture viewpoint. In-
stead of having concepts to indicate the placement of tasks and data arrays as in the
deployed metamodel (i.e., allocation and distribution), in the Polyhedron metamodel,
the data arrays are contained into memories (in which they are assigned specific
address-ranges) and the tasks are contained in the processors. In order to faithfully
represent the repetitions of these distributed elements, the polyhedron mathematical
concept is used. A polyhedron is a set of linear equations and inequalities from which
an efficient execution of loop iterations on processors is made possible by using the
CLooG tool [Bastoul 2004].

The loop metamodel is the second intermediate metamodel, defined in the Loop
package of GASPARD (see Figure 1). It is very close to the Polyhedron metamodel.
The unique difference is the representation of the task repetition. Instead of using a
polyhedron, the repetition is represented by a LoopStatement. It corresponds to the
pseudocode structure that, for a given processor index, goes all over the repetition
index of the associated tasks [Piel et al. 2008a]. This metamodel is the last one in the
transformation chain towards SystemC. The SystemC code is directly generated from
this metamodel.

The execution of the application follows an execution model that is common to all
simulation levels, so that the same behavior is exactly simulated and implemented at
each level. In particular, this execution model defines how tasks exchange data. Each
connection between tasks is implemented as a FIFO supporting multiple readers and
multiple writers. This also enables us to handle the synchronization between the
tasks. The FIFOs are implemented via channels interconnected to modules that sim-
ulate buses and crossbars, so that the communications can be satisfied. A significant
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amount of work can be involved concerning the routing of data at hardware level,
particularly when considering distributed memory, which requires the use of specific
protocols for data transmission via intermediate nodes. But, in the current status of
our framework implementation, only models with shared memory are supported.

An annotated timed model is defined and integrated in our PVT level. It facili-
tates accurate performance estimation for design space exploration. For this purpose,
several timing concepts are introduced: a local timer associated with each processor,
and a time parameter passed to the communication methods. The proposed timed
model requires to preliminarily identify for each hardware component the relevant
time-consuming activities, for example, data hit/miss for the caches or read/write ac-
cess for the shared memory. The estimation of the execution time requires assigning
a delay value to each activity. In our approach, execution delays are either measured
from a physical characterization of a hardware component or from an analytical model
at a low abstraction level. This activity is performed only once for each hardware
component. The results are then reported in the deployment model.

6.1.3 Transformation Chain towards OpenMP Languages. This chain shares several meta-
models with the previous one. However, while the SystemC chain generates code di-
rectly from the Loop metamodel, an additional intermediate metamodel is used to
generate procedural languages. The OpenMP metamodel of the Procedural package
in GASPARD (see Figure 1), is an abstraction of such languages. In this chain, the
Single Program Multiple Data (SPMD) execution model is considered: each processor
has the same code fragment, parametrized with the processor number. This chain has
been used to implement a conjugate gradient solving Maxwell equation and numerical
computations on large matrices [Taillard et al. 2008a].

The OpenMP metamodel is inspired by the ANSI C and Fortran grammars and ex-
tended by OpenMP statements. The aim of this metamodel is to use the same model
to represent Fortran and C code. Thus, from an OpenMP model, it is possible to gener-
ate OpenMP/Fortran or OpenMP/C. The generated code includes parallelism directives
and control loops to distribute task repetitions over processors [Taillard et al. 2008b].

6.1.4 Transformation Chain towards VHDL. This transformation chain enables the design
of hardware accelerators. An accelerator is generally dedicated to the execution of
a specific application. Each accelerator must be customized separately without real
possible reuse. This leads to long production delay and high design cost. Thanks to
this chain, it is possible to automatically produce hardware accelerators that solve
these two issues and reduce human intervention, which is often error-prone.

The generation of a hardware accelerator relies on the hardware-software parti-
tioning specified in high-level MARTE models. More precisely, it depends on the
hierarchical task (application model) that is allocated onto the hardware accelerator
(architecture model). This hierarchical task and the lower ones are executed by the
hardware accelerator, while the loops contained in the upper hierarchical levels are
managed by a processor. The processor iterates on its corresponding repetition space:
at each iteration, the processor launches an execution on the hardware accelerator. In
this context, the processor is the master and the hardware accelerator is a slave.

