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3 CRT and Département d’Informatique et de Recherche Opérationnelle
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Abstract

In order to optimize revenue, service firms must integrate within their pricing policies the
rational reaction of customers to their price schedules. In the airline or telecommunication
industry, this process is all the more complex due to interactions resulting from the structure
of the supply network. In this paper we consider a streamlined version of this situation where
a firm’s decision variables involve both prices and investments. We model this situation as
a joint design and pricing problem which we formulate as a mixed-integer bilevel program,
and whose properties are investigated. In particular, we prove a property of the model that
allows the development of an algorithmic framework based on Lagrangian relaxation. This
approach is entirely novel, and numerical results show that it is capable of solving problems
of significant sizes.

1 Introduction

This paper is devoted to a model that captures the interaction between system design, price
setting and consumer choice over a transportation network. The problem involves two decision
makers acting non cooperatively and in a sequential way. The upper level (leader) strives to
maximize its revenue raised from tariffs imposed on a set of goods or services in its control, while
the lower level (follower) optimizes its own objective, taking into account the tariff schedule set
by the leader. The leader explicitly incorporates the reaction of the follower in his optimization
process. In the field of economics, this fits the principal/agent paradigm (Van Ackere [11]) where
the principal, fully aware of the agent’s rational behaviour, induces cooperation from the agent
through an incentive scheme. In the field of mathematical programming this problem belongs
to the class of bilevel optimization problems with bilinear objectives at both levels of decision.

In the current context of deregulation, pricing decisions have become crucial for airline,
trucking, telecommunication and service industries where intense price competition and net-
work modifications have occurred. Clearly a profit maximizing firm must consider the trade off
between the cost of service and the revenue generated when designing its system and prices.

In the passenger or freight airline industry, a carrier (the leader) selects routing patterns,
flight schedules and fares. For instance, Budenbender et al. [5] describe a system where freight
providers such as express shipment companies operate or rent an aircraft fleet that must provide
a high level of service. For consolidation purposes, the freight is first shipped to an airport,
next it is flown non-stop to another airport, finally to be loaded on trucks and shipped to its
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final destination. The problem then consists of determining the terminal to operate, the take-
off time, how to transport the freight to an airport, and the ratio to charge. In passenger
transportation, the introduction of new flights (direct or through a hub-and-spoke network)
must take into account the supply over the entire network of flights, both from the leader airline
and its competitors. The decisions are then taken with respect to the incurred costs, the quality
of service, the possible influence on demand to other destinations and, most important, the
revenues generated by the new services (Lederer [9], [10]).

In the surface freight transportation industry, important structural changes occur as ship-
pers optimize the end-to-end supply through the implementation of web-based portals. In that
context, the costs incurred by a carrier is made up of two components: a fixed cost (including
trade compliance, trade settlement with country-specific international trading portals, multi-
modal aspects, operating resources costs, global handling costs, etc.) and a unit transportation
cost (Kerr [6]). Upon reception, a service carrier (the leader) has to decide whether or not to
accept a request and, if accepted, to set a price. In reaction to those prices, the shippers (the
follower) want their goods be transshipped at minimal cost, hence the bilevel structure of the
problem.

In the telecommunication area, a service provider (the leader) has to make network deploy-
ment decisions and to set prices for bandwidth usage. The response of users (the follower) to
prices induces traffic on the network. In the current deregulated markets, pricing is a funda-
mental issue for communications carriers. Indeed, as new systems of ever larger capacities are
introduced, the marginal cost of data transmission is rapidly decreasing. Exploiting those cost
savings and handling increased demand involves the optimization of technology acquisition and
pricing processes (Lanning et al. [8] and Başar and Srikant [1]).

Design and pricing are also challenging issues for business information service providers [2].
Information agencies such as Reuters and Bloomberg (foreign currency markets) and Aspect
Development (component information services) are essentially intermediates between firms that
generate and firms that use content. As information service providers (the leader) incur large
fixed costs (data entry and updates, software development, database management systems,
connections to commercial networks), their problem consists of specifying the size of the database
they provide to subscribers (followers) as well as the price they will charge for subscriptions. At
the lower level, the subscribers adapt their usage volume according to the level of service and
tariffs of the service providers, or yet may select the self-service option whereby they collect and
collate information directly from the sources.

Until now, design and pricing issues have mostly been treated separately. However, they
are intrinsically linked and have to be addressed jointly. To our knowledge the only papers
addressing the joint design and pricing problem are those of Lederer [9], Başar and Srikant [1]
and Bashyam [2]. Lederer [9] proposes a Nash equilibrium model of air transport competition
where firms select routes and prices. Competition is studied under two different assumptions
about consumer choice: either consumers can spread their choice of services on different routes
(“bundling”), or they cannot. If bundling is forbidden, the author proves the existence of unique
equilibrium prices. Otherwise, a price equilibrium may fail to be unique, or even to exist. At
first glance, our work might seem to fit the framework analyzed by Lederer. However it differs
in two main respects: bundling is an essential part of our model, and we look for a Stackelberg
(leader-follower) equilibrium rather than a Nash equilibrium. Consequently, the focus of this
paper is on algorithmic development rather than economic considerations.

Başar and Srikant [1] study the economics of providing large capacity from a telecommu-
nication provider’s point of view. Design choices are not modelled using binary decisions but
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through continuous capacity variables. Each user is charged a fixed price per unit of band-
width used, and this price is independent from congestion. The transmission rate of each user
is assumed to be a function of network congestion and price per unit of bandwidth. The aim
of the service provider is to maximize its revenue. The authors show that, as the number of
users increases, the optimal price per unit of bandwidth charged by the service provider may
increase or decrease depending upon the bandwidth of the link. However, for all values of the
link capacity, the overall performance of each user improves and the service provider’s revenue
per unit of bandwidth increases, thus providing an incentive for the service provider to increase
the available bandwidth in proportion to traffic. Although this work provides some theoretically
insight into the problem, no computational procedure is described for its solution.

