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Abstract. We propose an efficient dynamic programming algorithm for 
solving a bilevel program where the leader controls the capacity of a 
knapsack, and the follower solves the resulting knapsack problem. We 
propose new recursive rules and show how to solve the problem as a 
sequence of two standard knapsack problems.  
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1. Introduction  
Bilevel programs (see Colson et al. [2] for 

a survey) allow the modeling of situations in 
which a decision-maker, hereafter the leader, 
optimizes his objective by taking the 
followers' response to his decisions explicitly 
into account. In the case of the Bilevel 
Knapsack Problem (BKP), the leader 
determines the knapsack’s capacity in order to 
maximize his profit, while the follower faces a 
0-1 knapsack problem [9] involving the 
capacity set by the leader. BKP is well suited 
to model the “right financing problem”, where 
an individual (the leader) shares its capital 
between a savings account with fixed rate of 
return and a more risky investment, through 
an intermediary, such as a bank or a broker. 
The intermediary (the follower) i) buys shares 
or bonds to maximize his revenue while 
respecting the leader’s budget constraint 
(knapsack constraint) ii) obtains a return from 
its own investments. Similar applications 
occur in the field of revenue management 
[11], where a company may decide on the 
number of units to sell by itself or to hand 
over to an intermediary. 

The BKP is a mixed integer bilevel 
program introduced by Dempe and Richter 
[5], who proposed for its solution a branch-
and-bound framework. In this paper, we first 
extend Dempe and Richter's necessary and 
sufficient conditions for the existence of an 
optimal solution. Next, we propose a simple 
and efficient dynamic programming algorithm 
for its solution. In contrast with the approach 
of Dempe and Richter, where a list of 
undominated solutions is maintained, only the 
objective function values for both the leader 
and the follower are saved throughout 
dynamic programming process. Feasibility is 
implicitly controlled in the course of the 
algorithm.   

Under some assumptions, the BKP can be 
formulated as a sequence of knapsack 
problems involving binary variables, one for 
each integer leader variable. This yields an 
algorithm that outperforms by orders of 

magnitude alternative approaches based on 
branch-and-bound.  
 
2. The Bilevel Knapsack Problem: 
formulation and properties 

In a knapsack of continuous capacity y, 
controlled by the leader, we assign to each 
item j a weight aj, a revenue cj for the 
follower, and a revenue dj for the leader. The 
unit knapsack capacity cost is denoted by t. 
Given y, the follower selects a subset of items 
that respects the capacity constraint. This 
yields the bilevel program 
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where a, c and d are integer-valued and all 

data a, c, d, b  and b  are non-negative. 

Throughout the paper, we denote by 

( ) { } [ ]{ }yaxbbyxS n ≤×∈= :,1,0,   

 the constraint region, by 

( ) { }{ }{ }nxyaxcxArgxyP 1,0 ,:max ''' ∈≤∈=  

the follower’s rational reaction set (for fixed 
y), and by 

( )( ) ( ){ }yPxSyxyxIR ∈∈= ,,,   

the inducible region over which the leader 
optimizes his objective function. 
 
Bilevel programs exist in two variants [7]. In 
the optimistic case, whenever the rational 
reaction set is not a singleton, the follower 
implements the solution that maximizes the 
objective of the leader. The corresponding 
solutions is called a strong solution. In the 
pessimistic case, the leader assumes that, 
whenever he is facing ties, the follower selects 
the solution that minimizes the leader’s 
objective, yielding a weak solution. 
 
Proposition 1 (Dempe and Richer [5]) If the 
unit investment cost t is non-positive, then an 
optimal solution exists for BKP.  
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We note that, if t is positive, the BKP may fail 
to have an optimal solution, as illustrated in 
the following example: 
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where f 1 (y,x) is a linear piecewise 
discontinuous function in the leader variable y 
(see Figure 1). For y belonging to [1, 2[, the 
follower always selects the first object with 
unit capacity, and the leader's objective 
function becomes f 1(y, x) = 5 + y. In the same 
way, when [ [42,y ∈ , f 1 (y, x) = 1+ y. Although 

the leader's objective function f 1 (x, y) is 
bounded from above by 7 
( ( ) 7,lim 1

2
=

→<
xyf

y
),this bound is not 

achieved. 
**** [[ Insert figure 1 about here ]] *** 

The next proposition links the capacity 
cost with the leader’s  “revenue/weight” ratio. 
Proposition 2: Let 0=b  and t < 0. If 








