
Power-aware Bus Coscheduling for Periodic Realtime
Applications Running on Multiprocessor SoC

Khaled Z. Ibrahim1 and Smail Niar2

1 Suez Canal University, 42563 Port Said, Egypt
2 University of Valenciennes, 59313 Valenciennes Cedex 9, France

Abstract. Execution time for realtime processes running on multiprocessor system-
on-chip platform varies due to the contention on the bus. Considering the worst
case execution cycles necessitates over-clocking the system to meet the realtime
deadlines, which has a negative impact on the system power requirements. For
periodic applications coscheduled on multiprocessor withshared bus, the cycles
needed by a memory transaction fluctuate based on the execution overlap between
processes’ activities on bus. In this work, we show the effect on execution cycles
of different scheduling overlap of processes. Experiment results demonstrate that
the execution cycles, and therefore the clock frequency, can be lowered by up
to 24% on a 4 processor MPSoC. As the power consumption variescubically
with frequency, this reduction can lead to a significant power saving. Instead of
exhaustively simulating all configurations to search for optimal scheduling over-
lap, we devise a scheme to predict the effect of scheduling. We propose the use
of shift-variance of bus traffic profile of applications running individually on the
system to predict the effect when scheduling these applications simultaneously.
We show that the devised predictor of scheduling effect highly correlates to the
behavior observed through simulations.

1 Introduction

In bus-based multiprocessor system, running multiple contending processes on
the shared bus increases the completion time of bus transactions and conse-
quently the number of cycles needed to finish these processes. In realtime sys-
tem,worst case execution time (WCET) is usually considered while scheduling
these processes. The system clock frequency is adjusted to meet the process
realtime constraints.

Unfortunately, increasing the frequency (and possibly increasing the volt-
age, as well) to meet realtime deadlines negatively impactsthe power consump-
tion of the system. The dynamic power dissipation varies linearly with fre-
quency and quadratically with supply voltage. With a linearrelation between
voltage and frequency, the increase in the number of cycles needed to exe-
cute a process can lead to a cubical increase in the dynamic power. The vari-
ation of application requirements and system state with time usually necessi-
tates the dynamic adaptation of the system voltage and frequency. Dynamic

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

C1

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

C1

��

C1’
C2’

��

C1’
C2’

�������
�������
�������
�������

����
����
����
����

�����
�����
�����
�����

����
����
����
����

�������
�������
�������
�������

��������
��������
��������
��������

����
����
����
����

�������
�������
�������
�������

����
����
����
����

�����
�����
�����
�����

����
����
����
����

�������
�������
�������
�������

��������
��������
��������
��������

����
����
����
����

C1" (< C1’)

C2" (< C2’)C2" (< C2’)

C1" (< C1’)

�������������� �������������� ���������������������������� �������������� ��������������

����������

C2C2

Periodic standalone bus traffic for process 1

Periodic standalone bus traffic for process 2

Bus overlap

Optimal bus overlap

Fig. 1.The effect of bus traffic overlap of two processes sharing a common bus.

voltage/frequency scaling (DVS) technique adapts the system frequency and
voltage to the realtime constraints of the system [1,2], thus optimizing for the
system power and energy.

Scheduling processes in multiprocessor system aims at coordinating the uti-
lization of shared resources between competing processes [3,4,5]. The stress of
each process on the memory system varies with time. The number of cycles to
execute these processes can decrease if we could find anoptimal overlap of the
bus demands from processes running on the system. By “optimal overlap”, we
mean an overlap that minimize the average clock cycles that each process needs
to complete a memory transaction.

In this work, we show the impact of coscheduling of processeson a shared
bus for multiprocessor embedded system. We illustrate the variation in execu-
tion cycles based on the overlap of processes coscheduled onshared bus. Brute
force search for optimal overlap of coscheduled processes requires simulations
of the processes with all possible overlaps. This can be a prohibitively expen-
sive process. Instead, we devise a scheme to predict optimalcoschedule. This
scheme narrows the search space for optimal overlap. We propose a process that
comprises the following steps: identifying the initial phase of each process, find-
ing periodicity in the process behavior, determining a common period between
the coscheduled processes, finding profile of performance variation with all pos-
sible overlaps, and finally finding an optimal bus coscheduleof the processes.
We also introduce the use of scheduling barrier to maintain the optimal overlap
of coscheduled processes.

The proposed scheme predicts the effect of coscheduling on the performance
under all possible execution overlaps. This helps in identifying a schedule with
minimum negative impact on performance (through minimizing bus contention)

and helps in reducing the number of cycles needed to execute each process. For
realtime application reducing the number of cycles to execute a task reduces the
power requirement because the system frequency and voltagecan be reduced
accordingly.

The proposed technique can be applied for coscheduling applications with
periodic pattern of accessing the memory systems. For this class of applica-
tions, the same processing is usually applied on different frames of data and
the processing is independent of the values of data processed. Even though the
applicability of the proposed scheme is limited to this class of applications, spe-
cialized design process is common in embedded systems to achieve the best
power consumption especially that these systems are usually dedicated to run a
fixed set of applications.

The rest of this paper is organized as follows: Section 2 introduces the im-
pact of contention on shared bus and its effect on the number of cycles a periodic
task needs for execution. The simulation environment is described in Section 3.
Our proposed technique to predict optimal bus scheduling isdetailed in Sec-
tion 4. We extend our formulation of the proposed scheme, in Section 5, to
systems running arbitrary number of processes. Section 6 summarizes related
work as well as future work. Section 7 concludes our work.

2 Impact of Bus Overlap on Performance

In this work, we constrain our discussion to multiprocessorsystem with appli-
cations knowna priori. For clarity, we will consider system with two processes
running concurrently. We will generalize our formulation in Section 5

In Figure 1, two processes with different traffic patterns are shown. The
upper part of the figure shows the bus traffic for each application running indi-
vidually on the system. Two different execution overlaps are shown in the lower
part of the figure. The number of cycles (Ci) for each process depends on the
overlap with the other processes running on the system. The clock frequency of
the systemf needed to meet deadline constraint is defined asC/T whereC is
number of cycles of a process with the realtime periodT . Increasing the number
of cyclesC of a process necessitates increasing the frequency of the system f .
Different proposals [2,6,7] describe how to adapt the frequency to the demand
of a process with realtime constraints.

