
Accepted Manuscript

A dynamic programming algorithm for the bilevel knapsack problem

Luce Brotcorne, Saı̈d Hanafi, Raı̈d Mansi

PII: S0167-6377(09)00006-6
DOI: 10.1016/j.orl.2009.01.007
Reference: OPERES 5222

To appear in: Operations Research Letters

Received date: 5 February 2008
Accepted date: 9 January 2009

Please cite this article as: L. Brotcorne, S. Hanafi, R. Mansi, A dynamic programming
algorithm for the bilevel knapsack problem, Operations Research Letters (2009),
doi:10.1016/j.orl.2009.01.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.orl.2009.01.007

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 1

A Dynamic Programming algorithm for the Bilevel Knapsack Problem

Luce Brotcorne, Saïd Hanafi and Raïd Mansi1

LAMIH-ROI, ISTV2, UVHC-Le Mont Houy, 59313 Valenciennes cedex9

(luce.brotcorne, said.hanafi, raid.mansi) @ univ-valenciennes.fr

Abstract. We propose an efficient dynamic programming algorithm for
solving a bilevel program where the leader controls the capacity of a
knapsack, and the follower solves the resulting knapsack problem. We
propose new recursive rules and show how to solve the problem as a
sequence of two standard knapsack problems.

Keywords. Knapsack Problem; Bilevel Programming; Dynamic Programming.

1The list of authors on page one is the arbitrary alphabetical sequence.
2 Corresponding author: Luce Brotcorne, Luce.Brotcorne@univ-valenciennes.fr, LAMIH-ROI, Université de
Valenciennes et du Hainaut Cambrésis, Le Mont Houy, F59313 Valenciennes, France

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 2

1. Introduction
Bilevel programs (see Colson et al. [2] for

a survey) allow the modeling of situations in
which a decision-maker, hereafter the leader,
optimizes his objective by taking the
followers' response to his decisions explicitly
into account. In the case of the Bilevel
Knapsack Problem (BKP), the leader
determines the knapsack’s capacity in order to
maximize his profit, while the follower faces a
0-1 knapsack problem [9] involving the
capacity set by the leader. BKP is well suited
to model the “right financing problem”, where
an individual (the leader) shares its capital
between a savings account with fixed rate of
return and a more risky investment, through
an intermediary, such as a bank or a broker.
The intermediary (the follower) i) buys shares
or bonds to maximize his revenue while
respecting the leader’s budget constraint
(knapsack constraint) ii) obtains a return from
its own investments. Similar applications
occur in the field of revenue management
[11], where a company may decide on the
number of units to sell by itself or to hand
over to an intermediary.

The BKP is a mixed integer bilevel
program introduced by Dempe and Richter
[5], who proposed for its solution a branch-
and-bound framework. In this paper, we first
extend Dempe and Richter's necessary and
sufficient conditions for the existence of an
optimal solution. Next, we propose a simple
and efficient dynamic programming algorithm
for its solution. In contrast with the approach
of Dempe and Richter, where a list of
undominated solutions is maintained, only the
objective function values for both the leader
and the follower are saved throughout
dynamic programming process. Feasibility is
implicitly controlled in the course of the
algorithm.

Under some assumptions, the BKP can be
formulated as a sequence of knapsack
problems involving binary variables, one for
each integer leader variable. This yields an
algorithm that outperforms by orders of

magnitude alternative approaches based on
branch-and-bound.

2. The Bilevel Knapsack Problem:
formulation and properties

In a knapsack of continuous capacity y,
controlled by the leader, we assign to each
item j a weight aj, a revenue cj for the
follower, and a revenue dj for the leader. The
unit knapsack capacity cost is denoted by t.
Given y, the follower selects a subset of items
that respects the capacity constraint. This
yields the bilevel program

()

()

()
{ }

∈≤

=

≤≤

+=

n

x

xy

xandyaxts

cxxfMax

bybts

tydxxyfMax

BKP

1,0 ..