In order to generate the hardware design for the tasks allocated on the acceler-
ator, the VHDL transformation chain handles two types of hardware executions for
the data parallelism. The hardware-sequential execution consumes few resources but
provides a relatively long execution time, whereas the hardware-parallel execution
consumes more resources but increases the performance. The hardware-software and
the parallel-sequential hardware partitionings give the opportunity to customize the
performance and/or the area cost of an accelerator.
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The RTL metamodel, defined in the RTL package of GASPARD (see Figure 1), gath-
ers the necessary concepts to describe hardware accelerators at the RTL (Register
Transfer Level) level, which allows the hardware execution of applications. The RTL
metamodel is independent from any Hardware Description Languages (HDL) such
as VHDL [IEEE 1994] or Verilog [Thomas and Moorby 1998]. However, it is precise
enough to enable the generation of synthesizable HDL code. Furthermore, we devel-
oped a process to estimate the consumed hardware resources (i.e., the area cost) and
the execution time in terms of clock cycles of the hardware accelerators modeled in
RTL models [Le Beux et al. 2008]. This estimation requires a preliminary step: each
IP is individually synthesized with the usual synthesis tool in order to get its area cost
and timing information. This step is achieved only once, and the results are reported to
the considered IP models. The estimation of the other elementary elements, for exam-
ple, register and multiplexers, is computed by using simple mathematical expressions
during the transformation. The overall accelerator is then characterized following a
bottom-up approach.

As a technical remark, we can note that when the Gaspard framework has been
built, no available tool fully was compliant with QVT (i.e., Query/View/Transfor-
mation) [Object Management Group Inc. 2007b], the OMG standard for model trans-
formation languages) and no transformation tool easily supported black-box call. As a
result, most model transformations in the Gaspard framework are written using Java
with EMF query. This allows us to specify the transformations while benefiting from
the Java expressiveness. Since new QVT-compliant tools are now available, our trans-
formations are being rewritten using QVTO [Borland 2007]. The code generation is
written using Java templates because no standard is implemented.

6.2 GASPARD Toolset
The GASPARD tool-set is provided as an Eclipse plugin that allows users to define
embedded systems and to explore the design space based on simulation, synthesis,
and verification of automatically generated code. The entry point corresponding to the
high-level specifications is a MARTE-compliant model. Such a model is specified by a
user with UML modeling tools such as MagicDraw [No Magic 2007] or Papyrus [2007].

The user selects the transformation chain to be executed among the preceding
chains. For instance, the screen-shot of Figure 12 corresponds to an execution of
the transformation chain towards SystemC. The upper panel corresponds to the UML
model. The lowest panel is the generated SystemC code. The other panels correspond
to the intermediate models.

7. MULTILEVEL DESIGN SPACE EXPLORATION
A major goal of GASPARD is to rapidly design an embedded system that meets its
requirements, in particular those related to performance and correctness. This goal
is achieved by considering high-level models and the different technologies that are
reached via the refinement chains provided in our framework. For that purpose, some
precise ordered design steps should be respected. Based on these steps, we define a
methodology dedicated to the multilevel design space exploration for high-performance
embedded systems in GASPARD. This methodology relies on the refinement chains pre-
sented in Section 6 except the chain that targets OpenMP languages, which is specifi-
cally dedicated to high-performance computing for scientific applications.

Given a system to be designed, two main steps are identified: high-level model spec-
ification and low-level analyses. There are possible feedback loops from the low-level
analyses to the high-level specification in order to enhance the design.
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Fig. 12. Execution of the transformation chain towards SystemC.

7.1 High-Level Model Specification
The designer should exploit the expressive factorization mechanism provided by the
RSM package. So, he or she specifies the potential parallelism available in the dif-
ferent system parts: functionality, hardware, and the corresponding associations. We
distinguish three substeps that are combined in different ways.