Increasing the frequency severely impacts the power requirements of the
system. In CMOS based system, the commonly used technology in embedded
systems, the power consumption is mainly due to dynamic power [8] that is
given byP = Ce f ·V 2

dd · f whereCe f is the effective switched capacitance,Vdd

is the supply voltage. The frequency is almost linearly related to the supply

20 40 60 80 100

-6

-5

-4

-3

-2

-1

0

20 40 60 80

-12

-8

-4

0

20 40 60 80

-4

-3

-2

-1

0

0 50 100 150 200 250 300 350

-4

-2

0

2

4

50 100 150 200 250 300
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

20 40 60 80 100
-16

-12

-8

-4

0

Blowfish encrypt/decrypt

R
el

at
iv

e
ex

ec
u

ti
o

n
 c

yc
le

s
in

 %

Overlap offset

Rijndael encrypt/decrypt

R
el

at
iv

e
ex

ec
u

ti
o

n
 c

yc
le

s
in

 %

Overlap offset

SHA/SHA

R
el

at
iv

e
ex

ec
u

ti
o

n
 c

yc
le

s
in

 %

Overlap offset

GSM encode/decode

R
el

at
iv

e
ex

ec
u

ti
o

n
 c

yc
le

s
in

 %

Overlap offset

PCM encode/decode

R
el

at
iv

e
ex

ec
u

ti
o

n
 c

yc
le

s
in

 %

Overlap offset

MAD/MAD

R
el

at
iv

e
ex

ec
u

ti
o

n
 c

yc
le

s
in

 %

Overlap offset

Fig. 2. Effect of all execution overlaps on the total execution cycles for six pairs of embedded
applications. The effect is shown as a percentage of the execution cycles of an initial overlap.

voltage [8]. Consequently, the dynamic power is cubically related with the fre-
quency (P ∝ f 3). The energy (computed asE = P ·T) is quadratically related
with the frequency, which is an important factor for batterypowered devices.

Static power usually has negligible contribution to total power for embed-
ded systems with low frequency. Static power is proportional to supply voltage
Vdd [9,10], and thus can benefit linearly from decreasing frequency.

Figure 2 shows the effect of all execution overlaps for six pairs of embed-
ded applications. Execution overlaps are generated by sliding the execution of
one application with respect to the other application in thepair. These pairs of
applications are taken from three categories of MiBench suite [11], namely the
security, the telecommunication and the consumer categories. Each group is run
on a dual processor system with shared bus. Each applicationexhibits a peri-
odic behavior in accessing the bus. Figure 2 shows the percentage of change in
execution cycles when we have different overlaps for each pair of applications.
Depending on overlap (or shift), the execution cycles change by up to 5.5% for
Blowfish, 12% for Rijndael, 4% for SHA, 6.5% for GSM, 1.5% for PCM, and
12.5% for MAD. These changes consider the difference between the maximum
and the minimum execution cycles. The changes in the execution time are due
to the memory latency changes that arise because of the different contention
scenarios that these applications face on the bus. The details of the simulation
environment are given in Section 3.

During the run of these applications, the execution cycles alternate between
the values shown in Figure 2. To guarantee meeting deadline for real-time ap-
plication, system designer usually considers worst-case execution cycles thus

necessitating overclocking the system. Based on the early discussion, if we can
enforce a coscheduling that provide the minimum execution cycles then we can
obtain a saving in the dynamic power consumption, relative to the power asso-
ciated with worst-case execution cycles, from 4% for PCM up to 33% for MAD
assuming a dual-core MPSoC. Even if the system bus and memoryare not af-
fected by the frequency scaling and only the processor core and caches are af-
fected, the gain in reducing the processor power is very large. This is attributable
to the large ratio of power consumed by the processor core andcaches compared
with the power consumed by the bus and memory subsystems. ForPCM, this
ratio is 50:1 and the ratio for MAD is 4:1. The saving due to frequency reduction
is especially important for battery powered systems.

The cubic scaling of power with frequency is one of the main motives for
building MPSoC for realtime systems running concurrent jobs, in constrained
power environment. This alternative is based on using multiple processor cores
with a lower frequency. The other, less efficient, alternative is to run the con-
current jobs on one processor core with higher frequency. Replicating the num-
ber of cores almost linearly increases the power demands while increasing fre-
quency increase power demands cubically.

The above discussion shows the importance of coscheduling processes and
its severe impact on the system power requirements. The mainproblem is to
search for optimal configuration. This involves simulationof all possible over-
laps which can be excessively expensive. We simulated 99 configurations for
Blowfish, 90 for Rijndael, 79 for SHA, 368 for GSM, 321 for PCM,and 98 for
MAD. The number of simulated configurations for each application is chosen
to avoid repeated simulations and is determined by the common periodicity de-
tected for each pair of applications as will be detailed in Section 4.3. Searching
for a local minimum execution cycles using a technique such as steepest descent
can face difficulty because of the existence of multiple minima and the existence
of fast-varying change (ripples) as an additional component to the more impor-
tant slowly-varying change. It will also require many simulation runs.

The determination of the optimal scheduling is an additional dimension to
the design space for MPSoC. Multiple hardware configurations are usually ex-
plored in designing such systems. It is also common to have systems that run
different combinations of applications simultaneously. For every set of appli-
cations, we need to find an optimal coschedule that saves execution cycles as
well as energy. In this work, our objective is to predict the effect of coschedul-
ing of multiple processes in a simple and accurate way that enables fast and
precise design process. The details of our proposed technique are presented in
Section 4.

Table 1.Embedded Benchmarks used in this study.

benchmark Description

Blowfish Symmetric block cipher with multiple lengths key.
Rijndael A Symmetric block cipher encryption/decryption algorithmthat is chosen by

the National Institute of Standards as Advanced EncryptionStandard (AES).
SHA Secure Hash Algorithm (SHA) that produces a 160-bit messagedigest.
GSM Global Standard for Mobile communication.
ADPCM Adaptive Differential Pulse Code Modulation (ADPCM).
MAD MPEG Audio Decoder. It supports MPEG-1, MPEG-2, and MPEG-2.5.

3 Simulation Environment

The simulation environment is based on MPARM [12] environment. MPARM
models a Multiprocessor System-on-Chip (MPSoC). The processor models ARM 7
processors based on a software implementation called SWARM[13]. The sys-
tem is interconnected using an AMBA [14] communication standard (architec-
ture for high performance embedded systems). Multiple bus arbitration schemes
are implemented by the MPARM. We choose a simple round-robinscheme. The
simulated system has data cache (4KB size, 4-way set-associative) and instruc-
tion cache (2KB size, 2-way set-associative). Both caches are with writeback
policy. The clock frequencies of all CPUs are the same,i.e., homogeneous pro-
cessor cores. Uncontended memory latency is 40 cycles.

Benchmarks used in this study are taken from security, telecommunication,
and consumer categories of MiBench suite of embedded benchmarks [11]. Ex-
cept for SHA and MAD, all benchmarks have a decode functionality in addition
to the encode functionality. In this study, we run these two functionalities in
pairs. For MAD and SHA, we run similar copies of the application. These pairs
of applications can normally run concurrently in a multiprocessor embedded
system.

