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Abstract

Anticipation is a general concept used and applied in various domains. Many studies in the field of artificial
intelligence have investigated the capacity for anticipation. In this article, we focus on the use of anticipation in multi-
agent coordination, particularly preventive anticipation which consists of anticipating undesirable future situations
in order to avoid them. We propose to use constraint processing to formalize preventive anticipation in the context
of multi-agent coordination. The resulting algorithm allows any action that may induce an undesirable future state
to be detected upstream of any multi-agent coordination process. Our proposed method is instantiated in a road
traffic simulation tool. For the specific question of simulating traffic at road junctions, our results show that taking
anticipation into account allows globally realistic behaviors to be reproduced without provoking gridlock between the
simulated vehicles.
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1 Introduction

Coordination is one of the possible interactions that can occur in a multi-agent system. Such interaction becomes necessary
when agent activities are interdependent [24] and is involved in all local processes that deal with these interdependencies
in order to reach a global state or achieve a goal.

Many definitions of coordination have been introduced in the literature [18, 28, 45], each for a particular context and
highlighting a specific point of view.

• Coordination can be defined as a series of meta actions, which allow agents to interact with one another. Thus, for
Malone, coordination is the set of all the extra activities that must be done in a multi-agent system in order to have
interaction between agents [28].

• Coordination has also been compared to a search process performed in distributed problem-solving [15, 50]. In this
specific context, coordination can refer to the decomposition into sub-problems, the resolution of sub-problems, the
mechanisms for transmitting intermediate results, or the diffusion of the solutions to all sub-problems, to name but
a few examples.

• Coordination is also a way to solve different types of inter-agent conflicts, including resource conflicts (between agents
who must share a common resource at a same time) or conflicts of interest (between agents who have divergent goals,
making their actions, in extreme cases, antagonistic).

• Coordination has also been defined as “the process by which an agent reasons about his/her local actions and the
(anticipated) actions of others to try and ensure the community acts in a coherent manner” [20]. Jennings points
out that this reasoning process should not only take the current states of the system into account, but also its future
states.

1cole des Mines de Douai, Dept IA, 941 rue Charles Bourseul, BP 838, 59508 Douai Cedex, France
email: adoniec@ensm-douai.fr

2LAMIH UMR CNRS 8530, University of Valenciennes et du Hainaut-Cambrésis, 59313 Valenciennes Cedex 9, France
email: {Rene.Mandiau, Sylvain.Piechowiak}@univ-valenciennes.fr

3INRETS, 58 Bd Lefebvre, 75732 Paris Cedex 15, France
email: espie@inrets.fr

1



This paper focuses on the use of anticipation in the context of multi-agent coordination. The next section presents
some general information about anticipation and goes on to present a variety of studies dealing both with anticipation
generally and with anticipation in a multi-agent context specifically. The third section introduces our model of preventive
anticipation, which is based on constraint processing. This model provides a generic algorithm to perform preventive
anticipation tasks in the context of multi-agent coordination. The last section provides a concrete example. Our model is
instantiated in a road traffic simulation tool that works to simulate traffic at a road junction.

2 Anticipation in a multi-agent system

2.1 Anticipation: some generalities

The common-sense definition of anticipation usually refers to a specific cognitive capacity that allows people to predict,
represent and reason about future states, based on the current situation.

The word ”anticipation” has many definitions due to its use in different contexts in a wide variety of domains: for
example, biology, epistemology, psychology, robotics, and computer science. Riegler has introduced several types of
anticipation [35]:

• inborn anticipation, rooted in phylogenetic schemas (e.g., schemas resulting from species evolution);

• emotional anticipation, guided by individual instinct;

• intelligent anticipation, based on a cognitive capacity to deal with future events.

In artificial systems, anticipation is usually considered to be an intentional and reasoned act [16]. This tends to eliminate
inborn and emotional anticipation from the context of multi-agent systems.

Rosen defined anticipation in artificial systems [37]: ”An anticipatory system is a system containing a predictive model
of itself and/or of its environment that allows it to change current state at an instant in accord with the model predictions
pertaining to a later instant”. This definition describes anticipation as the particular capacity of a system to adapt, or
fine-tune, its current state in terms of a vision of the future. Rosen also distinguished between anticipation and prediction,
opining that anticipation implies more complex mechanisms than the simple ability to predict the future. Rosen’s approach
is anchored in the construction of a mental representation. The author postulated that anticipation results from a modeling
relation that permits a switch from the real system to its predictive model.

Given the variety in the definitions of anticipation, formalizing this notion in a mathematical and/or computer model
is a real challenge. In the following sub-section, we present some relevant works which have attempted to formalize
anticipation.

2.2 Different levels of anticipation

In artificial intelligence, many levels of anticipation have been defined. Butz and al [6] have identified four classes
of anticipation: implicit anticipation, payoff anticipation, sensory anticipation, and explicit anticipation. According to
Rosen’s previously presented definition, “implicit anticipation” is not a type of anticipation and the three last classes seem
to characterize the notion of anticipation.

2.2.1 Implicit anticipation

Implicit anticipation refers to pre-programmed behaviors that allow future goals to be achieved. No predictions for the
future, which could modify the current behavior, are made. Picard and Gleizes provide an example of implicit anticipation,
which they call reactive anticipation [33]. They apply a set of rules specifying accurate behaviors for particular situations in
a context of cooperation between autonomous robots; their reactive anticipation allows deadlock situations to be avoided.