Description of Application Functionality and Architecture. The user defines the application
functionality in terms of MARTE concepts where the elementary components will be
instantiated with the adequate IPs (e.g., see the H.263 encoder example in Section 5.4)
on the one hand, and the hardware architecture (e.g., a quadriprocessor) on the other
hand.

Allocation of Application Functionality onto Architecture. The user decides a strategy for
task and data distribution on the defined hardware architecture. Data are allocated to
memory units while tasks are allocated to processing units. Furthermore, a hardware-
software partitioning may be specified.

IP Deployment. At this stage, the elementary components used in the system func-
tionality and the architecture are deployed on IPs so as to target a given technology.

While it is obvious that the first substep is the starting point of the model specifica-
tion, the other two substeps are applied according to two possible scenarios: either the
deployment decisions are partial or complete. The former case enables to postpone a
part of these decisions after the allocation of the system functionality on a given archi-
tecture. The latter case happens when the user does not necessarily need to wait for
allocation to start some design verification or simulation.

7.2 Low-Level Analyses
From the high-level system models resulting from the previous step, we target three
technologies for system analysis at different abstraction levels: functional level
with synchronous languages, PVT level with SystemC, and RTL level with VHDL.
These technologies are used in a complementary way to define a top-down multilevel
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exploration approach. During each exploration substep, the results obtained from the
analyses enable to redesign the considered high-level models for a better suitability
with respect to the system requirements.

Formal Verification of Functional Properties with Synchronous Languages. For a system under
design, the synchronous technology is first used to formally check the system correct-
ness regarding the functional properties, that is, given any inputs, the system always
computes the expected outputs of the implemented function. The architecture-related
properties are not addressed here but only in the next exploration steps (see the fol-
lowing). Typically, possible errors in the specification of the algorithm defining the
system functionality can be detected. In that case, the user has to go back to the high-
level specification step in order to correct the embedded system model. Nonfunctional
aspects related to architectural details are not addressed in this substep. The next two
substeps are suitable for that purpose.

Simulation-Based Exploration at PVT Level with SystemC. Here, the design analysis takes
into account both system functionality and architecture. The PVT abstraction level
considered in SystemC is sufficiently high to keep the simulation fast enough, and
to enable the test of several configurations within a limited time-frame. Such a test
includes, for example, the variation of the number and the type of processors and
memory, the modification of the communication network topology, etc. An illustration
is given in Section 8 for the implementation of the H.263 encoder application.

Hardware-Accelerator-Based Exploration at RTL Level with VHDL. This substep is a suitable
complement of the previous one in that it enables to explore further implementation
alternatives by taking into account hardware accelerators in the system design.
Typically, when the performance requirements of a system are not satisfied during the
SystemC-based simulations, one can decide to synthesize some parts of the system
functionality as hardware. This significantly increases the execution performance (see
Section 8). Among the useful information that are obtained in order to select the best
hardware implementation, we mention the execution time and the surface occupied
by the accelerator.

The aforesaid three target technologies offer a very interesting basis for design
space exploration. Based on the feedback information they provide, the high-level
models of a system are modified so as to better meet the design requirements. Their
corresponding target pieces of code can be then regenerated very rapidly and easily.
This contributes to converge efficiently towards embedded systems that meet both cor-
rectness and performance requirements.

7.3 Exploration of Next-Generation Embedded Systems
The preceding methodology relies on the current implementation of the GASPARD
framework, and particularly on its transformation chains. It will be very interest-
ing to enhance the complementarity of the transformation chains targeting the PVT
and the RTL levels. Indeed, supporting hardware accelerators at the PVT level and
processor-based architectures at the RTL level would make possible the simulation of
the whole system at each of these levels.

The PVT level enables fast simulations but yields approximate results. In the op-
posite, at the RTL level, the results are very precise while the simulation time is very
long. The PVT level is thus more adapted to explore large design spaces whereas the
RTL level should be used to explore a limited solution set. According to our method-
ology, the subset of the overall design space determined at the PVT level should be

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 39, Publication date: November 2011.