Rijndael and MAD represent memory intensive applications with large per-
centage of cache misses, while PCM is less memory intensive application with
small percentage of cache misses. The average memory accesstime is affected
by the miss penalty that increases with the contention on shared bus. These ap-
plications are sequential applications that are run in parallel with non-shared
memory spaces.

4 Finding Optimal Bus Coschedule

This section presents our technique to search for an optimalcoschedule for two
processes running on system with a shared bus. The approach is generalized

100 200 300 400
0

10

20

30

40

50

B
u

s-
b

u
sy

 p
er

ce
n

ta
g

e

Time sample

Blowfish

100 200 300 400
0

10

20

30

40

50

B
u

s-
B

u
sy

 P
er

ce
n

ta
g

e

Time sample

Rijndael encrypt/decrypt

100 200 300 400
0

5

10

15

20

25

B
u

s-
b

u
sy

 p
er

ce
n

ta
g

e

Time sample

SHA

200 400 600 800
0

10

20

30

40

50

B
u

s-
b

u
sy

 p
er

ce
n

ta
g

e

Time sample

GSM decode

200 400 600 800
0

10

20

30

40

50

B
u

s-
b

u
sy

 p
er

ce
n

ta
g

e

Time sample

GSM encode

100 200 300 400
0

5

10

15

B
u

s-
b

u
sy

 p
er

ce
n

ta
g

e

Time sample

PCM-encode

100 200 300 400
0

5

10

15

B
u

s-
b

u
sy

 p
er

ce
n

ta
g

e

Time sample

PCM decode

100 200 300 400
0

10

20

30

40

50

B
u

s-
b

u
sy

 p
er

ce
n

ta
g

e

Time sample

MAD

Fig. 3. Percentage of bus-busy for applications running standalone on the system bus.

to more than two processes in Section 5. We target finding an optimal static
coschedule between two running processes that exhibit periodicity. Many em-
bedded applications exhibit periodicity in their execution and consequently pe-
riodicity in the traffic sent to the memory system. This periodic behavior usually
appears after an initialization period and may be trailed bya termination period.
We are more interested in the periodic part of the application because it domi-
nates the execution time of the application.

We start the search for optimal coschedule by running each process individu-
ally on the system. We record the bus-busy percentages over fixed interval of cy-
cles. These recordings constitute a time-series of measurementsbk, k = 1, . . . , n,
wherebk is the bus-busy percentage at time intervalk.

Figure 3 shows the percentages of the bus-busy cycles for ourbenchmarks.
The time samples are 0.5K cycles for Blowfish and Rijndael; 2Kcycles for GSM
and PCM; and 20K cycles for SHA and MAD. These choices for sampling sizes
are empirically chosen to compromise between having enoughbus traffic details
and limiting the number of scheduling decisions (bus trafficperiodicity) to fa-
cilitate verifications. Decreasing the sampling interval increases the number of
samples per application periodicity. While the proposed scheme has no difficulty
in predicting performance with any number of samples per periodicity; it will
be very difficult to simulate all configurations to verify thecorrelation between
the performance predicted by our model and the outcomes of the simulations.

As shown in Figure 3, Blowfish and GSM bus traffics have burstiness in
accessing the memory. Execution is divided into phases of large bus traffic fol-
lowed by almost idle phases. Applications such as Rijndael,on the other hand,
have slowly varying bus traffic. The encode and the decode functionalities pro-
duce different traffic profile for GSM and PCM. For Rijndael and Blowfish, the

B
u

s
b

u
sy

Time sample

Application X

1- Detecting initialization

B
u

s
b

u
sy

Time sample

Application Y

2- Detecting periodicity

p
x

B
u

s
b

u
sy

Time sample
p

y

B
u

s
b

u
sy

Time sample

p
c
~=3*p

x

B
u

s
b

u
sy

Time sample

3- Finding common period

p
c
~=2*p

y

B
u

s
b

u
sy

Time sample

Scheduling
Shift

B
u

s
b

u
sy

Time sample

4- Scheduling applications

p
c

p
c

B
u

s
b

u
sy

Time sample

Fig. 4. Four steps in scheduling processes in MPSoC.

bus traffic for encrypt and decrypt follows the same profile. All these applica-
tions show periodic behavior in dealing with the system bus.To find an optimal
bus coschedule, we propose the following steps:

1. Isolation of the initialization part of the application from the periodic part
for each application, Section 4.1.

2. Identification of the periodicity of the bus traffic for each application indi-
vidually, Section 4.2.

3. Creation of common coscheduling period for all applications designated for
coexistence on the system, Section 4.3.

4. Analysis of the effect of different coscheduling overlaps/shifts, for the com-
mon coscheduling period, on the execution cycles, Section 4.4.

Figure 4 summarizes the four steps proposed to find optimal scheduling decision
for a pair of processes. With the outlined technique, using simulation to exhaus-
tively search for optimal coschedule is not needed. Enforcement of coscheduling
decision to guarantee repetitiveness usingscheduling barriers is introduced in
Section 4.5. We asses the goodness of our technique in the prediction of optimal
bus coschedule in Section 4.6.

4.1 Identifying Initialization Period

To identify the bus-traffic initialization phase of each process, we start by form-
ing aninitialization approximate vector (IAV). The IAV vector is formed by tak-
ing an initial subset of the vectorbk. We arbitrary choose a divisord for the num-
ber of samplesn. The IAV is chosen asbk, k = 1, . . . ,n/d. Then, we compute the

0 50 100 150 200 250 300

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250 300
0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 100 200 300 400 500

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150 200 250 300
0

1

2

3

4

5

6

0 50 100 150 200 250 300

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 50 100 150 200 250 300
0

2

4

6

8

10

12

0 50 100 150 200 250 300

0.5

1.0

1.5

2.0

2.5
0 100 200 300 400 500

0.5

1.0

1.5

2.0

2.5

3.0

 Divisor 32
 Divisor 64

D
s

Time sample

Blowfish encrypt/decrypt

D
s

Time sample

Rijndael encrypt/decrypt

D
s

Time sample

GSM decode

D
s

Time sample

SHA

D
s

Time sample

PCM encode

D
s

Time sample

PCM decode

D
s

Time sample

MAD

D
s

Time sample

GSM encode

Fig. 5. Initialization phase detection based on difference graph of bus traffic.

difference between the IAV and shifted versions of the original time series, as
Ds = ∑n/d

j=1

∣

∣b j+s −b j
∣

∣ , s = 1, . . . , 2n/d. We compute an approximation of the

second order difference as∆D
2
s = (Ds+1−2Ds +Ds−1), s = 2, . . . , 2n/d −1.

The peaks of the second degree difference(∆D
2
s) occur at the possible end

of initialization points. It is notable that multiple localmaxima may arise due
do the inclusion of part of the periodic behavior within the IAV. We used mul-
tiple divisorsd to get confidence of the result. The outcome of initialization
identification is independent ofd as long as the initialization is a subset of IAV.