 ..

,

2

1

,

where a, c and d are integer-valued and all

data a, c, d, b and b are non-negative.

Throughout the paper, we denote by

() { } []{ }yaxbbyxS n ≤×∈= :,1,0,

 the constraint region, by

() { }{ }{ }nxyaxcxArgxyP 1,0 ,:max ''' ∈≤∈=

the follower’s rational reaction set (for fixed
y), and by

()() (){ }yPxSyxyxIR ∈∈= ,,,

the inducible region over which the leader
optimizes his objective function.

Bilevel programs exist in two variants [7]. In
the optimistic case, whenever the rational
reaction set is not a singleton, the follower
implements the solution that maximizes the
objective of the leader. The corresponding
solutions is called a strong solution. In the
pessimistic case, the leader assumes that,
whenever he is facing ties, the follower selects
the solution that minimizes the leader’s
objective, yielding a weak solution.

Proposition 1 (Dempe and Richer [5]) If the
unit investment cost t is non-positive, then an
optimal solution exists for BKP.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 3

We note that, if t is positive, the BKP may fail
to have an optimal solution, as illustrated in
the following example:

()

()

{ }

∈

≤+++

+++=

≤≤

++++=

4

4321

4321
2

4321
1

,

10

 432 ..

151054

 41

5

,x

yxxxxts

xxxxx fMax

ys.t.

yxxxxy,x fMax

x

xy

where f 1 (y,x) is a linear piecewise
discontinuous function in the leader variable y
(see Figure 1). For y belonging to [1, 2[, the
follower always selects the first object with
unit capacity, and the leader's objective
function becomes f 1(y, x) = 5 + y. In the same
way, when [[42,y ∈ , f 1 (y, x) = 1+ y. Although

the leader's objective function f 1 (x, y) is
bounded from above by 7
(() 7,lim 1

2
=

→<
xyf

y
),this bound is not

achieved.
**** [[Insert figure 1 about here]] ***

The next proposition links the capacity
cost with the leader’s “revenue/weight” ratio.
Proposition 2: Let 0=b and t < 0. If

>
≤≤ j

j

nj a
d

t
1
max , () ()nxy 0,0,then ** = is an

optimal solution.
Proof:
Let (y, x) be a feasible solution for the BKP.
First, multiplying the constraint ax ≤ y by t
(t < 0) yields (ta+d) x ≥ ty + dx = f 1(y, x).
Second, since taj+dj <0 for j=1,..,n and

{ }nx 1,0∈ , it follows that (ta+d) x ≤ 0, and

thus f1(y,x) ≤ 0. Finally, since
() ()nxy 0,0, ** = is a feasible solution for the

BKP in which
 f 1(y, x) = 0. This solution is not only
feasible, but also optimal. □

If ∑
=

≥>∞
n

i
iab

1

 and t>0, then the optimal

solution x* is trivially equal to (1,..,1) and

by =* . If d and c are collinear (cd α= ,

where 0>α) and t ≥ 0, then solving the BKP
is equivalent to solving the follower’s

knapsack problem with capacity b .

Definition: A discrete bilevel knapsack
problem (BKPd) is a bilevel knapsack
problem in which the leader variable are
discrete.

Proposition 3
If t ≤ 0, then any solution (y*, x*) that is
optimal for BKPd is also optimal for BKP.
- If t > 0, and if an optimal solution exists for

BKP, then it is also optimal for BKPd.
Proof:

Case 1: According to Theorem 1, an optimal
solution, (y*, x*) exists. In addition,

() ()BKPIRBKPdIR ⊂ and, according to

Theorem 4 by [5], *y is integer.

Case 2: Straightforward from (ii) in
Proposition 1.□

It follows from Proposition 3 that solving
the BKP is equivalent to solving BKPd
whenever t is negative. If t is positive, an
optimal solution (see Proposition 1),
whenever it exists, is achieved at a

point ()*, xb where () * bPx ∈ . Note that an

optimal solution always exists for BKPd.
Thus, if a BKP has an optimal solution, it can
be obtained by solving a sequence of
knapsack problems involving binary
variables, one for each feasible value of y. The
algorithm that we propose, described in the
next section, exploits this property.