Bashyam [2] analyzes service design and pricing of business information services in a com-
petitive environment, using game-theoretic concepts. The problem consists in determining the
optimal size of the database, as well as the subscription price they will fix for subscriptions,
taking into account the reaction of subscribers who want to minimize their cost. They con-
sider two types of interactions: monopoly or duopoly, and two types of information delivery
technologies: online service that allows subscribers to access information over online networks,
and package service that delivers information using physical media such as CD-ROM’s. Their
analytical approach investigates the differences in price structure associated with the type of
provided services. In the case of duopoly, they also analyze the class of consumers (high or low
volume consumers) served depending on the size of the database and on prices.

In this paper we focus on a joint design and pricing problem on networks involving multicom-
modity flows. The upper level is concerned with maximizing profit raised from tariffs set on a
subset of arcs which is determined by the leader. This problem can be adequately represented as
a bilevel program and constitutes an extension of the model proposed by Brotcorne et al [3] and
[4] for the determination of optimal tariffs on a single-commodity, respectively multicommodity,
transportation network. This research was initiated by a research in telecommunication. The
specificity of the problem considered here consists in simultaneously determining which connec-
tions are opened and which tariff policy is applied. This differs from our previous work where
only tariff schedule was subject to optimization.

The outline of this paper is as follows. In Section 2, we introduce a mixed-integer bilinear
formulation for the joint design and pricing problem and discuss its properties. In Section 3, we
prove that some lower level constraints can be moved to the first level, thus reducing the size
of the problem. In Section 4, we describe a solution algorithm. Finally numerical results are
presented and analyzed in Section 5.

2 A joint design and pricing model

Let us consider a network based on the underlying graph G = (N,A), with node set N and arc
set A. A node represents either a supply site, a demand site, or the endpoints of an arc on which
goods are carried. The set of arcs is partitioned into two subsets A1 and A2 where A1 denotes the
set of links operated by the leader and A2 the set of links operated by its competitors. With each
arc a ∈ A1, we associate a tariff Ta, to be determined by the leader, a fixed opening cost fa and
an operating cost ca charged to the leader. Arcs in A2 are tariff-free and only bear a unit cost
da which is outside the control of the leader. Demand is modelled by a set K of commodities.
These may represent distinct physical goods or identical physical goods associated with different
points of origin and destination. Each commodity is associated with an origin-destination pair
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(o(k),d(k)). The demand vector bk corresponding to commodity k is specified by:

bk
i =


nk if i = o(k),
−nk if i = d(k),
0 otherwise,

where nk represents the amount of flow of commodity k to be shipped from o(k) to d(k). The
variable xk

a (respectively yk
a) denotes the flow of commodity k on arc a ∈ A1 (respectively

a ∈ A2). The binary variable va, associated with each arc a ∈ A1, indicates whether (va = 1) or
not (va = 0) arc a belongs to the network design.

The leader’s variables are either discrete (design variables) or real-valued (tariffs). Lower
level variables, i.e., flows, are real-valued. Based on the above notation, the joint design and
pricing problem can be formulated as a mixed bilevel program with bilinear objectives and linear
constraints. The commodity flows xk

a and yk
a correspond to an optimal solution of the lower level

linear program parameterized by the upper level tariffs Ta, which is solved on the sub-network
resulting from the binary variables va:

(JDP) max
T,v

∑
k∈K

∑
a∈A1

Tax
k
a −

∑
a∈A1

fava −
∑
k∈K

∑
a∈A1

cax
k
a (1)

s.t. va ∈ {0, 1} ∀a ∈ A1, (2)

where (x, y) is an optimal solution of

min
x,y

∑
k∈K

(
∑

a∈A1

Tax
k
a +

∑
a∈A2

day
k
a) (3)

s.t. Axk + Byk = bk ∀k ∈ K, (4)
xk

a ≤ nkva ∀k ∈ K ∀a ∈ A1, (5)
xk, yk ≥ 0 ∀k ∈ K.

The upper level objective (1) is to maximize total net revenue and is expressed as the difference
between the sum of revenues arising from tariffs Ta and the sum of fixed opening costs and
operating costs. The objective of the lower level problem (3) is to minimize the total cost of the
paths selected by network users. Constraints (5) state that arcs can only be used if they are
open. Constraints (4) represent the flow balance equations.

For specific tariff levels and design variables, the flow repartition for the lower level problem
is given by shortest origin-destination paths on the sub-network composed of tariff-free and tariff
arcs that are open. We assume that, given the choice between paths of equal cost, the path
selected is the one yielding the highest profit for the leader. As in Labbé et al. [7], we also
assume that:

• there cannot exist a tariff schedule that generates profits and simultaneously creates a
negative cost cycle in the network,

• there exists at least one path composed of tariff-free arcs for each origin-destination pair.

These assumptions imply that the lower level optimal solution corresponds to a set of shortest
paths, and that the upper level profit is bounded from above. A feasible upper bound on the
profit is provided by the following proposition.
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Figure 1: Upper bound on the profit not reached at the optimal solution.

Proposition 1. An upper bound on the leader’s profit is the difference between the follower’s
optimal objective corresponding to infinite tariffs, and the optimum value of the classical network
design problem obtained by setting tariffs to ca.