39:26 A. Gamatié et al.

explored at the RTL level. However, this set is still quite large. Thus, its effective
exploration at the RTL level is very time consuming due to slow simulations. Hence-
forth, it is relevant to reduce the design space to be explored at the RTL level. For that,
an intermediate subset of the design space resulting from the PVT level has to be in-
troduced. Such a subset may be defined according to the simulations performed at an
intermediate abstraction level. Indeed, at the Cycle-Accurate Byte-Accurate (CABA)
abstraction level, simulations are performed faster than at the RTL level. The results
obtained from these simulations are more precise than those obtained at the PVT level.
Hence, the CABA level suitably complements the PVT and the RTL levels. The CABA
level can be easily reached in GASPARD by introducing a new transformation chain,
which is under development from the Loop metamodel.

By providing a methodology and a tool-set allowing the exploration of a very large
design space via successive reductions until reaching a satisfactory solution, GASPARD
would successfully face the main challenge of future embedded systems generations
that have to perform even more complex applications onto even more potentially pow-
erful architectures. None of existing MDE-based approaches for design exploration
[Bakshi et al. 2001; do Nascimento et al. 2007] offers similar capabilities as GASPARD
for high-performance embedded systems.

In the next section, we illustrate the exploration of different low-level implementa-
tions on our running example based on SystemC and VHDL programs generated from
high-level specifications defined with the GASPARD modeling concepts.

8. IMPLEMENTATION RESULTS IN THE CASE STUDY
This section presents an experiment that evaluates the effectiveness of our design
methodology and of the overall GASPARD framework. We focus on the design of an
embedded system that suits for encoding a 30 frames per second video sequence. The
corresponding H.263 video encoder application has been introduced in Section 3 and
modeled in Section 5. We first check the correctness of its functional part using the
synchronous technology. Then, we address the architecture exploration issues. We de-
sign a homogeneous processor-based architecture and explore the design space covered
by such an architecture. The number of processors is modified in order to increase per-
formance of the embedded system. The performances of different configurations are
evaluated according to fast SystemC simulations performed at the PVT level. These
evaluations give the performance limits of a processor-based architecture. We thus
keep on exploring the design space by introducing a hardware accelerator. We allocate
the most time-consuming part of the application on this accelerator. Different versions
of this accelerator are automatically generated at the RTL level by using the VHDL
transformation chain. Finally, the resulting embedded system is heterogeneous, since
it uses both processors and a hardware accelerator.

8.1 High-Level Specification
According to our design space exploration methodology, the starting point is the high-
level specification of the parts necessary to build the embedded system. The H.263
application model illustrated in Figure 7 corresponds to the system functionality. The
targeted architecture is composed of four processors and a shared memory, as illus-
trated in Figure 8. The mapping of the application onto this architecture is the one
illustrated in Figure 9. Finally, all elementary component models in the application
functionality as well as the architecture component models (e.g., processors, buses) are
linked to IPs thanks to the deployment, partially illustrated in Figure 10.
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8.2 Formal Verification with Synchronous Languages
The H.263 encoder application must be formally verified before starting the design
space exploration. For this purpose, Signal or Lustre code is generated by executing
the transformation chain towards synchronous languages. With this chain, the data
dependencies specified in the high-level application model are transformed into equa-
tions in the generated code [Gamatié et al. 2008]. Usual analysis tools (compilers and
model-checkers) dedicated to synchronous languages check whether or not the specifi-
cation of the H.263 encoder application satisfies some functional properties.