2.2.2 Payoff anticipation

Payoff anticipation is found in systems whose decision-making process is based on predicting possible payoffs. Such
systems try to evaluate the benefits expected to be accrued from each possible action, using a maximization function as
a decision-making criterion. Any coordination mechanism based on maximizing payoffs can be included in this class of
anticipation [8, 38].

Payoff anticipation is often employed in direct reinforcement learning. Marshal and al used anticipation to generate a
reinforcement signal during robot learning and training procedures [30]. In their approach, errors are predicted and error
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reduction techniques are learned simultaneously. Other authors (e.g. [5]) have suggested that anticipation speeds up the
learning process for some types of robots.

The ACS (Anticipatory Classifier System) model applies another form of payoff anticipation. A classic classifier system
is a set of rules defined as a 3-uple (condition,action,strength). To this 3-uple, Stolzmann [42] added a fourth element:
effect. This new component describes the expected changes that will be caused by applying the rule whereas strength
combines both the payoff of the action and the quality of the anticipation. The more the classifier’s expected effects are
truly observed, the higher the quality of the anticipation.

2.2.3 Sensory anticipation

With sensory anticipation, the predictions have a real influence on behavior because they can modify the way the system
perceives its environment. The decision-making is guided only by the current system state and the former actions of the
system. Castelfranchi and al [7] have recently presented an architecture for cautious agents that has some anticipatory
features. These agents tend to modify perceptions and behavior in relation to occurring events. The authors distinguish
between positive and negative events, which are used to build transitions between four behaviors: Caution, Excitement,
Curiosity, and Boredom [34].

2.2.4 Explicit anticipation

Explicit anticipation is found in systems that build an explicit representation (partial or total) of the future states. In
this type of anticipation, the analysis of the predictions influences perceptions and decision-making simultaneously. For
instance, Laird [23] provides a detailled explanation of how to add anticipation to a bot1 in a video game environment.
His approach is similar to those used in expert systems with prediction abilities. The bot tries to predict the behavior of
players by applying its own knowledge and strategies to its observations of the environment. A set of production rules
allows the bot to forecast the future until it obtains an interesting prediction. The reasoning is adapted from the forward
chaining principle.

Explicit anticipation seems to us to be the most interesting class of anticipation for multi-agent coordination since it
has a direct influence on decision-making. In the following sub-section, we focus on an architecture for anticipatory agents
proposed by Davidsson [9], which clearly falls into this last class.

2.3 Architecture for anticipatory agents

Davidsson has proposed an architecture for implementing anticipatory agents [9], which uses a special kind of explicit
anticipation, called preventive anticipation.

Preventive anticipation was first described by Rosen in 1974 [36]. Consider a system S and its model M . To make
predictions, M is simulated faster than S. But, how should these predictions be used to modify the behavior of S? In
the general case, answering this question is quite difficult. In the preventive case, Rosen proposes partitioning ”the state
space of S (and hence of M) [...] into regions corresponding to desirable and undesirable states. As long as the trajectory
in M remains in a desirable region, no action is taken by M”. In other words, preventive anticipation is viewed as the
process of trying to keep the system in a desirable state.

Davidsson’s architecture for preventive anticipation has two layers: an anticipatory layer and a reactive layer. These
two layers are run in parallel as two concurrent processes. The anticipatory layer uses a model of the environment as
well as an “anticipator”, which allow the environment to be simulated rapidly and thus generate predictions. When the
anticipator detects an undesirable state, the anticipatory layer acts on the reactive layer to modify the agent behavior.

The preventive anticipation used by Davidsson is a simple kind of anticipation, which is well adapted to multi-agent
coordination. For this reason, we use it in our model of anticipation.

2.4 Issues

To summarize, the concept of anticipation in a multi-agent context involves a two-phase reasoning process performed by
an agent. In the first phase, the agent predicts the future state of the multi-agent system, and in the second, this agent
analyzes these predictions in order to change its current behavior.

Few of the studies previously presented have tried to formalize anticipation. Only Davidsson’s work has tried to
introduce a framework for anticipatory agents. But some aspects remain unclear. For example, how can desirable and
undesirable states be described?, and how can they be brought about using predictions? In this paper, we link anticipation

1a virtual opponent in first-person shooter (FPS) computer games.

3



and coordination by proposing the use of preventive anticipation prior to execute any coordination mechanism in order to
eliminate non-relevant actions. Our formalization of anticipation is simple, combining prediction generation and prediction
analysis in a single model. It uses a constraint processing approach that considers undesirable states as inconsistencies or
particular domains in a constraint network. In the next section, we present our model in detail.

3 Modelling preventive anticipation

The use of a constraint processing approach to model preventive anticipation is justified both by the simplicity of this
formalism for describing inter-agent relationships, and by the abundance of algorithms in the literature for solving,
simplifying or reducing constraint networks [10, 22, 46]. Our model assumes that a multi-agent system is an ordinary
causal system, which presupposes that all the system states can be explained as the consequences of actions executed by
system agents or the consequences of past states.

3.1 Effects of action

To define the notion of effect in our chosen context, we consider the following conditions. Given a multi-agent system made
up of a set of agents A = {a1, a2, ..., an} defined in an environment E , Iai

E
refers to the set of all information perceived by

an agent ai ∈ A. Iai

E
includes:

• a subset of A: Iai

A
that refers to the agents perceived in the environment, and

• a set Iai

P
= {pa1

, pa2
, ..., paj

, ...} where each paj
is a set of properties describing each aj ∈ Iai

A
.