Proof

Let us perform the change of variable T ′ = T − c, which is tantamount to increasing the base
cost of every tariff link a ∈ A1 from 0 to ca at the lower level. For fixed design vector v, the
resulting problem is of the form considered by Labbé et al. [7], who derived the valid upper
bound U − L(v), where U denotes the cost of a lower level solution when access to tariff arcs
is denied (infinite tariffs), and L(v) is the cost of a shortest path solution with T ′

a = 0 and cost
set to ca on each link a ∈ A1. It follows that a valid bound for the value of an optimal solution
to JDP is given by

max
v
{U − L(v)} = U −min

v
{L(v)}, (6)

as claimed. 2

Example

The example of Figure 1 shows that the upper bound need not be reached. In this example,
demand is set to 2 on origin-destination pair 1-2 and to 4 on pair 3-4, while (5,6) is the sole
tariff link. Fixed opening and operating costs for the leader are set, respectively, to 1 and 0.
The optimal solution, corresponding to a profit of 11 units is reached for T5,6 = 2. However the
upper bound on the profit is equal to 40− 23 = 17. 2

Now, taken into account that the entire demand associated with a given OD pair can be
assigned to a single shortest path, one can, without loss of generality, reformulate JDP as:

max
T,v

∑
a∈A1

∑
k∈K

nkTax
k
a −

∑
a∈A1

fava −
∑

a∈A1

∑
k∈K

nkcax
k
a
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s.t. va ∈ {0, 1} ∀a ∈ A1,

min
x,y

∑
k∈K

nk(
∑

a∈A1

Tax
k
a +

∑
a∈A2

day
k
a)

s.t Axk + Byk = ek ∀k ∈ K,

xk
a ≤ va ∀a ∈ A1 ∀k ∈ K, (7)

xk, yk ≥ 0 ∀k ∈ K,

where

ek
i =


1 if i = o(k),

−1 if i = d(k),

0 otherwise.

For fixed design vector v, the resulting problem reduces to a multicommodity toll optimization
problem that can be reformulated as a mixed integer program (see Brotcorne et al. [4]). This
formulation readily extends to a MIP formulation for JDP through incorporation of the design
variables va. In Section 5 (Numerical Results), this formulation is solved using the commercial
software CPLEX and serves as a testbed for our method, on small problem instances.

In the case where there is only one OD pair, JDP reduces to the toll optimization problem
analyzed by Brotcorne et al. ([3], [4]). Indeed, the binary flow variables xa can then replace the
design variables va, and the problem formulation becomes:

max
T,x

∑
a∈A1

nTaxa −
∑

a∈A1

faxa −
∑

a∈A1

ncaxa

s.t. xa ∈ {0, 1} ∀a ∈ A1,

min
x,y

n(
∑

a∈A1

Taxa +
∑

a∈A2

daya)

Ax + By = e,

x, y ≥ 0.

Next one defines modified tariffs T̃a = Ta − 1
nfa − ca and obtains the toll optimization problem:

max
T̃

∑
a∈A1

nT̃axa

min
x,y

∑
a∈A1

(T̃a + ca + fa/n)xa +
∑

a∈A2

daya

s.t. Ax + By = e,

x, y ≥ 0.

Note that dropping the flow integrality constraints at the upper level is justified by the fact that
the lower level constraints are totally unimodular and that it is not in the interest of the leader
to induce noninteger (split) flows.

3 Moving constraints from the lower to the upper level

For general bilevel programs, constraints involving both upper and lower level variables cannot
be moved freely from one level to the other, without altering both the feasible set and the
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optimal solution of the bilevel program. Upper level constraints are transparent to the follower,
and can only be induced through a proper choice of the leader’s tariffs. Even in the simpler case
of linear bilevel programming, the feasible set corresponding to joint upper level constraints may
be disconnected. This explains why the presence of such constraints may seem like a nuisance
from the algorithmic point of view, although the opposite is true for JDP, as we shall see.

By transferring constraints to the lower level, we clearly obtain a relaxation of the original
program. It is a remarkable feature of JDP, and the wider class of bilinear bilevel programs to
which it belongs, that one can perform this operation, which will be exploited in the design of
a solution algorithm.

Proposition 2. Let x, T , c ∈ IRm1, y, d ∈ IRm2, b1 ∈ IRn, b2 a vector of nonnegative compo-
nents in IRr, E,F ∈ IRn×m2 and G a nonnegative matrix in IRr×m1. Then the following bilinear
bilevel programs are equivalent, in the sense that an optimal solution to P1 can be matched to a
feasible solution of P2 with the same objective value, and vice versa.

(P1) max
T

Tx

min
x,y

Tx + dy

s.t. Ex + Fy = b1,
Gx ≤ b2,
x, y ≥ 0,

(P2) max
T

Tx

Gx ≤ b2,

min
x,y

Tx + dy

s.t. Ex + Fy = b1,
x, y ≥ 0.

Proof

Let us replace the lower level problems of P1 and P2 by their respective primal-dual optimality
conditions, where λ and δ are the dual variables associated with constraints of P1 and their
equivalent in P2. This yields

(P1′) max
T,x,y,λ,δ

Tx

s.t. Ex + Fy = b1,
Gx ≤ b2,
λE + δG ≤ T,
λF ≤ d,
(d− λF )y = 0,
(T − λE − δG)x = 0,
δ(b2 −Gx) = 0,
x, y ≥ 0,
δ ≤ 0.

(P2′) max
T,x,y,λ

Tx

s.t. Ex + Fy = b,
Gx ≤ b2,
λE ≤ T,
λF ≤ d,
(d− λF )y = 0,
(T − λE)x = 0,
x, y ≥ 0.

Let (T ?, x?, y?, λ?) be an optimal solution of P2′. By setting δ? = 0, one obtains a solution
(T ?, x?, y?, λ?, 0) of P1′ with the same objective value.