3. A dynamic programming algorithm for
BKP

Our dynamic algorithm DPBK is a two-
phase procedure that can address both the
optimistic and pessimistic cases, and has
worst-case complexity()bnθ . For simplicity,

we only discuss the optimistic case.
According to Proposition 3, solving the

BKP is equivalent to solving a follower
knapsack problem for each integer capacity

value y belonging to[]bb, . In the course of

the algorithm, the recursions concurrently take

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 4

into account both objective functions. This is
accomplished in the two phases described
below.

3. 1. Forward Phase

The forward phase is composed of two
loops: an outer loop related to steps k∈[1..n]
and an inner loop related to the integer

capacities []bby ,∈ . During this phase, two

tables are generated. The first one stores the
optimal follower values

() { }

∈≤∑∑ k
k

j=
jj

k

j=
jjk x,yxa:xc=yf 0,1max

11

2

and the second one the optimal leader values

() ()

∈∑ yPxxd=yf
k

j=
jjk :max

~

1

1 ,

at each step k and for each capacity y. To
construct these dynamic programming tables,
the recursion is performed for all values of y

between 0 and b , for each item. Note that the

leader’s function ()yf k
1~

 does not take the

knapsack capacity cost into account, and thus

() () tyyfyf kk += 11 ~
.

Forward procedure
For k = 2 to n do
For y = 0 to b do
If kay < then

 () ()yfyf kk
2

1
2

−= and () ()yfyf kk
1

1
1 ~~

−=

Otherwise
 () () ()()kkkkk cayfyfyf +−= −−

2
1

2
1

2 ,max (1)

 If () () kkkk cayfyf +−≠ −−
2

1
2

1 then

() () () ()
() () ()

+−=+−
==

−−

−−

kkkkkkk

kkk
k

cayfyfifdayf

yfyfifyf
yf

2
1

21
1

2
1

21
11

~

(2)
~

~

 End if
 If () () kkkk cayfyf +−= −−

2
1

2
1 then

 () () ()() ~
,

~
max

~ 1
1

1
1

1
kkkkk dayfyfyf +−= −− (Opt.) (3)

 () () ()() ~
,

~
min

~ 1
1

1
1

1
kkkkk dayfyfyf +−= −− (Pes.) (4)

 End if
End if

End for

In the first step (i.e., k =1), a single item x1 is
considered, and the optimal leader and

follower values for each capacity y is
computed as follows:

()

=
−=

=
 b,......,for

1,..,0for 0

11

12
1 ayc

ay
yf

()

=
−=

=
 b,......,for

1,..,0for 0~

11

11
1 ayd

ay
yf

i.e., the follower selects the first item only if
the corresponding capacity y is sufficient.

For k>1, the recursion (1) is applied to the
follower’s knapsack problem to generate the
follower’s table. The leader’s table can be
generated according to the cardinality of the
follower’s optimal solution set. If the
follower’s solution is unique, the leader’ s
objective function is given by (2). Otherwise,
the leader’s objective function is updated
according to (3) (in the optimistic case) or (4)
(in the pessimistic case).

3. 2. Backtracking Phase

The backtracking phase is used to identify
an optimal solution (y*, x*) that corresponds to
the optimal value determined in the forward
phase. The optimal capacity value *y is

generated by the nth column of the leader
table, as described in the next proposition.

Proposition 4:
Let ()** , xy be an optimal solution for BKPd.

• If 0≤t , then () **1~
tyyfn + =

() { }{ }bbbytyyfMax n ,..,1,:
~1 +∈+ .

• If 0>t , then two possibilities exist:

i. If () (){ } () btbfytyfMax nn
byb

+≤++
<≤

11 ~
1

~
, then

()*, xb is an optimal solution for the BKP,

where () ** yPx ∈ and by =* ; or

ii. BKP has no optimal solution.
Proof:
Case 1: t≤0. Follows from Proposition 2.