>
≤≤ j
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nj a
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t
1
max , ( ) ( )nxy 0,0,then ** =  is an 

optimal solution. 
Proof: 
Let (y, x) be a feasible solution for the BKP. 
First, multiplying the constraint ax ≤ y by t  
(t < 0) yields (ta+d) x ≥ ty + dx = f 1(y, x). 
Second, since taj+dj <0 for j=1,..,n and 

{ }nx 1,0∈ , it follows that (ta+d) x ≤ 0, and 

thus f1(y,x) ≤ 0. Finally, since 
( ) ( )nxy 0,0, ** =  is a feasible solution for the 

BKP in which 
 f 1(y, x) = 0. This solution is not only 
feasible, but also optimal. □ 

If ∑
=

≥>∞
n

i
iab

1

 and t>0, then the optimal 

solution x* is trivially equal to (1,..,1) and 

by =* . If d and c are collinear ( cd  α= , 

where 0>α ) and t ≥ 0, then solving the BKP 
is equivalent to solving the follower’s 

knapsack problem with capacity b .  
 
Definition: A discrete bilevel knapsack 
problem (BKPd) is a bilevel knapsack 
problem in which the leader variable are 
discrete. 
 
Proposition 3 
If t ≤ 0, then any solution (y*, x*) that is 
optimal for BKPd is also optimal for BKP. 
- If t > 0, and if an optimal solution exists for 

BKP, then it is also optimal for BKPd. 
Proof: 

Case 1: According to Theorem 1, an optimal 
solution, (y*, x*) exists. In addition, 

( ) ( )BKPIRBKPdIR ⊂  and, according to 

Theorem 4 by [5], *y  is integer. 

Case 2: Straightforward from (ii) in 
Proposition 1.□ 

It follows from Proposition 3 that solving 
the BKP is equivalent to solving BKPd 
whenever t is negative. If t is positive, an 
optimal solution (see Proposition 1), 
whenever it exists, is achieved at a 

point ( )*, xb  where ( )  * bPx ∈ . Note that an 

optimal solution always exists for BKPd. 
Thus, if a BKP has an optimal solution, it can 
be obtained by solving a sequence of 
knapsack problems involving binary 
variables, one for each feasible value of y. The 
algorithm that we propose, described in the 
next section, exploits this property. 

3. A dynamic programming algorithm for 
BKP 

Our dynamic algorithm DPBK is a two-
phase procedure that can address both the 
optimistic and pessimistic cases, and has 
worst-case complexity( )bnθ . For simplicity, 

we only discuss the optimistic case.  
According to Proposition 3, solving the 

BKP is equivalent to solving a follower 
knapsack problem for each integer capacity 

value y belonging to[ ]bb, . In the course of 

the algorithm, the recursions concurrently take 
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into account both objective functions. This is 
accomplished in the two phases described 
below. 

 
3. 1. Forward Phase  

The forward phase is composed of two 
loops: an outer loop related to steps k∈[1..n] 
and an inner loop related to the integer 

capacities [ ]bby ,∈ . During this phase, two 

tables are generated. The first one stores the 
optimal follower values  

( ) { }








∈≤∑∑ k
k

j=
jj

k

j=
jjk x,yxa:xc=yf  0,1max

11

2

and the second one the optimal leader values 

( ) ( )








∈∑ yPxxd=yf
k

j=
jjk  :max

~

1

1 , 

at each step k and for each capacity y. To 
construct these dynamic programming tables, 
the recursion is performed for all values of y 

between 0 and b ,  for each item. Note that the 

leader’s function ( )yf k
1~

 does not take the 

knapsack capacity cost into account, and thus 

( ) ( ) tyyfyf kk += 11 ~
. 