This approach is analogous to that used in finding application initialization
based on basic block difference graph [15]. After identifying them initial inter-
vals, we form a new time seriesgk with the initialization phase stripped; such
thatgk = bk+m, k = 1, . . . , r wherer = n−m.

Figure 5 showsDs for the GSM pair of applications and Rijndael pair of
applications. We show a small fraction of the computation curve for clarity. We
used large value ford, 32 and 64, because the initialization part is a very small
part of the execution time. It is notable that the maximum∆D

2
s occurs at sharp

local minima of the graphs. We choose the end of initialization interval at any
point after the first maximum of∆D

2
s . Any point that follows the initialization

can be considered a start for the periodic behavior. The end of the initialization
interval can be taken as the first scheduling point for the application; that is why
it is not advisable to excessively delay the choice for the end of initialization.
For the following analysis, though, we need to make sure thatenough cache
warming has occurred before identifying a period representative to all other
execution periods. In summary, we use early initializationpoint for scheduling

synchronization, to be introduced later in Section 4.5, while for the sake of
analysis we consider a late initialization point.

4.2 Periodicity Detection

Detection of periodicity in experimental data has been studied by many re-
searchers [16,17,15]. Autocorrelation (self-correlation) R is one of the mathe-
matical formulas used to detect periodicity in a time series. The autocorrelation
R is computed based on the autocovarianceCd , whered represent the time lag
between the time series and its shifted version. The computation proceeds as
follows:

Let ḡ be the average of the time seriesgk, thenCd = 1
r

r

∑
k=d

(gk − ḡ)
(

g(k−d) − ḡ
)

andRd = Cd
C0

. In this work, we adopted a methodology based on special formof
autocorrelation called thefolded autocorrelation. First, we definefolded covari-

ance asFCd = 1
r

r

∑
k=1

(gk − ḡ)
(

g(k+d) − ḡ
)

. We assumegk = gk−r for all k > r. The

folded autocorrelation is then defined asFRd = FCd
FC0

.
Folded autocorrelation assumes virtual periodicity, thussimplify identifying

periodicity. Figure 6 shows folded autocorrelation of the bus traffic after striping
the initialization period. The periods between peaks of autocorrelation are can-
didates for defining periodicity. Although, the analysis introduced in Section 4.1
shows early prediction of possible periodicity, it does notprecisely identify pe-
riodicity partly because of the inclusion of initialization period. The first few
periods are usually affected by the cold start of the cache. Stripping the initial-
ization from the bus traffic is needed to provide accurate estimate of the pe-
riodicity. Folded autocorrelation gives an accurate estimate for the periodicity.
Precise identification of periodicity is needed to guarantee no drift in scheduling
decision.

Except for GSM encode, periodicity can be detected easily both by inspec-
tion and mathematically. GSM encode has a large period that comprises five
smaller periods with some similarity. We have chosen the larger period because
this choice makes all periods almost similar for GSM encode.

4.3 Finding Common Periodicity

Based on the analysis introduced in the previous sections, we find the standalone
periodicity for each process that needs coscheduling on thesystem with a shared
bus. A processX is defined by the tuple[xk, ix, px] wherexk is the percentage
of bus busy cycles at intervalk (ranging from 1 topx) after skippingix initial

0 50 100 150 200 250 300

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600 700

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

F
o

ld
ed

 A
u

to
co

rr
el

at
io

n
 (

F
R

 d
)

Scheduling Shift

 Rijndael encrypt/decrypt

F
o

ld
ed

 A
u

to
co

rr
el

at
io

n
 (

F
R

 d
)

Scheduling Shift

 Blowfish encrypt/decrypt

F
o

ld
ed

 A
u

to
co

rr
el

at
io

n
 (

F
R

 d
)

Scheduling Shift

 GSM encode GSM decode

F
o

ld
ed

 A
u

to
co

rr
el

at
io

n
 (

F
R

 d
)

Scheduling Shift

 PCM encode PCM decode

F
o

ld
ed

 A
u

to
co

rr
el

at
io

n
 (

F
R

 d
)

Scheduling Shift

 MAD

F
o

ld
ed

 A
u

to
co

rr
el

at
io

n
 (

F
R

 d
)

Scheduling Shift

 SHA

Fig. 6. Folded autocorrelation for periodicity detection.

intervals. Similarly, we define the tuple[yk, iy, py] for processY . The periodicity
can vary from one process to another.

Finding optimal coschedule of bus traffic requires analyzing a common pe-
riod that repeats for all processes sharing the bus. Common period makes the
scheduling decision repeatable for all processes. A commonperiod is composed
of multiple basic periods of the coscheduled applications.Multiple criteria can
be used in finding common period, as follows:

– For same realtime requirements for all processes: The shorter process is ei-
ther appended with inactivity period to make all processes with the same
period, or stretched assuming that it will run on a slower processor (hetero-
geneous system) such that all processes have similar periods.

– For different realtime requirements for considered processes: We need to
define a common periodpc using the least common multiple of the two
period countpx, py. To avoid having a common period,pc, that is as large
aspx · py, it is sufficient to havepc such that(pc mod px)/px < tol and (pc

mod py)/py < tol, wheretol can be arbitrarily chosen, for instance less than
0.05. Increasing the common period (pc) for coscheduling may reduce the
effectiveness of the scheduling mechanism that is described in Section 4.5.

To computepc based on a certaintol, we start with an initial value forpc of
px · py; we repeat decreasingpc as long as the condition (pc mod pi)/pi < tol
is satisfied for all processes. The minimum value forpc while satisfying the
condition is considered as a common period for coscheduling.

For Blowfish and Rijndael pairs of applications, we used the same realtime
constraint for encrypt and decrypt. Both encrypt and decrypt have the same pe-
riodicity, which facilitates choosing a common period (pc = px = py). Similarly,

we used the same periodicity for SHA and MAD because two identical copies
are run for both applications.

For GSM pair of applications, GSM encode periodicity is almost three times
the periodicity for GSM decode, assuming atol = 0.01. While for most mobile
computing applications the realtime constraint is the samefor GSM encode and
decode, we assumed an application where decode is needed formore frames
than for encode, for instance in conference calls. Usingtol = 0.01 for PCM
pair, we find a common periodicity that coincides with three basic periods of
PCM encode and with five basic periods of PCM decode.

In future work, we can consider a system with heterogeneous processor core
to handle the same realtime constraint for different computational requirement.

4.4 Predicting Optimal Overlap of Coscheduled Processes

In this section, we aim at finding an overlap between two periodic processes
such that the number of cycles needed to finish both processesis minimal. Simu-
lation of all possible overlaps between coscheduled processes is extremely time
consuming process, especially with large common periodicity of coscheduled
processes. The computational requirement for simulation increases if we need
to repeat the coscheduling search for different hardware configuration.