Case 2: t>0. ∀ [[1,0∈ε and { }1,..., −∈ bby ,

we have that ()()xyf ,1 ε+ = () εtxyf +,1 <

() txyf +,1 , (()yPx ∈). Thus, if

() () { }1,...,1, ,,, 11 −+∈∀+≥ bbbytxyfxbf ,

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 5

then by =* is an optimal solution. Otherwise,

the set of optimal solutions is empty. □

Starting from the optimal leader solution
*y , the backtracking phase applies the

dynamic programming recursion associated
with both the leader and follower problems.
The procedure for the backtracking phase is
presented below.

Backtracking procedure
*yy ←

For k = n to 2 do
If () () kkkk cayfyf +−≠ −−

2
1

2
1 then

 if () ()yfyf kk
2

1
2

−= then 0= x k
*

 if () () kkkk cayfyf +−= −
2

1
2

 then 1= x k
* and kayy −←

Else
 If () ()yfyf kk

1
1

1 ~~
−= then 0= x k

* ,

 If () () kkkk dayfyf +−= −
1

1
1 ~~

 then x k
* 1= and kayy −←

End if
End for
If () 02

1 =yf then 01 = x* else 11 = x*

If the leader faces equivalent choices, then the
variable *

kx can take either value 0 or 1.

However, the value of *x1 , which does not

depend on the recursion, is set to 0 if
() 02

1 =yf , and to 1 otherwise. If *y is not

unique, then the backtracking procedure is
applied to each value of *y to find all the

optimal solutions. The procedure is illustrated
on the following example.

Example 2:

()

()
{ }

∈≤+++

+++=

≤≤

−+++=

4
4321

4321
2

4321
1

,

10235

60 ..

2953,

,y and xxxxxs.t.

xxxxx fMax

yts

yxxxxxy fMax

x

xy

Forward phase
Table 1 contains the optimal values of the

leader)(
~1 yf k and follower)(2 yf k sub-

problems at each step of the algorithm.

For k = 1, the follower does not select the
first item until the knapsack capacity is

sufficient (i.e., the values of 2
1f and 1

1

~
f are

equal to zero for y < a1 = 5: () ()0,0
~

, 1
1

2
1 =ff).

When y ≥ 5, the follower selects item 1:

() () ()3,1,
~

, 11
1

1
2

1 == dcff .

The dynamic programming rules are
applied for k = 2, 3 and 4. More precisely, for
k = 2, the second item cannot be selected
unless the knapsack capacity is sufficient.

Therefore, when y<a2=3, () ()1
1

2
1

1
2

2
2

~
,

~
, ffff = .

When y ≥ 3, the dynamic programming RR
(1) and (2) are applied. Thus()32

2f =

() ()()10,3max 2
1

2
1 +ff = ()0,1max =1. Since

()32
2f is obtained from () 22

2
1 3 caf +− ,

()3
~1

2f = () 22
1

1 3
~

daf +− = () 50
~1

1 +f =5.

When k = 4 and y = 5, there are several
optimal solutions for the follower problem.
Indeed, () () ()()14,5max5 2

1
2

3
2

4 += fff =2. In

the optimistic case, the follower chooses the
solution that supports the leader’s objective.
Recursion (3) is applied, leading to

()5
~1

4f = () ()()44
1

4
1

4 5
~

,5
~

max daff +− =14.

**** [[Insert table 1 about here]] ***

Backtracking phase:
According to Proposition 3, an optimal

solution *y for the leader is determined using:

() (){ }tyyfMaxtyyff n
byb

nopt +=+=
≤≤

1**11 ~~
= max

{15-12, 14-10, 14-8, 10-6, 9-4, 9-2, 0-0} =7.
Thus, 1* =y and () ()1,7, 21 =optopt ff .