Forward procedure 
For k = 2 to n do  
For  y = 0 to b  do 
If kay <  then 

   ( ) ( )yfyf kk
2

1
2

−=  and ( ) ( )yfyf kk
1

1
1 ~~

−=  

Otherwise 
    ( ) ( ) ( )( )kkkkk cayfyfyf +−= −−

2
1

2
1

2 ,max                  (1) 

    If ( ) ( ) kkkk cayfyf +−≠ −−
2

1
2

1  then  
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( ) ( ) ( )
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    End if 
     If ( ) ( ) kkkk cayfyf +−= −−

2
1

2
1  then 

    ( ) ( ) ( )( ) ~
,

~
max

~ 1
1

1
1

1
kkkkk dayfyfyf +−= −−  (Opt.)      (3) 

    ( ) ( ) ( )( ) ~
,

~
min

~ 1
1

1
1

1
kkkkk dayfyfyf +−= −−  (Pes.)      (4) 

      End if 
End if 

End for 

In the first step (i.e., k =1), a single item x1 is 
considered, and the optimal leader and 

follower values for each capacity y is 
computed as follows: 

( )




=
−=

=
 b,......,for       
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11

12
1 ayc

ay
yf
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11

11
1 ayd
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i.e., the follower selects the first item only if 
the corresponding capacity y is sufficient.  
 
For k>1, the recursion (1) is applied to the 
follower’s knapsack problem to generate the 
follower’s table. The leader’s table can be 
generated according to the cardinality of the 
follower’s optimal solution set. If the 
follower’s solution is unique, the leader’ s 
objective function is given by (2). Otherwise, 
the leader’s objective function is updated 
according to (3) (in the optimistic case) or (4) 
(in the pessimistic case).  
 
3. 2. Backtracking Phase 

The backtracking phase is used to identify 
an optimal solution (y*, x*) that corresponds to 
the optimal value determined in the forward 
phase. The optimal capacity value *y  is 

generated by the nth column of the leader 
table, as described in the next proposition. 

 
Proposition 4: 
Let ( )** , xy  be an optimal solution for BKPd. 

• If 0≤t , then ( ) **1~
tyyfn + = 

( ) { }{ }bbbytyyfMax n ,..,1,:
~1 +∈+ . 

• If 0>t , then two possibilities exist: 

i. If ( ) ( ){ } ( ) btbfytyfMax nn
byb

+≤++
<≤

11 ~
1

~
, then 

( )*, xb  is an optimal solution for the BKP, 

where ( ) ** yPx ∈  and by =* ; or 

ii.  BKP has no optimal solution. 
Proof:  
Case 1: t≤0. Follows from Proposition 2. 

Case 2: t>0. ∀ [ [1,0∈ε  and { }1,..., −∈ bby , 

we have that ( )( )xyf ,1 ε+  = ( ) εtxyf +,1  < 

( ) txyf +,1 , ( ( )yPx ∈ ). Thus, if 

( ) ( ) { }1,...,1,   ,,, 11 −+∈∀+≥ bbbytxyfxbf , 
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then by =*  is an optimal solution. Otherwise, 

the set of optimal solutions is empty. □ 

Starting from the optimal leader solution 
*y , the backtracking phase applies the 

dynamic programming recursion associated 
with both the leader and follower problems. 
The procedure for the backtracking phase is 
presented below. 

Backtracking procedure 
*yy ←  

For  k = n to 2 do  
If ( ) ( ) kkkk cayfyf +−≠ −−

2
1

2
1  then 

 if ( ) ( )yfyf kk
2

1
2

−=  then 0= x k
*  

 if ( ) ( ) kkkk cayfyf +−= −
2

1
2  

              then 1= x k
*  and kayy −←  

Else 
 If ( ) ( )yfyf kk

1
1

1 ~~
−=  then 0= x k

* , 

 If ( ) ( ) kkkk dayfyf +−= −
1

1
1 ~~

 

             then   x k
* 1=  and kayy −←  

End if 
End for 
If ( ) 02

1 =yf  then 01 = x*  else 11 = x*  

If the leader faces equivalent choices, then the 
variable *

kx  can take either value 0 or 1. 

However, the value of *x1 , which does not 

depend on the recursion, is set to 0 if 
( ) 02

1 =yf , and to 1 otherwise. If *y  is not 

unique, then the backtracking procedure is 
applied to each value of *y  to find all the 

optimal solutions. The procedure is illustrated 
on the following example. 

Example 2: 

( )
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Forward phase 
Table 1 contains the optimal values of the 

leader )(
~1 yf k  and follower )(2 yf k  sub-

problems at each step of the algorithm. 

For k = 1, the follower does not select the 
first item until the knapsack capacity is 

sufficient (i.e., the values of 2
1f  and 1

1

~
f  are 

equal to zero for y < a1 = 5: ( ) ( )0,0
~

, 1
1

2
1 =ff ). 