Let us consider R = {r(ai, aj)|(ai, aj) ∈ A
2} as a set of binary relationships existing between the agents in A. The

set of knowledge about R for an agent am can be defined as C+am
∪ C∗am

; where C+am
= {r(ax, ay)|(x = m) ∨ (y = m)} and

C∗am
= {r∗(ax, ay)|x ∈ A − {am} ∧ y ∈ A − {am}} with r∗(ax, ay) refering to the relationships that can be deduced or

calculated by am.
In other words, we suppose that an agent has knowledge about all the relationships in which it is involved and is able

to deduce certain other relationships when there is enough information to do so. Thus, consequences of actions can be
expressed as an addition or a deletion of a relationship between agents. Based on this assumption, we define direct effects
as the consequences of an action performed by an agent am for the agents of {an ∈ A|∃r(an, am) ∈ C+am

}, and indirect
effects as the consequences of an action performed by am for the agents of the set {an ∈ A|∃r(an, ay) ∈ C∗am

}.
In order to accurately predict these effects and to test whether they imply undesirable states, an agent needs a mental

representation of the environment, including the known relationships between the agents and the states of these agents.
Describing the mental representation of an anticipatory agent as a constraint network seems to us to be an original and
relevant approach.

3.2 Mental representation as a constraint network

A constraint network is a set of variables with associated domains and a set of constraints. “Variables are object or item
that can take a variety of values. The set of possible values for a given variable is called domain. [...] Constraints are
rules that impose a limitation on the values that a variable may be assigned” [10]. We use this paradigm to introduce the
mental representation of an anticipatory agent.

The mental representation Mai
of an agent ai consists of:

• a set of agents: A = {a1, a2, ..., an} ⊂ A,

• a set R = {rai
(ak, al)/ak, al ∈ A} ⊂ R where each rai

(ak, al) is a binary relationship (perceived by ai) between two
agents ak and al ∈ A, and

• a set D = {dom(a1), dom(a2), ..., dom(an)} where each dom(aj) expresses the state of the agent aj .

¿From such a representation, each agent is able to construct a simplified model of what it perceives in its environment.
For example, temporal or spatial domains can be used to express the states of the agents perceived. The relationships used
in this mental representation can be mapped as binary constraints, which can be used to restrict the different domains.
The undesirable states are either specific domains, or inconsistencies. In constraint networks, an inconsistency implies the
impossibility of assigning a value to each variable. Since effects of an action are considered to be additions to or deletions
of the relationships in R, undesirable states can be inferred by using constraint processing techniques.
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3.3 Inference of undesirable states

As mentioned above, a “direct effect” is considered to be a modification of the set R by adding or deleting one (or many)
relationship(s). An indirect effect is the propagation of a direct effect in a given mental representation M . Because we use
the constraint programming paradigm, this propagation is based on consistency. Since the relationships between agents
are assumed to be binary, we can use arc-consistency, which, in constraint programming, ensures that for all values of
dom(ax), there is a value of dom(ay) such that the constraint between ax and ay is satisfied. To infer undesirable states,
classic algorithms like AC-3 [26] can be used and adapted for the specific application.

To infer the undesirable states, anticipatory agents must: (i) construct a mental representation of their perceived
environment, (ii) compute the direct effects of the actions that must be anticipated, (iii) add these direct effects to the
mental representation, and (iv) propagate these direct effects to obtain indirect effects.

3.4 Algorithm

Based on the ideas presented above, we developed a generic algorithm for preventive anticipation. To use the algorithm,
the anticipatory agents must construct a mental representation and use this representation to anticipate and prevent unde-
sirable situations 2. In fact, the agents draw on the information about their environment to construct this representation.
Three types of information are relevant: the presence of other agents in the environment, the states of these agents, and
the relationships between them.

The method for determining the states of the agents present in the environment and relationships between them
depends on the application. For example, in the case of situated agents, simply knowing the agent positions and directions
can be sufficient to establish some relationships (e.g., obstructing, prey-predator). In other cases, it is sometimes useful
to know more about the agents perceived: their goals and team or coalition memberships, for example.

To keep the algorithm generic, we suppose that the environmental information is analyzed by an external function,
called relationsOf. This function exploits 3 parameters: aj is an agent perceived by the anticipatory agent ai; Iai

A
is the set

of all other agents perceived by ai, and Iai

P
is the set of properties describing these agents Iai

P
. The output of relationsOf

is a set of binary relationships shared by ai and certain other agents in Iai

A
.

The procedure constructRepresentation (figure 1) uses two parameters to allow an anticipatory agent ai to build its
mental representation Mai

(A,R,D):

• the set Iai

E
, and

• the initial value initStates, used to instantiate the domains of D.

This initial value must correspond to the set of all possible states that an agent can take on.

procedure constructRepresentation
in: Iai

E
(Iai

A
, Iai

P
), initStates

out: Mai
(A,R,D)

1: begin

2: for each aj ∈ Iai

A
do

3: dom(aj)← initStates
4: A← A ∪ aj

5: D ← D ∪ dom(aj)
6: R← R ∪ relationOf(aj , I

ai

A
, Iai

P
)

7: end

Figure 1: The constructRepresentation procedure

The parameters of the anticipate procedure are the following: the list of actions LA that an agent ai must anticipate,
the perception Iai

E
, and a list of undesirable states LS. The list LA can include not only the actions of ai but also the

known actions of other agents in Iai

A
. The definition of LA also depends on the application.