In this example, we only consider the line
associated with 1 ≤y (Table 1). First, 1*

4 =x ,

since the values in the cell ()*
4,1 x of the

follower table are defined by the sum of the
value in the cell ()*

3,0 x and 13 =c ,

() ()()101 2
3

2
4 += ff . In the same way, 0 *

3 =x ,

0*
2 =x and 0*

1 =x . At the end of this phase,

the strong optimal solution is defined by
() 1 and 1,0,0,0 * == *yx .

**** [[Insert table 2 about here]] ***

4. Computational Experiments
It should be clear that an algorithm

whose time requirement is twice that of a

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 6

knapsack problem should outperform
procedures based on branch-and-bound, most
likely by an order of magnitude. In order to
quantify that statement, we compared DPBK
to the algorithm proposed by Dempe and
Richter (D&R) [5], which was designed to
solve BKP, as well as the generic branch-and-
bound scheme of Bard and Moore (B&M) [1].
The mixed-integer programs involved in the
latter two algorithms were solved by the
commercial Cplex 9.1 software [3].

The knapsack problem instances were
randomly produced using the generator
proposed by Martello et al. [8], with varying
degrees of correlation between the coefficients
of the problem. Input data for the leader (d
and t) were randomly generated according to a
uniform distribution over the interval [1,
Max], with Max fixed at either 100 or 1000.
The results, displayed in Tables 3 and 4,
support our previous claims concerning the
efficiency of the method.

5. Conclusion

We close this section by mentioning a
potential drawback of the DPKB algorithm,
namely the memory requirement for instances
involving large Max values. We believe that
this difficulty could be sidestepped by
resorting to sparse dynamic programming
techniques [9].

Acknowledgments : This research was
supported by the International Campus on
Safety and Intermodality in Transportation,
the Nord-Pas-de-Calais Region, the European
Community, the Regional Delegation for
Research and Technology, the Ministry of
Higher Education and Research, and the

National Center for Scientific Research. The
authors are grateful to an anonymous referee
for his constructive comments.

Bibliography

[1] J.F. Bard, J.T. Moore, An Algorithm for
the Discrete Bilevel Programming
Problem, Naval Research Logistics 39
(1992) 419-435.

[2] B. Colson, P. Marcotte, G. Savard, Bilevel
Programming, A survey, 4OR 3 (2005)
87-107.

[3] CPLEX, Using the cplex callable library
and cplex mixed integer programming
(2006).

[4] S. Dempe, Foundation of Bilevel
Programming, Kluwer Academic
Publishers, 2002.

[5] S. Dempe, K. Richter, Bilevel
Programming with Knapsack Constraint,
Central European Newspaper of
Operations Research 8 (2000) 93-107.

[7] P. Loridan, J. Morgan, Weak Via Strong
Stackelberg Problem: New Results,
Journal of Global Optimization 8 (1996),
263-287.

[8] S. Martello, D. Pisinger, P. Toth, Dynamic
Programming and Strong Bounds for the
0–1Knapsack Problem, Management
Science 45 (1999) 414–424.

[9] S. Martello, P. Toth, Knapsack Problems
Algorithms and Computer Implemen-
tations, John Wiley and Sons, 1990.

[11] K. T. Talluri, G. J. Van Ryzin, Kluwer
Academic Publishers, 2005.

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 2

Figure 1: No optimal solution for BKP1

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 3

Table 1: Values of () () and
~ 21 yfyf nn for BKP2

y k x1 x2 x3 x4

 2
1f 1

1

~
f 2

2f 1
2

~
f 2

3f 1
3

~
f 2

4f 1
4

~
f

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 9

2 0 0 0 0 1 1 1 9

3 0 0 1 5 1 5 2 10

4 0 0 1 5 1 5 2 14

5 1 3 1 5 2 6 2 14

6 1 3 1 5 2 6 3 15

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 4

Table 2: the backtracking phase for example 2

y k x1 x2 x3 x4

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 9

AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 5