Conversely, let s? = (T ?, x?, y?, λ?, δ?) be an optimal solution of P1′, and consider the solution
s′ = (T ?−δ?G, x?, y?, λ?, 0). By construction (see the sixth constraint of P1′), s′ is feasible for P1′

and also for P2′ (δ = 0). Moreover, from the nonnegativity of the matrix G and the negativity of
δ?, we have that the objective function associated with s′ is at least as good as the one associated
with s?, i.e., is also an optimal solution of P1′. Thus, moving the constraint Gx ≤ b2 does not
reduce the value of the objective. This concludes the proof. 2

Corollary 1. The capacity constraints (5) of JDP can be moved to the upper level.
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Proof

It is sufficient to show that, for fixed design vector v, the resulting pricing problem can be
written in the format P1. This is achieved, very simply, by introducing total arc flow variables

xa =
∑
k∈K

xk
a.

The resulting bilevel program is:

max
T

∑
a∈A1

Taxa −
∑

a∈A1

caxa

min
x,y

∑
a∈A′

1

Taxa +
∑

a∈A2

daya

Axk + Byk = bk ∀k ∈ K,

xk
a ≤ nkva ∀k ∈ K ∀a ∈ A1,

xa =
∑
k∈K

xk
a ∀a ∈ A1,

ya =
∑
k∈K

yk
a ∀a ∈ A2,

xk, yk ≥ 0 ∀k ∈ K,

which is in the required format, with the obvious correspondences between vectors and matrices.
2

4 A solution procedure for JDP

The difficulty in solving JDP is twofold: the presence of binary variables and the complemen-
tarity constraints arising in the optimality conditions of the lower level linear program. In
this section, we propose an iterative algorithm that adapts Lagrangian relaxation to the bilevel
framework. We treat constraints (7) as the ‘complicating’ ones; these are appended to the ob-
jective to form the usual Lagrangian function. To evaluate the dual function, one has to solve
the Lagrangian subproblem, itself an NP-hard toll optimization problem. This latter problem
is solved using a variant of the primal-dual algorithm proposed in Brotcorne et al [3]. More
precisely, the subproblem is reformulated as a single level bilinear problem through the use of
an exact penalty function applied to the lower level complementarity term. Next, we update
sequentially the upper and lower level variables, increasing the penalty parameter when no
progress is achieved. Whenever a basis change occurs at the lower level, tariffs that are optimal
with respect to the new bases are computed. This ‘inverse optimization’ procedure actually
solves a modified multicommodity flow problem.

Let us now detail the procedure. The dual function, for a given nonnegative vector u, is
obtained by solving the bilevel program:

(LSP(u)) L(u) = max
T,v,x,y,λ

∑
a∈A1

∑
k∈K

nkTax
k
a −

∑
a∈A1

fava −
∑

a∈A1

∑
k∈K

nkcax
k
a

+
∑

a∈A1

∑
k∈K

uk
a(va − xk

a)

s.t. va ∈ {0, 1} ∀a ∈ A1,
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min
x,y

∑
k∈K

nk(
∑

a∈A1

Tax
k
a +

∑
a∈A2

day
k
a)

s.t Axk + Byk = ek ∀k ∈ K,

xk, yk ≥ 0 ∀k ∈ K.

Since, for each u ≥ 0, LSP(u) is a relaxation of JDP, the solution L(u) to LSP(u) is an upper
bound on the optimal value of JDP. The best upper bound is obtained by solving the Lagrangian
Dual Problem:

(DL) min{L(u) : u ≥ 0}. (8)

We solve DL using an algorithm inspired from subgradient optimization with a predetermined
stepsize sequence. A subgradient g(u) of L(u) is given by v(u) − x(u), where (v(u), x(u)) is
an optimal partial solution of LSP(u). Since LSP(u) is nonconvex, the computation of an
approximate subgradient is based on a primal-dual algorithm (inner iteration) that will be
described later. The resulting algorithm (outer iteration) is outlined below. The number of
commodities is |K|, γj denotes the step size at iteration, Z∗represents the current best leader’s
objective value and ε is a small value which will be precised in the numerical results section.

ALGORITHM JDP (outer iteration)

Step 0 : (initialization)

- u0
a ← fa/|K|+ ε; Z∗ ← −∞; T 0 ← 0

- (x0, y0) ← an optimal lower level solution corresponding to T 0

- j ← 1

Step j : (outer iteration)

- (T j , vj , xj , yj , λj) ← an approximate solution of LSP(uj−1)

- if solution improved then update Z∗

- uj ← max{0, uj−1 − γj(vj − xj)}

- if stopping criterion is met then halt
else j ← j + 1

The primal-dual heuristic procedure used for solving the bilevel Lagrangian subproblem
LSP(u) is defined as follows. We first replace the lower level program by its primal-dual opti-
mality conditions:

Z(u) = max
T,v,x,y,λ

∑
a∈A1

∑
k∈K

nkTax
k
a −

∑
a∈A1

fava −
∑

a∈A1

∑
k∈K

nkcax
k
a
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+
∑

a∈A1

∑
k∈K

uk
a(va − xk

a)

s.t. va ∈ {0, 1} ∀a ∈ A1,

Axk + Byk = ek ∀k ∈ K,

xk, yk ≥ 0 ∀k ∈ K,

λkA ≤ T ∀k ∈ K,

λkB ≤ d ∀k ∈ K,

nk(Txk + dyk − λkek) = 0 ∀k ∈ K. (9)

Next we penalize the constraints (9) stating the equality of the primal and dual objectives of
the follower’s subproblem, whose left-hand-side is nonnegative whenever (xk, yk) and λk are
feasible for the primal and dual problems and each commodity k ∈ K, respectively. This yields
the bilinear program:

(PEN) max
T,v,x,y,λ

∑
a∈A1

∑
k∈K

nkTax
k
a −

∑
a∈A1

fava −
∑

a∈A1

∑
k∈K

nkcax
k
a

+
∑

a∈A1

∑
k∈K

uk
a(va − xk

a)−M1

∑
k∈K

nk(
∑

a∈A1

Tax
k
a +

∑
a∈A2

day
k
a − λkek)

s.t. va ∈ {0, 1} ∀a ∈ A1,

Axk + Byk = ek ∀k ∈ K,

xk, yk ≥ 0 ∀k ∈ K,

λkA ≤ T ∀k ∈ K,

λkB ≤ d ∀k ∈ K,

where M1 is a large positive number. By rewriting the objective, we obtain the equivalent
formulation

(PEN’) max
T,v,x,y,λ

∑
a∈A1

∑
k∈K

((1−M1)nkTa − uk
a − nkca)xk

a −M1

∑
a∈A2

∑
k∈K

nkday
k
a

+M1

∑
k∈K

nkλkek +
∑

a∈A1

∑
k∈K

(uk
a − fa)va

s.t. va ∈ {0, 1} ∀a ∈ A1,

Axk + Byk = ek ∀k ∈ K,

xk, yk ≥ 0 ∀k ∈ K,

λkA ≤ T ∀k ∈ K,

λkB ≤ d ∀k ∈ K.

This latter problem is separable in v and T, x, y, λ. Binary variables va (a ∈ A1) are simply set
to one if the corresponding term ∑

k∈K

uk
a − fa

is positive. The procedure for solving PEN, which is illustrated in Figure 2, iterates between
the leader’s tariff vector and the follower’s commodity flows xk and yk. The overall aim of
the primal-dual scheme is to induce basis changes for the follower’s problem. In this process,
extremal flow assignments corresponding to distinct values of the tariff vector T are generated,
and we expect one of these combinations to be of high quality for JDP.
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At a given iteration, the tariff vector T solves the penalized problem PEN for fixed flow
vectors xk, yk (Step 1). Next the flow variables on both the tariff and tariff-free arcs solve PEN
for fixed tariff vector T (Step 2); this is achieved by computing shortest paths for all OD pairs.
These solutions can be improved by noting that, for a given lower level flow vector (x, y), one
can derive the profit-maximizing tariff vector that is compatible with (x, y) by solving a simple
linear program (Step 3). The main components of the primal-dual algorithm are made explicit

Figure 2: Primal-dual algorithm for the Lagrangian Subproblem.

below. At Step 0, flows on tariff and tariff-free arcs are initialized at values that achieved the
best leader profit obtained at the previous main iterations. The design vector v is then set to
the optimal solution solution of the problem:

(PEN1(v)) max
v

∑
a∈A1

∑
k∈K

(uk
a − fa)va

s.t. va ∈ {0, 1} ∀a ∈ A1.

At Step 1, for fixed commodity flows xk, let T and λ be solutions of the problem:

(PEN2(T, λ)) max
T,λ

(1−M1)
∑

a∈A1

∑
k∈K

nkxk
aTa + M1

∑
k∈K

nkλkek

s.t. λkA ≤ T ∀k ∈ K,

λkB ≤ d ∀k ∈ K.

This linear program can be easily solved using a linear programming software such as CPLEX.
Its dual is a multicommodity flow problem. At Step 2, the multicommodity flows xk and yk

solve the lower level problem, for fixed tariff vector T .

(PEN3(x, y, λ)) max
x,y,λ

∑
a∈A1

∑
k∈K

((1−M1)nkTa − uk
a − nkca)xk

a

−M1

∑
a∈A2

∑
k∈K

nkday
k
a + M1

∑
k∈K

nkλkek

s.t. Axk + Byk = ek ∀k ∈ K,

xk, yk ≥ 0 ∀k ∈ K,

λkA ≤ T ∀k ∈ K,

λkB ≤ d ∀k ∈ K.
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This problem can be decomposed into a shortest path problem to determine the arc flows xk,
yk and a linear program to obtain λk.

(PEN4(x, y)) max
x,y

∑
a∈A1

∑
k∈K

((1−M1)nkTa − uk
a − nkca)xk

a

−M1

∑
a∈A2

∑
k∈K

nkday
k
a

s.t. Axk + Byk = ek ∀k ∈ K,

xk, yk ≥ 0 ∀k ∈ K.

(PEN5(λ)) max
λ

M1

∑
k∈K

nkλkek

s.t. λkA ≤ T ∀k ∈ K,

λkB ≤ d ∀k ∈ K.

At Step 3, the algorithm computes a common tariff vector that maximizes the total profit of
the leader while maintaining the lower level optimality of the current commodity flows. The
structure of this program is that of an uncapacitated multicommodity network flow problem,
and is thus ‘easy’.

(T-OPT) max
T,λ

∑
a∈A1

∑
k∈K

nkTax
k
a −

∑
a∈A1

∑
k∈K

nkcax
k
a

s.t. λkA ≤ T ∀k ∈ K,

λkB ≤ d ∀k ∈ K,

nk(Txk + dyk − λkek) = 0 ∀k ∈ K.

The algorithm is outlined below, where j denotes the index of the outer iteration, α is a relaxation
factor α ∈ (0, 1) and Z∗ represents the current best objective value.