The way that ai selects the undesirable states in LS reveals two kinds of behavior. If the states in LS only concern the
anticipatory agent ai, the behavior could be described as individualist or selfish because it would reveal that ai does not

2For the application described in section 5, each agent triggers this algorithm at each iteration of a simulation, if the agent enters an
intersection.
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care if it harms other agents. If the undesirable states concern both ai and some of the other agents in Iai

A
, the behavior

would be more collective.
The aim of the anticipate procedure (figure 3) is to delete from the list LA those actions that will very likely induce

one of the undesirable states in the list LS. The first instruction of the procedure prunes the values in the Mai
domains

by calling a constraint propagation function. Because propagation techniques can differ depending on the nature of the
domain (e.g., temporal, spatial) and the semantic associated to the relationship, an external function is used to perform
the propagation in order to keep the anticipate procedure generic.

Once the first propagation is performed, the anticipatory agent has an idea of the possible future states if no action
is executed in the multi-agent system. The second instruction then scans the list LA and determines the direct effects
of each action. These effects are computed by an external function called computeDirectEffects. Again, the body of this
function depends on the application. For example, if actions express the movement of a situated agent, the function
computeDirectEffects will perform a trajectory calculation. The set DE of direct effects is used to update the set R. For
each rai

(ax, ay) ∈ DE, the relationships between ax and ay are deleted from the set R and the new relationships from DE
are added: R ← R ∪DE. Following the update, a new propagation corresponding to the indirect effects of the current
action is performed, which allows the domains to be restricted. After this second propagation, the anticipatory agent has
an idea of the possible future states if the current action is actually executed.

The previous paragraphs have described the prediction phase of our anticipation model. With the last instruction,
the anticipate procedure moves on to prediction analysis. During this analysis phase, the anticipatory agent searches for
undesirable states. The searchForUndesirableStates procedure (figure 2) verifies whether each domain of the set D as been
included in the list LS. If an undesirable state is detected, the current action is deleted from the list LA.

function searchForUndesirableStates
in: Mai

(A,R,D),UndesiredStates LS
out: boolean

1: begin

2: for each dom(ax) ∈ D do

3: if dom(ax) ∈ LS then

4: return(true)
5: return(false)
6: end

Figure 2: The searchForUndesirableStates procedure

procedure anticipate
in: Actions LA,UndesiredStates LS,Mai

(A,R,D), Iai

E

out: Actions LA

1: begin

2: propagate(Mai
)

3: M ′ ←Mai

4: for each action ∈ LA do

5: DE ← computeDirectEffects(action,Iai

E
)

6: update(R,DE)
7: propagate(Mai

)
8: if searchForUndesirableStates(Mai

,LS) then

9: LA← LA− {action}
10: Mai

←M ′

11: end

Figure 3: The anticipate procedure
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4 Discussion

4.1 Accessibility of the environment

The efficiency of our algorithm depends on the quality of the prediction. A prediction is correct only if the environment
has certain properties. Since our approach is based on the a priori evaluation of the effects of actions, we assume
that implementing an anticipatory agent in a multi-agent system requires that the environment be deterministic3. The
environment must also be fully observable4, or at least “partially observable”. By “partially observable”, we mean that
the agents’ perceptions can be local, but the information describing their environment has to be perfect and without noise.
These properties insure that the anticipatory agents will be able to establish a set of good predictions about the system’s
future states.

4.2 Local vs complete perception of the environment

In designing his anticipatory architecture, Davidsson distinguished between two types of anticipation: linear anticipation
and tree structure anticipation [9]. When the environment is deterministic and the world model is complete, it is always
possible to predict exactly what will happen, which means that anticipatory agents will always calculate only one possible
state for each point in time. This prediction of n successive states is linear and results from a sequence of predictions
(figure 4).

Figure 4: Linear anticipation [9]

However, most of the time, anticipatory agents have only a local perception of their environment; consequently, their
model of the world is partial. This lack of information leads to the consideration of several possible states for each point
in time. This prediction of future states requires the construction of a tree structure (figure 5).

Davidsson notes that linear anticipation “makes strong assumptions concerning the quality of the world model and
the behaviour of the environment” but claims that “there exist non-trivial applications where it is possible to have a
sufficiently good world model [...] so that linear anticipation can be used successfully”. However, even if we assume that
the environment includes all the necessary good-quality properties, anticipation in the context of multi-agent coordination
is usually not linear, but rather has a tree structure (combination of the action executed by different agents). Still,
preventive anticipation can improve action selection by deleting inappropriate actions as leading to undesirable states,
assuming, of course, that the anticipation procedure is activated before the actions are selected. Given that most of
the time, executing different actions implies different possible future states, anticipation usually, of necessity, has a tree
structure.

In our algorithm, the examination of each action on the list LA is a node on the first level of a tree structure anticipation.
To maintain an acceptable degree of complexity over time, we chose to limit the tree branches to one level. For example,
once an anticipatory agent has predicted a state St, it no longer tries to search the next states that could be reached from
St. Since this first level must be evaluated over a finite time interval, the predictions are also limited by an “anticipation
length”. In the general case, this length can be taken into account during the computeDirectEffects procedure. When the
domains are temporal, the length is explicitly defined by the initStates parameters (i.e, the finite set of values used to
initialize the domains in the constructRepresentation procedure - figure 1).

4.3 Potential limitations

Having a partially observable and deterministic environment may seem to some to be a strong assumption. However, this
assumption is acceptable for many multi-agent applications, especially for simulation applications which already require

3According to Russell and Norvig [39], an environment is deterministic “if the next state of the environment is completely determined by
the current state and the actions executed by the agents.

4Russell and Norvig define “fully observable” as the capacity to perceive the complete state of the environment at each point in time [39].
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Figure 5: Tree structure anticipation [9]

many simplifications about environment in order to keep computing time low. Our approach reaches its limits when
agents must evolve in a physical environment, as is the case in robotics. In this case, the perception of environment
usually includes measurement errors and imprecisions. A possible solution could be to describe errors and imprecisions
stochastically, for example using a stochastic constraint network [4, 21, 48].