When y ≥ 5, the follower selects item 1: 

( ) ( ) ( )3,1,
~

, 11
1

1
2

1 == dcff . 

The dynamic programming rules are 
applied for k = 2, 3 and 4. More precisely, for 
k = 2, the second item cannot be selected 
unless the knapsack capacity is sufficient. 

Therefore, when y<a2=3, ( ) ( )1
1

2
1

1
2

2
2

~
,

~
, ffff = . 

When y ≥ 3, the dynamic programming RR 
(1) and (2) are applied. Thus( )32

2f = 

( ) ( )( )10,3max 2
1

2
1 +ff = ( )0,1max =1. Since 

( )32
2f  is obtained from ( ) 22

2
1 3 caf +− , 

( )3
~1

2f = ( ) 22
1

1 3
~

daf +− = ( ) 50
~1

1 +f =5. 

When k = 4 and y = 5, there are several 
optimal solutions for the follower problem. 
Indeed, ( ) ( ) ( )( )14,5max5 2

1
2

3
2

4 += fff =2. In 

the optimistic case, the follower chooses the 
solution that supports the leader’s objective. 
Recursion (3) is applied, leading to  

( )5
~1

4f  = ( ) ( )( )44
1

4
1

4 5
~

,5
~

max daff +−  =14. 

**** [[ Insert table 1 about here ]] *** 

Backtracking phase: 
According to Proposition 3, an optimal 

solution *y  for the leader is determined using: 

( ) ( ){ }tyyfMaxtyyff n
byb

nopt +=+=
≤≤

1**11 ~~
= max 

{15-12, 14-10, 14-8, 10-6, 9-4, 9-2, 0-0} =7. 
Thus, 1* =y  and ( ) ( )1,7, 21 =optopt ff . 

In this example, we only consider the line 
associated with 1 ≤y  (Table 1). First, 1*

4 =x , 

since the values in the cell ( )*
4,1 x  of the 

follower table are defined by the sum of the 
value in the cell ( )*

3,0 x  and 13 =c , 

( ) ( )( )101 2
3

2
4 += ff . In the same way, 0 *

3 =x , 

0*
2 =x  and 0*

1 =x . At the end of this phase, 

the strong optimal solution is defined by 
( ) 1  and  1,0,0,0 * == *yx . 

**** [[ Insert table 2 about here ]] *** 

4. Computational Experiments 
It should be clear that an algorithm 

whose time requirement is twice that of a 



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 6 

knapsack problem should outperform 
procedures based on branch-and-bound, most 
likely by an order of magnitude. In order to 
quantify that statement, we compared DPBK 
to the algorithm proposed by Dempe and 
Richter (D&R) [5], which was designed to 
solve BKP, as well as the generic branch-and-
bound scheme of Bard and Moore (B&M) [1]. 
The mixed-integer programs involved in the 
latter two algorithms were solved by the 
commercial Cplex 9.1 software [3].  

The knapsack problem instances were 
randomly produced using the generator 
proposed by Martello et al. [8], with varying 
degrees of correlation between the coefficients 
of the problem. Input data for the leader (d 
and t) were randomly generated according to a 
uniform distribution over the interval [1, 
Max], with Max fixed at either 100 or 1000. 
The results, displayed in Tables 3 and 4, 
support our previous claims concerning the 
efficiency of the method. 

5. Conclusion 

We close this section by mentioning a 
potential drawback of the DPKB algorithm, 
namely the memory requirement for instances 
involving large Max values. We believe that 
this difficulty could be sidestepped by 
resorting to sparse dynamic programming 
techniques [9]. 
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Figure 1: No optimal solution for BKP1 
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Table 1: Values of ( ) ( )  and 
~ 21 yfyf nn for BKP2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y               k x1 x2 x3 x4 

 2
1f   1

1

~
f  2

2f  1
2

~
f  2

3f  1
3

~
f    2

4f  1
4

~
f  

0  0  0  0  0  0  0  0  0  

1  0  0  0  0  0  0  1  9  

2  0  0  0  0  1  1  1  9  

3  0  0  1  5  1  5  2  10  

4  0  0  1  5  1  5  2  14  

5  1  3  1  5  2  6  2  14  

6  1  3  1  5  2  6  3  15  
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Table 2: the backtracking phase for example 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y                   k x1 x2 x3 x4 

0  0  0  0  0  0  0  0  0  

1  0  0  0  0  0  0  1  9  
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