Among these properties, the single assignment and the absence of causality cycle
are verified here. The single assignment property ensures that each data of the output
frames is computed only once and is not overwritten by another data. The absence
of causality cycle ensures that the H.263 encoder is free of any deadlock during its
execution. Notice that the applicability of synchronous techniques for the formal ver-
ification quite depends on the size of considered models. In particular, because of the
explicit enumeration of repetitions adopted during the synchronous code generation,
the resulting programs can be huge. Consequently, either the code generation tools,
for example, Eclipse, or the verification tools, for example, a compiler [Amagbegnon
et al. 1995], may not scale due to memory limitation. A few experiments showed that
from 4.104 repetitions in a model, the size of its corresponding synchronous program
potentially becomes critical. In order to overcome such a scalability limitation, a pos-
sible solution consists of modular code generation, which allows the different subparts
of a program to be addressed easier.

Here, the H.263 encoder is not concerned by any scalability problem. Since these
properties are verified by the system, the design space is now explored at the PVT and
the RTL abstraction levels successively, as advocated in our methodology.

8.3 Simulation and Evaluation of MPSoC at PVT Level
In this part, we evaluate how the transformation chain towards SystemC simulation
of MPSoC at PVT level helps for the early design space exploration. Indeed, this chain
allows a fast evaluation of the embedded system, for example, its execution time, its
occupied physical surface, the possible communication contention.

The SystemC simulation code resulting from the transformation is executed so as
to obtain the execution time. In order to increase the performance (i.e., to reduce
the execution time), the design space is explored by increasing the number of proces-
sors. This consists in modifying two numbers in the high-level model specification: the
shape of the MultiProcessingUnit processor and the shape associated to the master port of
the crossbar communication resource. Then, the simulation source-code is automati-
cally regenerated, and the simulation of the new configuration is executed afterwards.
The algorithm complexity and the size of the obtained SystemC code is independent
of the number of repeated components in a model (both for the application and for the
hardware): only the value of the loop bounds representing the number of repetitions
are modified. For instance, the transformation chain executed with 4-processors and
1024-processors architectures requires 3 seconds in both cases.

In order to compare the simulation at the PVT level, we have manually written
a simulation code of the same system at the CABA abstraction level (Cycle-Accurate
Byte-Accurate). The input data correspond to the frames of a standard file used for
testing QCIF encoders (akiyo_qcif), which has a resolution of 176×144 pixels. The
simulation results obtained from this code are supposed to be close to the results that
could be observed at the RTL level. Our PVT simulation provides 15% to 30% un-
derestimated results than this CABA hand-coding, but is faster to execute: in this
experiment it was approximately 20 times faster. In spite of the underestimation
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Fig. 13. Number of simulated cycles depending on the amount of processors, at the PVT and CABA abstrac-
tion levels.

noted on the PVT simulations, the relative order between the curves resulting from
both simulations is coherent. This is the most interesting information needed at this
high level of abstraction. The precise timing information of the best configuration
are obtained at lower abstraction levels. Besides the CABA slowness, the difficulty
to modify the simulation code at this low abstraction level considerably reduces the
number of testable configurations in a given time. In addition to accelerate the design
space exploration, the PVT code has the advantage to be automatically generated from
high-level description UML models. This demonstrates the ability to generate fairly
relevant simulations of the MPSoC from UML.

Figure 13 presents the number of simulated cycles used for the encoding of one
QCIF frame when the architecture has 4, 8, 12, and 16 processors, at the PVT
and CABA abstraction levels. In spite of the underestimation noted on the PVT
simulations, the relative order between the curves resulting from both simulations
is coherent. In particular, both simulations show that a 16-processors architecture
is slower than a 12-processors one. This is explained by the parallel overhead, which
includes data transfers and synchronizations between processors. The PVT simulation
therefore enables us to easily find the optimal configuration (here, 12 processors) for
a processor-based architecture. According to its results, 22.106 cycles are necessary
to compute a frame on the 12-processors configuration. When this embedded system
runs at 100 MHz frequency, 220 milliseconds are necessary to achieve this compu-
tation while a maximum of 33 milliseconds is tolerated for a 30 frames per second
video sequence. This simulation thus demonstrates that even the most powerful
processor-based architecture does not meet the performance requirements.