4.4 Complexity

The complexity of our algorithm depends on:

• the number of actions: |LA|,

• the number of undesirable states that need to be checked: |LE|,

• the number of possible states expressed in the domain: d = max
aj∈A

(|dom(aj)|), and

• the complexity of external function: propagate.

In the literature, constraint propagation algorithms have a complexity between O(ed2) [31] and O(ed3) [26], with d
being the maximum size of the domains and e being the total number of constraints in the network. In the worst case, the
complexity of our anticipate procedure is within O(|LA|(|R|d3+ |LE|)). In practice, this complexity does not always imply
prohibitive amounts of computing time. Indeed, for most applications, the number of possible states and the number of
actions remain relatively low.

5 Application

Our approach was applied in the context of a road traffic simulation [11, 12, 13]. The algorithm proposed in section 3.4
was fully implemented in a behavioral traffic simulation tool based on a multi-agent system.
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5.1 Road traffic simulation

We think that it is difficult to describe the individual behavior of each human driver. Thus, we decided to simulate
artificial agents in order to highlight a collective behavior that is close to real applications. More generally, our study
aimed to provide a globally realistic traffic simulation, with the secondary objective of characterizing vehicle avoidance
techniques. Clearly, collisions and gridlock halt the simulation, which distorts the traffic studies.

A car driver is a typical example of an anticipatory agent [47]. Good drivers have to react to what happens in the
present, but also need to make decisions by anticipating what may happen in the future. Drivers need to be aware of
potential future states; to increase this awareness, they observe the curve of road, the traffic signals, the traffic conditions,
the behavior of other drivers and so on. So, we chose to evaluate the relevance of our approach by testing it in a road
traffic context.

The road traffic simulation in this study required realistically reproducing the movements of vehicles on a limited-
capacity road network. To evaluate our approach, we wanted to focus on the specific situation of traffic at a road junction.
Depending on the degree of realism desired, simulating traffic at road junctions can be a hard problem. For instance, given
an intersection with no traffic signals, accurately simulating behaviors at the microscopic level, while also maintaining
realistic traffic conditions (e.g., traffic flow, average speed) at the macroscopic level, is quite complex.

In response to this complexity, most simulation tools employ a centralized scheduler to coordinate the traffic flow at
each branch of the intersection. But this drastically simplifies the initial problem since the scheduler usually allows only
those vehicles whose trajectories are not in conflict to enter the intersection. Still, with a good configuration from this
centralized source, it is usually possible to obtain fairly accurate general traffic conditions. Unfortunately, the behavior of
individual simulated drivers is not at all realistic. Because of the obvious limitations of such simulation tools in terms of
reproducing the actual behaviors of real drivers, much research has been done to try to consider road traffic simulation
from a multi-agent point of view [8, 32, 43].

ArchiSim [17], a behavioral traffic simulation tool developped by INRETS, is one solution to the limitations described
above. ArchiSim considers traffic as an emergent phenomenon resulting from the actions and interactions of the various
road situation actors (e.g., car drivers, pedestrians, road operators). In other words, the traffic conditions at the macro-
scopic level are the result of the local behaviors of road users simulated at the microscopic level. It uses a multi-agent
computing model, in which each simulated driver is an autonomous software agent that evolves in a virtual environment,
interacting with the other simulated agents to reach its goals in accordance to its current skills and situation. At each
step of the simulation, an agent receives a set of information describing the surrounding environment. Based on this
information, the agents make their own decisions, resulting in the longitudinal and lateral acceleration needed in the next
time step.

5.2 Traffic simulation at road junctions: a multi-agent coordination issue

In ArchiSim, dealing with road junctions is treated as a multi-agent coordination problem. In fact, when crossing an
intersection, real drivers must solve their conflicts with the drivers of other vehicles. In a simulation, this conflict-solving
task can be expressed as a problem of coordination: all agents reaching an intersection have to coordinate their actions
in order to avoid a collision. In real life, this inter-driver coordination is facilitated by traffic signals (e.g., stop signs and
traffic lights) and regulated by the rules of the Highway Code. However, these rules are not always respected by real
drivers. To make the task even more complicated to analyze, according to psychology research [2, 40, 44] the driving
task of crossing an intersection differs from one country to another. In southern Europe and in Asia, this task is highly
competitive, especially for Latin drivers. In northern Europe, the task is less competitive and more cooperative.

The coordination mechanism used in ArchiSim tries to be flexible in order to take the above elements into account and
to reproduce the diversity of driver behaviors. This mechanism models the conflicts that take place in the intersection by
breaking the complex interactions between agents down into elementary situations involving only two agents.

An actual driver perceives a complex intersection as a succession of elementary T-type or X-type intersections. A
roundabout or example, can be seen as a succession of T-type intersections, while a 4-corner stop is a simple example
of an X-type intersection. The interactions between drivers in elementary intersections are regulated by the priority
relationships defined in the Highway Code. Such priority relationships can be expressed using the predicate prio. In a
X-type intersection, four interactions are possible and can be illustrated by the following conjunctions:

1. ¬prio(x, y) ∧ ¬prio(y, x): no conflict exists between the agents x and y,

2. prio(x, y) ∧ ¬prio(y, x): y comes from a minor road, or comes upon a road sign, and consequently has no priority
over x,

3. ¬prio(x, y) ∧ prio(y, x): x comes from a minor road, or comes upon a road sign, and consequently has no priority
over y,
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4. prio(x, y) ∧ prio(y, x): x and y both have the priority.