We like to narrow the search space for optimal coschedule based on the in-
formation we get from running each process as a standalone process. Formally,
we need to find a scheduling shiftl between the processes to be coscheduled
given the bus-busy percentagesxk, yk for processX andY ; respectively, where
k = 1, . . . , pc. To achieve this objective, we propose the use of one of the fol-
lowing two metrics:

1. Find the minimum shift-variance of the sum ofxk and yk shifted by l =
1, . . . , pc −1. let zl

k = xk + y(k+l)modpc

Var(l) =
1
pc

pc

∑
k=1

(zl
k − z̄)2 (1)

where ¯z = 1
pc

∑pc
k=1 zl

k = 1
pc

∑pc
k=1 (xk + yk). Note that ¯z is the same for all over-

laps, which leads to the simple form on the right hand side of the equation
for z̄.

2. Find the minimum convolution ofxk, yk for all scheduling shiftsl.

Conv(l) =
1
pc

pc

∑
k=1

xk · y(k+l)modpc
(2)

These two metrics give profiles of the effect of overlapping the bus traffic of the
two processes. While these profiles help in knowing approximate area where
minimum negative impact of overlap occurs, they do not provide a quantitative
measure of the effect that optimal coschedule may introduce.

These measures will be highly accurate if the effect of overlapping a bus
traffic from one process with the traffic from the other process is self-contained.
The effect of overlap of two points is hopefully not biased toward extending
the execution time for one process over the other. This requirement necessitates
using fair arbitration policy on the bus. Coscheduling on bus with prioritiza-
tion scheme may be less fruitful. A necessary condition is that the timing does
not accidentally favor one process over the others, where one process always
acquires the bus ahead of the other processes. Round-robin with preemption is
one of those fair schemes but is unfortunately difficult to implement on multi-
processor bus. Simple round-robin, used in this study, provides a relatively fair
arbitration mechanism.

Another inherent assumption is that criticality of cache misses are mostly
the same for all cache misses, thus delaying a bus transactions impact perfor-
mance the same. This is mostly true for simple cores with blocking cache misses
that is modeled in this study. For systems with more complex cores, further in-
vestigation may be needed.

4.5 Coscheduling Enforcement Using Barriers

We propose to use barriers to define the overlap between coscheduled processes
and to maintain this coschedule. We cannot use timing information collected by
the standalone runs as a basis for scheduling synchronization. These timings are
stretched due to the increase in memory latency because of the bus contention.

A robust technique would be to identify barrier locations onsource code and
to add barrier calls where necessary. Inserting software barrier has difficulties:
First it requires changing the source code for each scheduling decision. Second,
it cannot be inserted easily anywhere in the code; only specific locations are
suitable for barrier insertion.

We adopted a simple approach based on the number of graduatedinstruc-
tions. The initialization and periodicity of an application are translated into in-
struction counts. The scheduling barriers are applied based on the number of
graduated instructions. This simple mechanism can be applied easily in embed-
ded environment where simple OS is used and program execution is repeatable
and deterministic.

In this study, we considered hardware barrier [18,19] for synchronization,
which is associated with little execution overheads. Hardware barrier can be
implemented using a simple wired-and line(s). Triggering synchronization is

Fig. 7.Effect of coscheduling on bus wait time.

system dependent. A possible implementation that is explored in this study in-
volves additional registers to hold the initial synchronization and the periodicity
in terms of graduated instructions counts. These registersare part of the pro-
cess context. An additional register is needed to hold the graduated instructions
count. This register is initialized with the synchronization point. It is decre-
mented each time an instruction is graduated. When the register value reach
zero, the barrier synchronization is acquired. The barriersynchronization is re-
leased after all processes reach the barrier (the wired-andbarrier line is asserted
by all processors). During release, the register is reset tothe periodicity instruc-
tion count.

Scheduling barriers do not represent any data dependency. They are not re-
quired for correct execution of coscheduled programs. Theyare used to ensure
that no drift in scheduling occurs after executing many periods, and thus guaran-
teeing the persistence of the scheduling decision. With appropriate scheduling,
this does not only maintain less execution cycles but also reduce the variability
of execution because the memory traffic overlap will continuously repeat.

Using barriers usually causes period of idleness for the processors finishing
work earlier, i.e. arriving earlier to the barrier. The waiting period on the barrier
is quantified in Section 4.6.

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 20 40 60 80
0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150 200 250 300
0.5

0.6

0.7

0.8

0.9

1.0

1.1

Scheduling shift

GSM

 Normalized Convolution
 Normalized Shift-variance

Scheduling shift

Rijndael

Scheduling shift

Blowfish

Scheduling shift

SHA

Scheduling shift

MAD

Scheduling shift

PCM

Fig. 8.Coscheduling effect prediction based on convolution and shift-variance.

4.6 Accuracy of Coscheduling Prediction for Two Processes Systems

In this section, we introduce the effect of coscheduling on memory access time
and prediction accuracy of the effect of overlap. The memoryaccess time af-
fected by contention during the arbitration phase, the timeto be granted the bus
to start memory transfer, and the time to transfer data, especially that burst of
data can be split into multiple non-contingent transfers.

Figure 7 shows the effect of scheduling shift on the average wait time on the
bus for the six pairs of applications. The figure shows the percentage of change
of wait time per memory transaction compared with the wait time for the initial
scheduling decision (thereference). Every memory transaction faces the un-
contended latency in addition to the additional wait time due to contention. The
profiles for the bus-access wait-time follow the profiles predicted by equations 1
and equation 2. Both equations correlate to the wait on bus, as will be quantified
later. The reference average wait-time per memory transaction is small (in the
range of 2 to 8 cycles) for applications with low bus contentions; specifically for
PCM, SHA and GSM benchmarks. For Blowfish, Rijndael, and MAD bench-
marks, the reference average wait time per memory transaction ranges from 12
to 15 cycles. Percentage-wise the coscheduling decision impacts the wait time
of some benchmarks, for instance GSM, more than others, for instance Rijn-
dael, while scheduling decision impacts the latter’s performance more. This is
attributable to the higher miss rate and the higher wait timeinvolved such that
the overall performance is more sensitive to the memory system performance.

The execution cycles for different scheduling decisions (Figure 2) follow the
profile of the bus performance introduced in Figure 8. To quantify the prediction

accuracy of our proposed scheme, we use the correlation coefficient; defined as
follows: let x̄ be the average value of a random variableX . The variance is

defined asE
{

(X − x̄)2
}

= σXX ≡ 1
n ∑n

i=1(xi − x̄)2. We also defineσX ≡√
σXX .