PRIMAL-DUAL ALGORITHM (inner iteration)

Step 0 : (initialization)

- x0 ← xj−1; γ ∈ [0, 1]

- if
∑

k∈K(uk
a − fa) ≥ 0 then vj

a ← 1 else vj
a ← 0

- l← 1 (minor iteration index)

Step 1 : (computation of Tl and λl)

- for fixed xk
l−1 and yk

l−1, (Tl, λl)← solution of PEN2(T, λ)

Step 2 : (computation of xl and yl)

- solve (PEN4(x, y)) for the tariff vector (1− α)Tl + αTl−1

12



Step 3 : (computation of optimal tariffs for given flows)

if flows are identical to those of some previous iteration
then go to Step 4
else

- T̃ ← optimal solution of T-OPT

- if xla = 1 then ṽa ← 1 else ṽa ← 0

- let Z̃(T̃ , ṽ) = T̃ xl − fṽ − cxl.

- if Z̃ > Z∗ then Z∗ ← Z̃ and (T ∗, v∗, x∗, y∗, λ∗)← (T̃ , ṽ, xl, yl, λl)

Step 4 : (Stopping criterion)

if stopping criterion met then (T j , vj , xj , yj , λj)← (T ∗, v∗, x∗, y∗, λ∗)

else l← l + 1, increase M1 and go to Step 1

5 Numerical Results

The heuristic developed was tested on sets of randomly generated grid networks with 60 nodes
(5 × 12), 208 two-way arcs, 10 , 20 and 40 origin-destination pairs, and where the proportion
of tariff arcs varies from 5% to 20%. Two cost structures, symmetric and asymmetric, are
considered for two-way arcs. The random generation process is described in Brotcorne et al.
[3], while the algorithm is coded in C and implemented on an Enterprise 10 000 workstation.

For the heuristic, the Lagrange multipliers u0
a are initialized to (fa/|K|) + ε where ε is fixed

to 0.01. Such values result in the opening of all tariff arcs at the initial subgradient iteration.
The step length along the subgradient direction is set to 5 and the algorithm is halted as soon as
the profit value of JDP corresponding to (T ∗, v∗, x∗, y∗, λ∗) is not improved after 30 subgradient
iterations. In solving the Lagrangian subproblem, the penalty factor M1 is initialized to 1.3
and incremented by 0.05 at the end of each primal-dual iteration. The number of primal-dual
iterations is set to 20. The setting of these parameters achieves a trade-off between two conflicting
objectives: maximizing the number of bases visited and reducing the time-consuming process
of optimization with respect to each basis. In order to induce basis changes, the parameter γ is
set to a ‘high’ value, namely γ = 0.5.

The numerical results are summarized in Tables 1 to 8. In Tables 1, 2, 5 and 7, 8, the opening
costs are commensurate to link cost and usage. With respect to these basic scenarios, sensitivity
analyses are performed with respect to fixed costs. In Tables 3, 4, 6, each line corresponds to
an average taken over 5 problem instances.

The first column ‘%TA’ of each table provides the percentage of tariff arcs. Label ‘#TA’
refers to the number of tariff arcs with nonzero flow in the final solution. Label ‘DI’ refers to
the index of the subgradient iteration at which the solution was reached. Labels ‘#BAS’ and
‘BOPT’ refer respectively to the number of follower basis met during the iterative process and
the basis number associated with the heuristic solution. Label ‘%OPT’ refers to the ratio of the
heuristic objective over the optimal solution achieved by the mixed integer programming code
CPLEX 8.1, which was halted whenever either a time limit of 8 hours was reached, a node limit
of 400 000 was reached, or memory requirements exceeded one gigabyte. In the case of premature
termination, the optimum value is replaced by the best lower bound achieved. This is indicated
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by a star (*) in the tables’ sixth column. The two ‘CPU’ labels refer to running times expressed
in seconds. The label ‘GAP’ refers to the integrality gap; if the optimal solution is not available,
then GAP is computed with respect to the best integer solution found by CPLEX. Finally, in
Tables 4 and 6, the label ‘NOPT’ refers to the number of problems solved to optimality. For
larger instances, Tables 7, 8, only columns related to the heuristic are reported.

As a general rule, the Lagrangian relaxation scheme produces high-quality solutions quite
rapidly and consistently. Typically, the solutions lie within 5% of optimality. With the exception
of the smallest problems (10 commodities, 5% or 10% tariff arcs) the proposed heuristic is much
faster than the exact MIP algorithm. It has been observed that even if the CPU time required
by the heuristic increases with the percentage of tariff arcs and the number of commodities, this
increase is more modest than for CPLEX.

All 10-commodity instances (except instances with nul fixed cost and 20% of tariff arcs)
could be solved by CPLEX, despite high duality gaps (up to 76.67%). However, running times
grow fast and in an unstable fashion as as the number of tariff arcs is increased from 5% to 20%.
In contrast, Table 1 shows moderate CPU times for the Lagrangian algorithm, for which both
symmetric and asymmetric 20-commodity instances are solved, with no significant decrease in
solution quality (see Table 2). As a general rule, the symmetric instances prove more difficult.
Beyond 20 commodities, these problems could not be solved to optimality by CPLEX.

The sensitivity analyses confirm some intuitive results. For instance, when the ratio of
opening to operating costs is high, most tariff arcs are closed. In this case the combinatorial
structure is ‘weak’ and it is not surprising to observe that CPLEX can solve easily this class of
problems. The converse conclusion holds when this ratio is low.

Upper level envelopes on profit function are given in Tables 4 and 3 for instances with
respectively 40 commodities and 20 commodities. These functions have a similar shape. They
increase sharply at the beginning of the process, and flatten out in the middle and at the end
of the algorithmic process.