The coordination mechanism has the following dynamics. An agent approaching an intersection searches for all vehicles
with which it is potentially in conflict and assesses the priority it has in terms of each of those vehicles. Each priority
relationship is used as a local rule that indicates whether the agent must speed up or slow down . When multiple priority
relationships are involved in the current situation, the agent chooses the behavior that will lead to the lower speed [29]. At
this point in the ArchiSim development, the coordination algorithm only manages the longitudinal acceleration, meaning
that the agent can choose between two actions: Go or Stop. Go and Stop are extrapolations of the real objective which
is to move the agents (forward or stop them). It should be noted that each movement or braking action complies with
the kinematic model for the movement of the agent. More precisely, the vehicles do not stop merely because the Stop
action was selected; they perform a braking procedure according to their physical constraints for a certain cycle. This
means a certain number of simulation cycles are necessary in order to stop (provided, obviously, that this decision is not
questioned in the subsequent iterations by any new information that has been received).

Each agent decision depends on how the agent interprets the priority relationships. To take into account the fact that
a real driver may violate the Highway Code in some traffic situations, the agents in the simulation are allowed to alter
the priority relationships established in the Highway Code, in effect replacing them by the informal priority relationships
corresponding to specific practices frequently observed in the real life [12]:

• speed-related priority: drivers who have priority at an intersection (from point of view of the Highway Code) tend
to give way that priority if they observe another vehicle approaching the intersection at a high speed,

• impatience-related priority: drivers who have been at a stop for a long time tend to consider that they have priority
over other vehicles, even when the Highway Code would say otherwise.

Allowing the simulator to apply these types of priority relationships widely improves the similarity of the simulated
driver behaviors. In [12], we demonstrated that ArchiSim was able to simulate realistic traffic in a non-signaled intersection
located in southern Italy. Observed on the microscopic level, the behaviors seem realistic, and certain traffic conditions,
such as traffic flow, differ only by 6% compared to the traffic data really measured at the existing road junction.

Unfortunately, such informal practices can sometimes lead to gridlock inside the intersection. Indeed, although the non-
respect of the official rules encourages the use of the most central section of the intersection (which is more or less realistic
and can be observed at many intersections), it also increases the risk of gridlock. In figure 6, a series of double left-turns5

have provoked gridlock in the center of the intersection, which is clearly an undesirable state for all agents blocked in the
intersection. To control such undesirable effects in the simulation, we implemented our preventive anticipation model in
ArchiSim.

Figure 6: Gridlock in an intersection during a traffic simulation

5Please remember that, in most European countries, drivers drive on the left-hand side of the road.
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5.3 Anticipation to avoid gridlock during simulation

5.3.1 Use of preventive anticipation in ArchiSim

To use our model of anticipation in road traffic simulation, we had to define the tree components of the mental represen-
tation Mai

of an anticipatory agent ai. The set A can be built with the agents present in the intersection and perceived
by ai.

The domain associated with each agent in A is temporal and expresses the next time step of the simulation. At the
current time step t, if a value x is not present in the domain of an observed vehicle, this vehicle will be blocked at t + x.
For instance:

• dom(az) = [1,+∞[ is equivalent to: “az can act and move during the interval t + 1 to +∞”.

• dom(az) = [1, 4] ∪ [8, 10] is equivalent to: “az will be blocked between t + 5 and t + 7.

The set R is composed of (i) priority relationships (prio predicates) which has been previously introduced and (ii)
three types of “blocking” relationships:

• bphai
(ax, ay) meaning “ax is physically blocked by ay from the point of view of agent ai”,

• bphaai
(ax, ay) meaning “ai observes that ax will be physically blocked by ay”, and

• bprai
(ax, ay) meaning “ay has priority over ax from the point of view of the agent ai”.

5.3.2 Example

To explain how the proposed algorithm works in a road traffic context, consider an agent ax located at the entrance to an
intersection (figure 7). Three vehicles (at, as, az) are stopped, blocked by ay. The direction of each vehicle is as follows:

• as comes from the north and wants to turn left,

• at comes from the east and wants to turn left,

• az comes from the east and wants to turn left,

• ay comes from the west and wants to turn left, and

• ax comes from the south and wants to go straight.

The agent ax computes the following representation6 at the instant t:

A = {ax, at, as, az, ay}

D = {dom(ax) = [1,+∞[ , dom(at) = [1,+∞[ ,

dom(as) = [1,+∞[ , dom(az) = [1,+∞[ ,

dom(ay) = [1,+∞[ }

R = {bpha(ax, at), bph(at, az), bpr(at, as),

bph(as, az), bph(az, ay), bpha(ay, at),

prio(ax, ay) ∧ ¬prio(ay, ax)}

Applying our anticipation algorithm yields the following reasoning:

1. propagation: The domain of the five agents can be reduced. For instance, since az is blocked by ay, it is possible
to deduce that az will be stopped till ay has passed the conflict point. This time span can be obtained through
kinematic calculation7. The time span is obtained in a continuous domain and is expressed in seconds. Given
the length of a simulation time step (a parameter of the simulation), this time is converted into a number of time
steps so that it can be used to bound the agent domains. For instance, if this time span is equal to 2 time steps,
the values 1 and 2 can be deleted from the az domain: dom(az) = [3,+∞[. The same reasoning can be used to
simplify the as and at domains: dom(as) = [5,+∞[ and dom(at) = [7,+∞[. The simplification of dom(at) does not

6The suffixes ai have been omitted for the relations of R.