A good measure of dependence between the two random variables X andY is
the correlation coefficient [20], defined as

ρXY ≡ E {(X − x̄)(Y − ȳ)}
σX ·σY

=
σXY

σX ·σY
(3)

The numerator of the right hand side is called the covarianceσXY of X and
Y . If X andY are linearly dependent, then|ρXY |= 1. If |ρXY |= 0, then observing
the valueX has no value in estimatingY .

We use the correlation coefficient to study the relation between equation 1,
equation 2, bus access wait-time, and execution cycles. Table 2 shows the corre-
lation coefficient between these measurements. Both shift-variance (defined by
equation 1) and convolution (defined by equation 2) are very strongly related
for two processors system. One can replace the other, and preference is given to
computational simplicity which favors convolution.

The correlation between the bus waits and the execution cycles ranges be-
tween a lowest of 0.72 for PCM and highest of 0.97 for GSM. These values can
be classified as high to very high correlation according to Williams [21]. The bus
performance does not perfectly correlate to the execution cycles (correlation of
1) because the effects of cache misses on the performance arenot similar. Some
bus transactions are more critical to performance than others, while all transac-
tions contribute to the bus contention similarly. Additionally, the bus arbitration
policy is not perfectly fair.

The bus wait is more correlated to convolution (and to shift-variance), com-
pared with correlation to execution cycles, because we usedthe bus traffic only
in the convolution computation. These correlations, between bus wait and con-
volution, range from a lowest of 0.71 for Rijndael to a highest of 0.93 for GSM.
The total execution cycles depends on the interaction with other components on
the system. It is apparent that correlation coefficients between execution cycles
and convolution are lowered if the correlation between bus wait and execution
cycles is low, or if the correlation between bus wait and shift variance is low.

These high correlation coefficients show that we can predictthe effect of
scheduling multiple processes sharing a bus. This prediction helps in identify-
ing the best scheduling region. The exact performance difference, due to the
scheduling, can be obtained through simulation of only few points of interest in
the regions identified by the proposed scheme.

Simulating the system without scheduling barriers, we found a drift in the
execution overlap that leads to performance change from onescheduling period

Table 2. Correlation coefficient (ρXY) between bus wait time(Wait), execution cycles (Cycles),
convolution(Conv), and shift-variance (SVar).

Bench Conv/SVarCycles/SVarWait/SVarWait/Cycles

Blowfish ∼= 1.000 0.7675 0.8043 0.8610
Rijndael 0.9974 0.7238 0.7085 0.7956

SHA ∼= 1.000 0.7087 0.8707 0.8827
GSM ∼= 1.000 0.8580 0.9266 0.9764
PCM ∼= 1.000 0.5537 0.8538 0.7243
MAD ∼= 1.000 0.8610 0.8858 0.9380

to the other. As discussed earlier, we propose using scheduling barrier to cir-
cumvent this problem. We show the effect on performance of scheduling barrier
in Figure 9, which shows the percentage of barrier wait for different scheduling
decision. The barrier overhead is reported as average and the variation in the
wait time is reported as the 99th percentile around the average. Using schedul-
ing barriers incurs a small overhead for all applications studied. The barrier
synchronization time relative to the total execution time does not exceed 1.3%
for Rijndael and Blowfish. We noticed that the variation of barrier wait time is
largest for Rijndael and Blowfish, although almost two identical processes are
overlapping. This shows that the variation is mostly causedby the changes on
overlap of bus transactions and not the difference in the amount of work, which
is adjusted by the choice of common periodicity.

4.7 Proposed Scheme Applicability

Dynamic Voltage Scaling (DVS) and the proposed technique tackle the same
problem of adjusting driving frequency/voltage for the sake of reducing the
power of applications with varying execution time. For hardrealtime applica-
tions, DVS increase clock/voltage of the system to meet worst case execution
time and then tries to reclaim slack time by reducing voltage/frequency if it
arises during execution [22,23].

The advantage of DVS is that this technique can be applied to all kind of
tasks, but faces the following challenges: a) estimating the worst case execution
time, needed for hard realtime applications, is not always feasible for multipro-
cessor machines; b) changing voltage/frequency usually involves complexity in
design and delayed response that reduces the amount of saving in power. The dy-
namic adjustment may overclock frequency thus wasting power, or under-clock
the system frequency thus not meeting real time deadlines.

The proposed technique in this paper is applicable for special class of appli-
cations with repeating pattern of accessing the memory. Forthese applications,
a static schedule is selected that minimize the execution cycles and thus the

Blowfish Rijndael SHA GSM PCM MAD
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
er

ce
n

ta
g

e
o

f
to

ta
l e

xe
cu

ti
o

n
 t

im
e Average barrier wait time

Fig. 9.Scheduling barrier wait-time percentage with the 99th percentile around the average.

frequency/voltage needed to drive the system. This schedule is maintained by
low-overhead hardware barrier, thus reducing the variability in execution time.

The proposed scheme exploits repetitiveness of bus traffic.We show that
the design space exploration can be surrogated by static analysis that alleviates
the need of seemingly infeasible simulations. We studied different embedded
applications from three different categories of benchmarks included in MiBench
suite. The sources of bus traffic repetitiveness are as follows: a) algorithmic
repetition of processing, for instance, applying the same processing to multiple
frames of data; b) control flow of the application that is not dependent on the
data processed.

Certainly these conditions do not apply for all embedded application. We
found that some applications, from MiBench suite, may not benefit from the
proposed scheme as summarized below: a) Applications that have amount and
type of processing dependent on the data in the frame processed. The traffic
generated on the bus is thus not cleanly periodic, although the processing of
some frames can be similar. Lame application, GPL’d MP3 encoder, and JPEG
application, a standard lossy compression standard, are example applications
that exhibit this behavior. Fortunately, many of these applications are usually
not hard realtime applications; b) Applications with constant bus traffic on the
bus, for instance CRC32, 32-bit Cyclic Redundancy Check. Applications with
constant behavior does not benefit from DVS, as well as our technique, because
there is no variability in execution time; c) Applications with no periodic be-
havior, for instance FFT (Fast Fourier Transform). Some of these benchmarks
are kernel codes that are called by higher level codes, and may be called in a
repetitive way. In this case they can benefit from the proposed scheme.

We do not view these as limitations of applicability becausethe design of
embedded systems does not involve generalized design rules. Special techniques
are needed for different classes of systems to achieve certain design objectives,
for instance ultra low-power systems. The proposed scheme can be thought of
as Static Voltage Scaling (SVS) technique that suites special applications that

shows periodicity. For this class of applications, SVS doesnot require com-
plex mechanism for detecting and changing the driving frequency and voltage.
Additionally, SVS reduce the variability in execution timeby forcing repetitive
overlap of contending processes through barrier synchronization.