6 Conclusion

In this paper, we presented an algorithm for solving a mixed continuous-discrete design problem
that arises naturally when modelling pricing decisions over transportation networks. The algo-
rithm is based on the novel application of Lagrangian relaxation within a bilevel programming
framework, and solved to near-optimality randomly generated instances involving more than
4 000 variables. These encouraging results comfort our belief that this methodology can be
generalized to problems of the same type involving capacities on the links of the network.
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Heuristic Cplex

% TA #TA DI #BAS BOPT %OPT CPU GAP CPU

5 14 44 22 1.00 23 41.73 21
3 16 31 31 1.00 21 22.52 4

5 2 10 75 60 1.00 20 38.11 7
1 19 11 10 1.00 19 13.30 2
3 12 24 23 1.00 18 11.17 3

average 2.8 14.2 37.0 29.2 1.00 20.2 25.37 7.4

4 26 122 120 1.00 31 30.06 23
8 12 93 52 0.92 22 40.49 45

10 4 18 31 29 1.00 21 7.22 5
4 55 333 249 1.00 58 76.67 67
5 11 71 37 1.00 20 69.66 43

average 5.0 24.4 130.0 97.4 0.98 30.4 44.82 36.6

7 29 114 104 1.00 35 9.35 49
4 20 63 57 1.00 23 19.70 64

15 12 24 85 85 1.00 29 3.93 32
6 18 60 49 1.00 23 4.91 8
7 25 114 92 1.00 30 11.31 24

average 7.2 23.2 87.2 77.4 1.00 28.0 9.84 35.4

5 35 167 132 0.95 42 8.27 14
8 44 139 138 1.00 43 13.25 234

20 10 58 343 236 1.00 74 22.88 1509
8 29 160 160 1.00 42 14.97 137
2 41 173 169 1.00 45 35.11 5

average 6.6 41.6 392.8 334.0 0.99 49.2 18.90 379.8

Table 1: Asymmetric networks, 10 commodities
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Heuristic Cplex

% TA #TA DI #BAS BOPT %OPT CPU GAP CPU

6 13 175 78 0.95 55 67.49 921
5 5 11 46 40 1.00 37 27.06 15

4 37 469 454 0.95 119 116.57 247
4 13 26 16 1.00 41 52.89 30
5 24 82 80 1.00 58 43.74 44

average 4.8 19.8 159.6 133.6 0.98 62.0 61.55 251.4

7 53 298 284 0.88 133 82.86 2015
10 7 32 118 106 0.97 77 18.82 855

3 9 234 219 1.00 83 72.80 1048
4 14 23 15 0.99 40 33.96 35
6 27 264 232 1.00 91 56.66 445

average 5.4 27.0 187.4 171.0 0.97 84.8 53.02 879.6

7 41 234 219 1.00 137 58.43 14911
15 9 46 263 230 ∗ 1.24 148 75.2 28983

7 22 139 134 1.00 82 22.36 3209
12 18 105 89 1.00 90 27.99 4842
14 37 239 234 1.00 135 14.30 20455

average 9.8 32.8 196.0 181.2 1.05 118.4 39.65 14480.0

18 44 415 367 1.00 455 25.10 29358
20 10 22 79 74 1.00 79 29.10 908

15 32 258 196 ∗ 1.04 181 24.64 28865
12 37 533 251 ∗ 0.97 392 28.69 29184
8 32 456 294 ∗ 1.11 336 37.89 28919

average 12.6 33.4 348.2 236.4 1.02 268.6 29.08 23446.8

Table 2: Asymmetric networks, 20 commodities
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Heuristic Cplex

fa % TA NOPT #TA DI #BAS BOPT LB/OPT CPU GAP CPU

0 5 5 8.8 0.2 7.6 3.8 0.99 12.0 14.07 14.2
0 10 5 18.4 0.2 8.6 5 0.99 12.8 10.95 56.8
0 15 5 23.6 0.4 6.8 5.2 0.99 13.2 8.58 489.8
0 20 1 31 5.2 6.8 8.0 1.02 17.4 14.30 5070.4

15 5 5 5.0 4.6 30.8 17.6 1.00 15.8 22.97 12.4
15 10 5 9.8 16.0 80.8 51.5 0.99 27.0 22.91 54.17
15 15 5 10.6 22.4 76.4 63.4 0.99 27.2 14.87 198.20
15 20 5 15.0 22.0 119.8 81.4 0.99 38.4 11.54 951.4

30 5 5 2.8 14.2 37.0 29.2 1.00 20.2 25.37 7.4
30 10 5 5.0 24.4 130.0 94.4 0.98 30.4 44.82 36.6
30 15 5 7.2 23.2 87.2 77.4 1.00 28.0 9.84 35.4
30 20 5 6.6 41.6 392.8 334.0 0.99 49.2 18.90 379.8

60 5 5 1.2 11.0 20.6 18.8 1.00 16.2 15.00 10.9
60 10 5 2.4 31.8 137.6 123.4 31.4 65.01 6.8
60 15 5 3.0 43.6 109.6 108 0.99 43.6 24.18 14.6
60 20 5 3.6 33.2 179.4 137 0.98 43.4 35.79 60.4

Table 3: Fixed cost sensitivity: asymmetric networks, 10 commodities
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Heuristic Cplex

fa % TA NOPT #TA DI #BAS BOPT LB/OPT CPU GAP CPU

0 5 5 9.0 0.6 16.0 12.0 0.99 28.4 23.04 1959.6
0 10 3 15.6 0.4 17.6 8.4 1.03 31.8 27.00 8682.0
0 15 0 27.0 16.0 18.2 17.0 1.03 53.4 19.88 15974.0
0 20 0 34.4 0.8 9.8 7.4 1.05 45.6 24.19 16453.4

30 5 5 4.8 19.8 159.6 133.60 0.98 6.02 61.55 251.4
30 10 5 5.4 27.0 187.4 171.2 0.97 84.8 53.02 879.6
30 15 4 9.8 32.8 196.0 181.2 1.05 118.4 39.65 14480.0
30 20 1 12.6 33.4 348.2 236.4 1.02 268.6 29.08 23446.8