7Classic kinematic formulas are used to compute the time span. If the vehicle is moving, the time is t =
(
√

v2+2ad−v)
a

.
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Figure 7: Mental representations of two agents in a crossroad

prevent dom(ay) from being reduced since a relationship between at and ay exists: bpha(ay, at). Finally, the set D
is simplified and is now equal to:

D = {dom(ax) = [11,+∞[, dom(at) = [7,+∞[,

dom(as) = [5,+∞[, dom(az) = [3,+∞[,

dom(ay) = [1, 5] ∪ [9,+∞[ }

2. effects computation of actions of ax: Since the coordination algorithm only deals with longitudinal acceleration, ax

has a choice between two possible actions: Stop or Go. If ax chooses the action Go, its position on the road changes.
Consequently, its distance from at is reduced, and the blocking relationship between ax and at takes effect. This
is expressed in the mental representation by replacing the relationship bpha(az, at) by bph(az, at). In addition, the
priority relationship prio(ax, ay)∧¬prio(ay, ax) also becomes a blocking relationship: bph(ay, ax). The set R is thus
updated as follows:

R = {bph(ax, at), bph(at, az), bpr(at, as),

bph(as, az), bph(az, ay), bpha(ay, at),

bph(ay, ax)}

3. propagation: Adding the relationship bph(ay, ax) allows the ay domain to be simplified once again. However, the
simplification of dom(ay) implies the simplification of all domains, which can then be reduced to an empty interval.
This reduction is coherent since none of the vehicles can now move:

D = {dom(ax) = ∅, dom(at) = ∅, dom(as) = ∅,

dom(az) = ∅, dom(ay) = ∅}

4. undesirable states search: From the point of view of ax, having an empty domain can be considered as an undesirable
state. To avoid this undesirable state, the agent ax can eliminate the action Go from its list of possible actions,
giving this agent no other option but to stop. However, the anticipation algorithm applied by ay does not have to
change its list of actions. Invoking the impatience-related priority, it considers that it has waited a sufficiently long
time and decides to accelerate.
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5.4 Evaluation

To evaluate the anticipatory abilities of the simulated drivers, we used different scenarios that placed the agents in traffic
situations that would be produce gridlock: for example, simulated traffic at non-signaled intersections with high traffic
densities and series of double left-turns.

5.4.1 Avoiding gridlock during simulation

Consider a congested traffic situation at a X-type intersection. Because it is non-signaled intersection, drivers must yield to
the traffic coming from the right. Fourteen simulated vehicles are at the road junction. Vehicle number 13 is approaching
the intersection, and the vehicle 8 is stopped inside the intersection. Figures 8 and 9 illustrates the two possible results:
without anticipation and with anticipation.

In figure 8, the agents have no anticipatory abilities. At time step t = 1, only vehicles 13 and 8 are still able to move;
all other agents inside the intersection are blocked. In this situation, the coordination algorithm leads vehicle 13 to choose
to Go and vehicle 8 to choose to Stop. These decisions produce total gridlock in the intersection by t = 270.

t = 1 t = 28

t = 87 t = 270

Figure 8: Sequences of the simulation without anticipation in ArchiSim

Figure 9 resents the same scenario as figure 8, but in figure 9, the agent 13 has access to the anticipatory algorithm.
At time step t = 1, the agent 13 builds a mental representation of the situation. It takes into account the agents
located inside the intersection and adds the following relationships: bpha13(13, 12) ∧ bph13(12, 11) ∧ bph13(11, 6) ∧ ... ∧
bph13(0, 1) ∧ bph13(1, 8). Then, it considers the vehicles that are still outside the intersection and adds the relationships,
bpr13(10, 0), bpr13(10, 2) and so on. The agent 13 finishes building its representation by associating a domain to each of
the agents observed in the intersection. Before calling the anticipate procedure, all domains are initialized to [1, T ], where
T corresponds to the length of anticipation introduced in section 4.2 (in our experiments, T = 15).

In the next step, the algorithm calculates the effects of the action Go for the agent 13. Given the agent’s current
position, speed and acceleration, the algorithm computes the agent’s future position and deduces the new topological
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and spatial relationships with the other agents. These topological relationships are mapped as blocking and priority
relationships, which are then added to the network, and a new propagation is performed. The agent 13 can now search
for undesirable states. In doing so, it deduces that its domain has become dom(13) = ∅, which will put it into infinite
gridlock. In response to this deduction, it deletes the action Go from the list of possible actions and decides to Stop.

t = 1 t = 43

t = 73 t = 223

t = 305 t = 423

Figure 9: Sequences of the simulation with anticipation in ArchiSim

Figures 10 and 11, which show the speed and acceleration curves for vehicle 13 (with and without the anticipation
ability), illustrate the dynamism of the situation. Between steps 0 and 25, the variation of the speed of vehicle 13 is the
same both with and without anticipation: 13 breaks in order to avoid bumping into vehicle 12. Between steps 25 and 50,
agent 13 applies the coordination algorithm directly and chooses to move forward: it continues to decelerate but more
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gradually. At the same time, the anticipatory algorithm detects that the action Go will create total gridlock. In response
to this, vehicle 13 chooses to break hard. During this deceleration period, vehicle 8 is likely to decide that it has priority
and move before 13, which progressively allows the intersection to be cleared: from step t = 320, agent 13 can accelerate
until it reaches a desirable speed. Without anticipation, vehicle 13 blocks the intersection at step t = 270.
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Figure 10: Speed curve of agent 13
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Figure 11: Acceleration curve of agent 13

15



 0

 5

 10

 15

 20

 25

 30

 35

 0  100  200  300  400  500  600  700  800

N
um

be
r 

of
 d

ea
dl

oc
ks

Simulated flow (vh/h)

with anticipation without anticipation

Figure 12: Variation of the number of gridlocks in terms of the traffic flow

5.4.2 Evaluation of gridlock reduction

For the same intersection, we simulated several traffic flow variations. For each simulation, the resulting gridlock situations
were counted via a supervision process that is part of the simulator but totally independent of agent decision-making.
This supervisor checks at each time step to see whether or not a gridlock appears. If gridlock is detected, the simulation
is suspended, the intersection is completely cleared, and then the simulation proceeds.