5 Multidimensional Coscheduling

Applying the proposed coscheduling techniques gain importance if the num-
ber of scheduled processes increases because the search space for scheduling
increases exponentially. For instance, if we would like to explore one hundred
scheduling decision for a certain application, then scheduling two processes of
this application will require one hundred simulation runs,while scheduling four
processes will require 106 simulation runs. For the applications considered in
this study, GSM would have 49,836,032 scheduling decisionsfor four processes.
Certainly, exploring such design spaces is not feasible through simulations; and
a tool to predict points of interest in the design space is critically needed. For
multiprocessor system, estimating WCET is very challenging because of the
numerous contention scenarios that a process may encounter. Conventionally, a
simple approach involves overestimating the clock frequency to guarantee prob-
abilistic meet of deadlines.

In this section, we introduce the following generalizationof the formulation
introduced earlier in Section 4.4 to predict the effect of coscheduling, as follows:

Let the periodic time series for bus-busy percentages for the m applications
that need to be coscheduled in the systemx1

k , x2
k , · · ·,xm

k ; The common periodicity
pc is then computed such that(pc mod pxi)/pxi < tol.

Extending the definition for the shift-variance will be as follows: We define
scheduling-shift vector asL : (l1, l2, ..., lm−1), whereli = 1, . . . , pc − 1. zL

k ,

x1
k + ∑m

i=2xi
(k+li−1)modpc

Var(L) =
1
pc

pc

∑
k=1

(zL
k − z̄)2 (4)

where ¯z = 1
pc

∑pc
k=1∑m

i=1 xi
k. The convolution definition can be formulated as

follows:

Conv(L) =
1
pc

pc

∑
k=1

x1
k

m

∏
i=2

xi
(k+li−1)modpc

(5)

Traditionally, shared bus systems are limited to few processors on the sys-
tem bus. We limited system exploration to a system of four processors. Unfor-
tunately, we cannot perform full verification of the prediction of coscheduling

Table 3.Results summary for four processors system; Maximum difference of execution cycles
(Cycles), and correlation with Convolution (Conv) and shift-variance (SVar).

benchmarkConv/SVarCycles/SVarCycles/Conv%Cycles Diff.

Blowfish 0.9001 0.6900 0.6334 9.35
Rijndael 0.9675 0.4705 0.3875 23.84

SHA 0.9049 0.7074 0.4863 5.02
GSM 0.6427 0.8241 0.5015 13.74
PCM 0.9070 0.6592 0.4696 4.17
MAD 0.8691 0.9002 0.7368 20.96

effect on performance, because we cannot simulate all the points of the schedul-
ing space. Instead, we simulated three hundreds randomly selected scheduling
points of the design space for each pair of applications. We also conducted sim-
ulation of the best and worst scheduling points that were predicted by the mul-
tidimensional shift-variance defined by equation 4.

To evaluate the correlation between the prediction function and the simu-
lated point; the multidimensional space of scheduling is projected into a single
dimensional space, and then the formulation defined by equation 3 is used.

Table 3 summarizes the results for the same set of applications studied in
Section 4.6. We explored systems of four processes. We doubled the processes
by repeating the pairs introduced in Section 4.6. Table 3 shows percentage of
change in the execution cycles. The percentage of change increases with increas-
ing of the number of processes contending on the bus. The mainreason is that
the difference between coincidence of high traffic burst of four processes and
the optimal distribution of bus traffic gets larger. Certainly, this trend happens
because of the ability of bus to absorb the bandwidth required by all running
processes. If the applications bandwidth demands exceededthe bus ability, we
expect that all processes will be slowed down and the difference in execution
cycles will become smaller. The execution cycles difference is computed for
the randomly selected scheduling points that were simulated, including points
predicted by the shift variance as candidate for minimum andmaximum cycles.
The difference reaches a peak of 24% for Rijndael. Even if these differences
in cycles are not proved global minimum and global maximum, they show the
impact of scheduling on performance, and the need to enforcea scheduling to
avoid missing deadlines for realtime systems.

Table 3 shows that the correlation between the convolution and shift vari-
ance is not perfect for multidimensional scheduling, as we have seen earlier for
one-dimensional scheduling. The shift variance gives better correlation with the
performance observed through simulations. This behavior is observed for all ap-

plications because the shift variance predicts performance based on the effect of
the sum of all traffic instead of multiplying them.

Another observation is that the correlation of cycles with shift-variance de-
creased with four processors systems compared with two processors system be-
cause the fairness of the bus gets stressed. Although there is a need for further
improvements in this direction, simulations can not be seenas a feasible alter-
native.

6 Related and Future Works

Recently numerous research proposals targeted optimizingcommunication ar-
chitecture for efficient use of energy [24,25]. These proposals adapt commu-
nication architecture to the application need or more specifically to the traffic
generated by the application.

Adapting the system frequency/voltage to the application need is inten-
sively studied for uniprocessor and multiprocessor systems. For uniprocessor
machines, different proposals [6,26] address the problem of adapting frequency-
voltage to meet realtime constraint and optimize for the energy consumption.

For multiprocessor, Yang et al. [27] propose dividing power-aware schedul-
ing of processes into two phases: The first phase, done offline, summarizes
the possible schedule decisions. During runtime, the second phase, the actual
scheduling decision is taken based on the predetermined scheduling options.
Static Power Management is utilized by Gruian [1] to adjust the best supply
voltage/frequency for each processor. Zhu et al. [8] adjustthe voltage/frequency
level of the system to reclaim the slack time [28] in executing tasks by reducing
the frequency of future tasks.

In contrast, our work addresses one of the main causes of variability in
shared memory multiprocessor which is the contention for memory on a shared
bus. Our proposed technique finds a scheduling decision thatreduces the num-
ber of cycles needed to execute a task by reducing the effect of bus contention.
We predict a good offline static schedule for the applications. We verified our
technique for six pairs of applications. We explored extending the coschedule to
any number of coscheduled applications. One constraint to this work is that it is
applicable for applications that exhibit periodic bus behavior.

Future work includes exploring different bus arbitration policies and study-
ing the best scheduling decision under these policies. Differentiating bus traffic
into critical and less critical to performance need to be augmented to our for-
mulation to reach a better estimate of performance and servethe needs for more
complex processors systems. We believe that studying the effect of contention
on shared resources should gain more attention from system designers.

7 Conclusions

Minimization of execution cycles for a given periodic task is essential for power
saving. For a given realtime deadline, the frequency increases linearly with the
execution cycles. The power consumption varies cubically with the frequency.
One source of increasing the execution cycles is the contention on the shared bus
in multiprocessor system. Through cycle simulation, we show that the execution
cycles can vary by up to 13% for benchmarks running on two processors system,
and 24% for four processors systems. These executions cycles varies the system
power requirements greatly, because of the need to adjust the clock frequency
to meet the system realtime constraints. This dynamic powersaving can reach
57% for Rijndael executed on a quad-core MPSoC.