60 5 5 2.0 29.2 177.0 165.6 1.00 67.8 89.02 29.6
60 10 5 3.0 33.2 232.4 187.8 0.97 86.6 271.19 35.8
60 15 5 5.6 37.2 317.6 263.6 1.00 140.8 39.87 3500.2
60 20 4 7.0 49.4 466.8 426.4 1.02 314.6 33.04 6561.0

Table 4: Fixed cost sensitivity, asymmetric networks, 20 commodities
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Heuristic Cplex

% TA #TA DI #BAS BOPT %OPT CPU GAP CPU

6 10 46 46 1.00 55 42.90 580
10 2 6 2 1.00 32 45.12 1667

5 6 7 39 34 1.00 42 53.6 961
8 1 63 13 0.97 75 42.97 9220
4 24 55 50 0.93 32 15.30 12

average 6.8 8.8 41.8 29 0.98 47.5 39.98 2488.0

6 16 43 43 0.98 62 26.66 502
9 14 177 106 ∗ 1.00 97 48.59 29057

10 6 30 66 66 1.00 82 35.01 11373
3 16 154 74 0.98 90 41.30 29
9 19 205 123 ∗ 2.38 128 142.96 28951

average 6.6 19 129 82.4 1.27 92.0 58.90 13982.4

6 15 70 63 ∗ 1.00 69 47.60 10560
4 58 284 278 1.00 111 41.08 11094

15 10 28 191 170 ∗ 1.03 98 46.03 29196
13 80 660 645 ∗ 1.22 543 75.12 29285
10 24 238 231 ∗ 1.12 155 51.38 29199

average 8.6 41 288.6 277.4 1.07 195.5 52.242 21866.8

9 32 239 215 ∗ 1.11 223 44.54 29207
8 26 258 168 ∗ 1.53 223 120.86 29301

20 5 26 375 357 1.00 196 18.24 203
9 51 442 397 ∗ 1.09 396 51.32 28917
8 53 383 359 ∗ 0.99 171 24.71 30138

average 7.8 37.6 339.4 299.2 1.14 241.9 51.934 23553.2

Table 5: Symmetric networks, 20 commodities

20



Heuristic Cplex

fa % TA NOPT #TA DI #BAS BOPT LB/OPT CPU GAP CPU

0 5 4 9.6 0.0 9.2 5.6 0.99 27.6 18.99 375
0 10 1 18.6 3.4 10.8 7.4 1.03 3.0 30.79 11941.8
0 15 0 25.4 8.2 14.8 13.6 1.19 47.6 50.07 20458.2
0 20 1 35.8 1.6 19.6 15.8 1.15 52.0 35.86 21470.4

30 5 5 6.8 8.8 41.8 29.0 0.98 47.5 39.98 2488.0
30 10 3 6.6 19.0 129.0 82.4 1.27 92.0 58.90 13982.4
30 15 1 8.6 41.0 288.6 277.4 1.07 195.5 52.242 21866.8
30 20 1 7.8 37.6 339.4 299.2 1.14 241.9 51.934 23553.2

60 5 5 4.2 22.4 86.0 82.8 1.00 63.6 53.39 158.6
60 10 5 3.8 27.0 168.4 154.8 0.98 79.4 40.41 543.8
60 15 3 5.4 38.6 356.2 271.0 0.96 176.0 145.67 12750.8
60 20 4 4.8 46.2 335.6 295.4 1.00 184.0 45.42 6695.6

Table 6: Fixed cost sensitivity: symmetric networks, 20 commodities;
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Heuristic

% TA #TA DI #BAS BOPT OPT CPU

2 30 239 231 118 101
1 17 205 196 92 73

5 4 18 235 234 551 340
5 31 248 209 753 179
6 15 307 259 491 256

average 3.6 22.2 246.8 225.8 401.0 189.8

5 47 172 166 352 112
13 7 455 102 1028 419

10 4 36 711 449 644 331
9 21 428 272 1081 327

10 39 368 364 491 263

average 8.2 30 426.8 270.6 719.2 290.5

9 94 1775 1572 2036 2649
8 46 514 501 1582 466

15 6 42 742 556 573 661
3 57 457 452 270 459

10 23 597 258 931 600

average 7.2 52.4 817 667.8 1078.4 966.8

9 60 1303 928 1294 2322
12 48 980 628 1236 1686

20 13 81 1259 1007 1486 1909
11 76 1236 846 942 2214
2 35 484 484 491 282

average 9.4 60 1052.4 778.6 1089.8 1682.8

Table 7: Asymmetric networks, 40 commodities
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Heuristic

% TA #TA DI #BAS BOPT OPT CPU

6 15 307 259 753 211
4 24 425 321 505 248

5 3 24 288 287 180 196
5 26 355 318 282 228
3 37 259 230 450 180

average 4.2 25.2 326.8 283 434 212.6

3 21 338 319 364 229
4 14 136 95 748 170

10 8 55 873 676 653 640
2 23 412 303 86 300
7 69 1090 829 467 1316

average 4.8 36.4 569.8 444.4 463.6 531.0

6 36 387 378 578 540
3 24 420 345 82 350

15 9 66 1303 1043 819 2053
4 49 858 715 203 741
4 38 464 446 330 406

average 5.2 42.6 686.4 585.4 402.4 818.0

9 44 602 441 1292 1918
6 46 558 512 567 649

20 12 67 1780 1279 2047 4495
14 40 781 470 1324 2409
14 50 830 718 1958 2092

average 11.0 49.4 910.2 684.0 1437.6 2312.6

Table 8: Symmetric networks, 40 commodities
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Figure 3: Network with 20 commodities

Figure 4: Network with 40 commodities
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