Figure 12 shows how anticipation reduces the number of gridlocks during the simulation of a non-signaled intersection.
For a one-hour simulation using non-anticipatory agents, the number of gridlocks varied from 0 to 35 depending on the
traffic flow. When the agents had anticipatory capabilities, the number of gridlocks remained near zero almost all the
time for simulated flows of up to 800 vehicles/hour per axis.

5.4.3 Additional Results

For the same intersection, we simulated several traffic flow variations and studied the time that the artificial agents take to
“decide” what action to perform. Figure 13 shows that the decision-making time used by each agent increases according
to the traffic density. For low traffic densities (less than 300 vehicles/hour), the necessary execution time for all the agents
is very reasonable: less than 0.1 seconds. For high traffic densities (800 vehicles/hour), the time needed to execute the
proposed model was an average of 0.35 seconds. We can thus assert that this time is relatively low, depending on the
importance of the traffic density for the proposed simulations.

We would also like to point out that validating a traffic simulation is a complex problem. As has been noted by
Lieberman and Rathi [25], traffic engineers usually lack the current data that would allow them to compare their simulations
with real data. For the specific case of intersections, this lack of data is due to the difficulty of collecting/obtaining data
from the institutes responsible for road infrastructure. For example, to compare traffic flows, it is necessary to record
not only the number of vehicles per second on each axis, but also the directional percentage inside the intersection. This
second element is difficult to automate since it requires tracking each vehicle that enters the intersection until it exits. To
improve the accuracy of our results, we conducted an evaluation procedure, in which the traffic in a real intersection was
simulated and the results were compared with the traffic data actually measured. The chosen statistical criteria is the
RSD (Root Standard Deviation), which evaluates the difference between simulated and real flows. To obtain a globally
realistic behavior, this criteria must be less than 10% (standard value for the traffic, given the traffic literature). The
intersection used in this evaluation is located in the Italian city of Reggio Calabria (Southern Italia) [14]. This intersection
is the junction between a main road running north to south and a secondary trunk road running east to west. The values
obtained are considered to be of good quality.
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Figure 13: Temporal performance between behaviours with/without anticipation

6 Future research

Our method employs a constraint network based on agent mental representations. In this version of the method, we assume
that all system agents anticipate individually. However, in some cases, a set of agents can have a common objective to
anticipate certain undesirable states: for instance, in the formation of coalitions [1, 41]. In this case, anticipation takes
on a collective dimension, in which the agents reason together in order to detect undesirable states. In future research,
we plan to investigate this collective aspect by considering an extension of the constraint networks: distributed constraint
satisfaction problems.

6.1 Towards a collective anticipation model

An extension of constraint networks have been introduced to formalize and resolve naturally distributed problems [50].
Such problems generally deal with a set of data, shared out among many sites, whose centralization is often impossible. A
disCSP (X,D,C,A) is an extension of the triplet (X,D,C), where A is a finite set of agents {A1, A2, ...Ap} in which each
Ak(1 ≤ k ≤ n) has a subset of X. Many algorithms in the literature could be used to achieve our proposed extension,
provided that agents have some ability to exchange messages [15, 50]. We plan to investigate such an approach for the
case of Automated Guided Vehicles [49], in which communication is easily handled.

Complementary research proposed by Boman et al. [3] supports our studies about on the modelling of the collective
anticipation. Their works aims at describing a multi-agent architecture based on the anticipation of the detection of
collective actions that are or not acceptable by the group. One of the essential differences with our current proposal is
their consideration of the effect of uncertainty and risk on the actions of the various agents. This approach could be useful
for decisions-making, given the large number of actions and constraints in our anticipation mechanism.

6.2 Generalization to n-ary relations

The anticipation model we have proposed in this article uses binary relations between agents. These relations are considered
as constraints, allowing each agent to construct a constraint network for use as a mental representation. Binary constraint
networks are a particular case of constraint satisfaction problems (CSP) in which each constraint can be mapped as an
edge of a graph.

In some applications, it is interesting to deal with n-ary relations instead of binary relations. In literature, many studies
have dealt with such relations. Most algorithms dedicated to constraint networks have been generalized for non-binary
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constraints [27]. Some studies have also proposed a binarization approach that encapsulates non-binary constraints into
an additional variable. All this research would seem to be easily applicable to our anticipation model. In an application
like an Automated Highway System, our approach should be relevant to the study of the vehicle platoon [19].

7 Conclusion

This article addresses the issue of modelling anticipation in a multi-agent coordination context. Our contribution to the
scientific discussion is the proposed formalization of preventive anticipation that allows agents to reason about the effects
of their actions and thus avoid undesirable states. Our anticipation principle is based on a constraint processing approach
which considers effects of actions as constraints in a mental representation of the agent’s world. Based on this model, a
generic algorithm was proposed and evaluated for a traffic simulation problem. The results of this algorithm show that
integrating anticipation allows behaviors to be reproduced without creating gridlock between the simulated vehicles.
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