Figure 14 illustrates the parallel overhead and the processor usage in percentage
per frame for the main tasks of the case study: DCT, Quant, and HC tasks. The
profiling of the application is done by considering the timing information provided
in the associated model. At the considered level (see Section 6.1.2), an application
is expressed as blocks of code containing synchronizations, nested loops, and calls to
the code of elementary components. The timing information allows to estimate the
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Fig. 14. Processor usage per frame for the intra part of the H.263 encoder.

duration of each of these parts according to the mapping of the application on multiple
processors. The accurate timing comes from the fact that every operation external to
the processors (e.g., read, write, idle) is synchronized with the rest of the simulation.
Then, GASPARD reports for each component the time spent to execute it on processors,
and the time spent in synchronizations (i.e., waiting for data, synchronization barriers)
between all processors. By aggregating those numbers to the wanted granularity, the
user obtains a result as illustrated in Figure 14. As shown in the depicted diagram,
the most time-consuming task is the DCT task. From one to sixteen processors in
the considered architecture, its processor usage varies from 70% to 33%. Whatever
the number of processors, the DCT task consumes much more time than the HC and
Quant tasks. This observation is compatible with other simulation results found in the
literature [Ben Atitallah et al. 2006; Jang et al. 2000; Nguyen et al. 2000] about the
H.263 encoder.

The DCT task is known to be efficiently executed with hardware accelerators. In-
deed, using such a single but high-performance computing resource, the number of
memory accesses decreases, and the number of contentions is also reduced. In the
next part, we address the design exploration by taking into account an heterogeneous
architecture that combines processors with a hardware accelerator.

8.4 Increasing Performance Using a Hardware Accelerator
In order to generate a hardware accelerator for the DCT part of the H.263 encoder, the
previous UML model is modified. The application part of this UML model remains
unchanged. The dct:DCT task is now allocated on a hardware accelerator, and the
Elementary-DCT is deployed on the DCT-VHDL IP. For this latter, the implements dependency
that links the DCT-C IP to the Elementary-DCT task in Figure 10, is simply moved from
the DCT-C to the DCT-VHDL IP. Using the transformation chain towards VHDL, the code
corresponding to the hardware accelerator is automatically generated.

8.4.1 Exploring the Design Space. The DCT part of the H.263 application is highly
regular and has large repetition spaces in its multiple hierarchical levels. Such large
repetition spaces allow us to fully exploit the existing partitioning in VHDL (i.e.,
hardware-software and parallel-sequential hardware). This results in several feasible
implementations whose performances vary with the chosen partitioning. In order to
accelerate the design space exploration, a quick but useful evaluation of the hard-
ware accelerators’ effectiveness is performed. For example the amount of consumed
hardware resources (i.e., the area cost) and the execution time (in clock cycles) can be

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 39, Publication date: November 2011.



39:30 A. Gamatié et al.

Fig. 15. The characteristics of different hardware accelerators automatically generated by GASPARD.

estimated from information contained in the RTL models. Each generated hardware
accelerator is thus characterized by an execution time and an area on the material,
necessary for its implementation. For the H.263 encoder DCT part, this leads to the
curves shown in Figure 15 where the area is expressed in terms of FPGA resources.
While these curves were obtained in a few seconds, the generation of the same result
with usual synthesis tools from a corresponding VHDL code would require several
hours. Hence, performing instantaneous estimation on the RTL models makes it
possible to accelerate the design space exploration.

Each curve corresponds to a given hardware-software partitioning, and each point
in a curve corresponds to a given sequential-parallel partitioning in the hardware ex-
ecution. While the hardware-software partitioning is specified by the user in the UML
model, the sequential-parallel hardware partitioning is automatically produced. Each
point in the figure thus corresponds to a given implementation of the hardware ac-
celerator but takes into account only the execution time of the hardware part. The
execution time of the software part is proper to each curve.

The left-most curve is associated with the mapping of the lowest hierarchical level
on the hardware accelerator: all the data parallelism is executed in software. The
design space is then reduced to a single solution and the resulting embedded system
does not benefit from hardware accelerator performances.