To alleviate the high cost of searching best scheduling overlap using simu-
lation, we propose a scheme based on shift variance of the bustraffic profiles
obtained while running these applications individually. We outlined the steps
needed to strip application’s initialization period and todetect the application
periodicity based on bus traffic. Using shift-variance, we show that we can pre-
dict the effect of coscheduling under multiple scheduling overlaps. We also pro-
pose the use of scheduling barrier to maintain scheduling decision, which incurs
very little overhead. We show that the prediction of scheduling effect using shift
variance is highly correlated to the results obtained usingsimulations. We also
extended our performance prediction mechanism to systems of larger number
of processors with acceptable prediction accuracy.

References

1. Gruian, F.: System-Level Design Methods for Low-Energy Architectures Containing Vari-
able Voltage Processors. The First Int’l Workshop on Power-Aware Computer Systems-
Revised Papers (PACS’00) (2000) 1–12

2. Shin, Y., Choi, K., Sakurai, T.: Power Optimization of Real-time Embedded Systems on
Variable Speed Processors. The 2000 IEEE/ACM Int’l Conf. onComputer-Aided Design
(ICCAD’00) (2000) 365–368

3. Weiser, M., Welch, B., Demers, A., Shenker, S.: Scheduling for Reduced CPU Energy. The
First USENIX Symp. on Operating Systems Design and Implementation (OSDI’94) (1994)
13–23

4. Nguyen, T.D., Vaswani, R., Zahorjan, J.: Using Runtime Measured Workload Characteris-
tics in Parallel Processor Scheduling. Workshop on Job Scheduling Strategies for Parallel
Processing (IPPS’96) (1996) 93–104

5. Snavely, A., Tullsen, D.M.: Symbiotic Jobscheduling fora Simultaneous Multithreaded
Processor. The 9th Int’l Conf. on Architectural Support forProgramming Languages and
Operating Systems (ASPLOS-IX) (2000) 234–244

6. Rotenberg, E.: Using Variable-MHz Microprocessors to Efficiently Handle Uncertainty in
Real-time Systems. The 34th annual ACM/IEEE Int’l Symp. on Microarchitecture (MICRO
34) (2001) 28–39

7. Seth, K., Anantaraman, A., Mueller, F., Rotenberg, E.: FAST: Frequency-Aware Static Tim-
ing Analysis. The 24th IEEE Real-Time Systems Symp. (RTSS’03) (2003) 40–51

8. Zhu, D., Melhem, R., Childers, B.R.: Scheduling with Dynamic Voltage/Speed Adjustment
Using Slack Reclamation in Multiprocessor Real-Time Systems. IEEE Trans. on Parallel
and Distributed Systems14(7) (2003) 686–700

9. Butts, J.A., Sohi, G.S.: A Static Power Model for Architects. (2000) 191–201
10. Brandolese, C., Salice, F., Fornaciari, W., Sciuto, D.:Static Power Modeling of 32-bit Mi-

croprocessors. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems
21(11) (2002) 1306–1316

11. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: MiBench:
A Free, Commercially Representative Embedded Benchmark Suite. The IEEE 4th Annual
Workshop on Workload Characterization (2001)

12. Benini, L., Bertozzi, D., Bogliolo, A., Menichelli, F.,Olivieri, M.: MPARM: Exploring the
Multi-Processor SoC Design Space with SystemC. Journal of VLSI Signal Processing41
(2005) 169–182

13. Dales, M.: SWARM – Software ARM. (http://www.cl.cam.ac.uk/ mwd24/phd/swarm.html)
14. : ARM, AMBA Bus. (http://www.arm.com/products/solutions/AMBA_Spec.html)
15. Sherwood, T., Perelman, E., Calder, B.: Basic Block Distribution Analysis to Find Periodic

Behavior and Simulation Points in Applications. Int’l Conf. on Parallel Architectures and
Compilation Techniques (2001)

16. Small, M., Judd, K.: Detecting Periodicity in Experimental Data Using Linear Modeling
Techniques. Physical Review E59(2) (1999) 1379–1385

17. Sherwood, T., Perelman, E., Hamerly, G., Calder, B.: Automatically Characterizing Large
Scale Program Behavior. The 10th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X) (2002) 45–57

18. Beckmann, C.J., Polychronopoulos, C.D.: Fast Barrier Synchronization Hardware. The 1990
ACM/IEEE conference on Supercomputing (Supercomputing’90) (1990) 180–189

19. Sivaram, R., Stunkel, C.B., Panda, D.K.: A Reliable Hardware Barrier Synchronization
Scheme. The 11th Int’l Symp. on Parallel Processing (IPPS’97) (1997) 274–280

20. Shanmugan, K.S., Breipohl, A.M.: Random Signals: Detection, Estimation and Data Anal-
ysis. Wiley (1988)

21. Williams, F., Monge, P.: Reasoning with statistics: Howto read quantitative research (5th
ed.). London: Harcourt College Publishers (2001)

22. Lee, Y.H., Krishna, C.M.: Voltage-Clock Scaling for LowEnergy Consumption in Fixed-
Priority Real-Time Systems. Real-Time Systems24(3) (2003) 303–317

23. Krishna, C.M., Lee, Y.H.: Voltage-clock-scaling adaptive scheduling techniques for low
power in hard real-time systems. IEEE Trans. on Computers52(12) (2003) 1586–1593

24. Nicoud, J.D., Skala, K.: REYSM, a High Performance, Low Power Multi-processor Bus.
The 13th Int’l Symp. on Computer Architecture (1986) 169–174

25. Lahiri, K., Dey, S., Raghunathan, A.: Communication Architecture Based Power Manage-
ment for Battery Efficient System Design. The 39th Conf. on Design Automation (DAC’02)
(2002) 691–696

26. Anantaraman, A., Seth, K., Patil, K., Rotenberg, E., Mueller, F.: Virtual Simple Architecture
(VISA): Exceeding the Complexity Limit in Safe Real-time Systems. The 30th annual int’l
Symp. on Computer Architecture (ISCA ’03) (2003) 350–361

27. Yang, P., Wong, C., Marchal, P., Catthoor, F., Desmet, D., Verkest, D., , Lauwereins, R.:
Energy-Aware Runtime Scheduling for Embedded-Multiprocessor SOCs. IEEE Design and
Test of Computers18(5) (2001) 46–58

28. Hua, S., Qu, G.: Power Minimization Techniques on Distributed Real-time Systems by
Global and Local Slack Management. The 2005 Conf. on Asia South Pacific Design Au-
tomation (ASP-DAC’05) (2005) 830–835