In the opposite, the right-most curve is associated with the mapping of the top hi-
erarchical level of the DCT onto the hardware accelerator. The overall DCT is thus
executed in hardware (the software part only deals with the management of this ac-
celerator). The performances of the different implementations of the hardware ac-
celerator increase with the number of used resources. However, this number is not
realistic compared to the resources provided by nowadays FPGAs, even for the most
time-consuming solution. Indeed, mapping the whole DCT in the hardware accelerator
implies that the overall frame is stored on it in order to be managed on one shot. Such
a configuration is thus very resource consuming. The design space is explored between
these two extreme hardware-software partitionings. This leads to the intermediate
curves.
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8.4.2 Selection of the Appropriate Implementation. The selection of the appropriate im-
plementation is driven by the constraints expressed with a maximum execution time
and/or a maximum quantity of FPGA resources. When targeting a maximum of 100 re-
sources (illustrated with the vertical line), all the solutions on the left-hand side of this
vertical line satisfy this constraint. Among these solutions, the point corresponding to
the lowest execution time denotes the most powerful implementation. The VHDL code
generated from the right implementation and only this code is synthesized with usual
synthesis tools.

8.5 Final Embedded System
GASPARD enables us to design an embedded system for an efficient execution of the
H.263 encoder application. It includes both general-purpose processors and dedicated
hardware accelerators. Such a heterogeneous architecture benefits from the comple-
mentarity of processors and hardware accelerator: the flexibility of software execution
and the effectiveness of hardware execution. Following our methodology, we explored
the design space at a high abstraction level using information resulting from the code
generated by the transformation chains.

During the exploration, the number of processors has been first modified, then a
hardware accelerator has been introduced and, finally, the most effective hardware-
software partitioning has been selected. These modifications are easily done in UML,
without the inconvenience of low-level implementations. Further configurations could
be explored, for instance by modifying the number of hardware accelerators, the task
allocation, the connexion topology in the hardware architecture, or the deployed IPs.
The ease of modifications at high abstraction level coupled with the fast evaluations
lead to a very powerful design space exploration framework.

9. DISCUSSIONS
In the current industrial practice, design space exploration for embedded systems is
very expensive to achieve. For instance, the combination of MPSoC and hardware ac-
celerator in the architecture would require two different expert teams. Our design
framework aims at carrying out uniformly all the specifications on the same system
model using MARTE. Therefore, the design space explorers do not have to deal with
the interoperability of several tools, each one being dedicated to a given purpose spec-
ification of the system.

Considering the effectiveness of GASPARD for modeling massively parallel embed-
ded systems, studies [Le Beux et al. 2008] have shown that the generated code with
GASPARD is reasonably efficient compared to a manually written code: GASPARD pro-
vides the same performances as the manual approach but with a 10% additional cost in
terms of resources. However, a very interesting point is that the automatic generation
reduces an important amount of coding time. This is particularly valuable during de-
sign space exploration since new implementations are automatically regenerated from
simple modifications in the high-level models [Ben Atitallah et al. 2007b]. Such modifi-
cations potentially concern the application functionalities, the hardware architecture,
the mapping of both, or the IP deployment.

On the other hand, the repetitive MoC of GASPARD particularly offers an efficient
and factorized high-level expression of parallelism that is inherent to massively par-
allel embedded systems performing regular computations or comprising various archi-
tectural topologies. This is an important benefit in comparison with closely related
languages such as ALPHA [Wilde 1994]. Another benefit is that the design specifica-
tion does not suffer from any scalability problem, which may happen when addressing
massively parallel systems.
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The used modeling concepts promote a separation of concerns during system design.
Different aspects are distinguished: system functionality, hardware architecture, map-
ping, and deployment on target platforms. Contrarily to most platform-based design
approaches [Sangiovanni-Vincentelli and Martin 2001], there is a clear separation be-
tween the platform-independent level of design and the deployment level at which the
designer chooses a specific implementation platform. This favors more flexibility re-
garding the selection of the suitable implementations. Through the modeling of the
H.263 encoder system, we have also shown how already defined concepts are reused
thanks to the component-oriented design adopted in our approach. This is very impor-
tant in order to meet the stringent time-to-market constraints imposed on designers.

The clear separation of concerns between the system functionality, the hardware
architecture, and their mapping is also an important benefit of GASPARD-based design
over the MPI and OpenMP programming. In the latter case, when switching from
one system architecture to another, the programmer always needs to modify the func-
tionality part in addition to the mapping, since the allocation directives are explicitly
annotated in the functionality part. Thus, the code of the functionality part is not in-
dependent from the considered hardware architectures and this significantly reduces
the reuse flexibility.

Our design framework relies on MDE techniques which reduce the development and
maintainability efforts of high-performance computing design tools. At each abstrac-
tion level, the concepts and the relations between these concepts are precisely defined.
This helps to manage the complexity of the tools by dividing the various compilation
steps and by formally defining the concepts associated with each step. It also facili-
tates the development and the extensions of the tools. The transformation chains can
benefit from two categories of extensions: fine-grain and coarse-grain. A fine-grain ex-
tension aims to integrate new concepts in metamodels, which better suit for a powerful
design of other kinds of embedded systems in GASPARD. This is successfully realized
by also introducing new rules in model transformations. A coarse-grain extension con-
sists of a modification of the design flow itself for new purposes. For instance, one
can decide to create a model transformation in order to generate Verilog code from
the RTL metamodel or to create a RTL model from another metamodel (e.g., a meta-
model used in another tool). Such flexibilities validate our point of view that advocates
the development of tools using MDE: efforts done to develop a tool are capitalized.
Therefore, thanks to MDE, GASPARD adapts easily to the changes of the fast-evolving
SoC domain. Contrarily to UML4SoC [Hasegawa 2004] or UML4SystemC [Riccobene
et al. 2005], GASPARD efficiently benefits from the preceding advantages of MDE. It
abstracts more embedded system specifications and leverages the model transforma-
tions to target multiple technologies.

10. CONCLUSIONS
In this article, we have presented the GASPARD framework for the design of massively
parallel embedded systems. It relies on our repetitive Model of Computation (MoC),
which offers a powerful and factorized representation of parallelism in both system
functionality and architecture. In GASPARD, high-level specifications of a system are
defined with the MARTE standard profile. The resulting models are automatically
refined into low-level implementations that are addressed with various technologies
for design space exploration: formal verification, simulation, and hardware synthesis.
These refinements are achieved by using Model-Driven Engineering, which enables to
clearly define intermediate abstraction levels and to reach them via transformations.

As an answer to the design challenges mentioned in the Introduction section, GAS-
PARD offers several advantages: an efficient high-level representation of parallelism, a
separation of concerns, a reusability, and a unique expressive modeling formalism. All
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these features strongly contribute to increase the productivity of designers. We believe
that GASPARD adequately responds to the needs of next-generation high-performance
embedded systems.

The whole framework is supported by user-friendly UML editors for system model-
ing and the Eclipse environment for model refinements. Thanks to the complementary
of the different transformation chains that work at different abstraction levels, a user
is able to design embedded systems that meet performance requirements as illustrated
on the case study.

Currently, the transformation chain towards SystemC only manages software exe-
cution on a processor-based architecture at the PVT abstraction level, contrarily to the
VHDL one which handles hardware execution on a hardware accelerator at the RTL
level. As future work, we plan to enhance the complementarity of both PVT and RTL
abstraction levels in GASPARD by partially merging the corresponding transformation
chains. Thus, we should be able to simulate and analyze the overall embedded system
at each of both abstraction levels. This enhancement provides additional information
on the behavior and the performance. Depending on the design requirements, a de-
signer could focus on the most relevant information for which the exploration could be
partially automated using, for instance, some heuristics.

These evolutions will be integrated in GASPARD using MDE so as to keep on taking
advantage of its features. For this purpose, some useful notions to be considered
are kinds of traceability in models transformation and composition in metamodels
extensions.
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