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Abstract

Multimedia applications in general and video processing, such as the MPEG4 Visual stream decoders, in particular
are increasingly popular and important workloads for future embedded systems. Due to the high computational
requirements, the need for low power, high performance embedded processors for multimedia applications is growing
very fast. This paper proposes a new data prefetch mechanism called pattern-driven prefetching. PDP inspects the
sequence of data cache misses and detects recurring patterns within that sequence. The patterns that are observed
are based on the notions of the inter-miss stride (memory address stride between two misses) and the inter-miss interval
(number of cycles between two misses). According to the patterns being detected, PDP initiates prefetch actions to
anticipate future accesses and hide memory access latencies. PDP includes a simple yet effective stop criterion to avoid
cache pollution and to reduce the number of additional memory accesses. The additional hardware needed for PDP is
very limited making it an effective prefetch mechanism for embedded systems. In our experimental setup, we use cycle-
level power/performance simulations of the MPEG4 Visual stream decoders from the MoMuSys reference software
with various video streams. Our results show that PDP increases performance by as much as 45%, 24% and 10% for
2KB, 4KB and 8KB data caches, respectively, while the increase in external memory accesses remains under 0.6%.
In conjunction with these performance increases, system-level (on-chip plus off-chip) energy reductions of 20%,
11.5% and 8% are obtained for 2KB, 4KB and 8KB data caches, respectively. In addition, we report significant speed-
ups (up to 160%) for various other multimedia applications. Finally, we also show that PDP outperforms stream
buffers.
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1. Introduction

While there is a lot of work done on prefetching
for general-purpose and scientific applications, the
amount of work done on prefetching for multime-
dia applications, and more in particular MPEG4
Visual stream decoders is rather limited. However,
due to the regular data memory access patterns of
multimedia applications, prefetching techniques
can be employed to significantly improve memory
performance as well as overall performance.

This paper proposes a new data prefetch mech-
anism called pattern-driven prefetching (PDP) spe-
cifically targeted for embedded processors running
MPEG4 Visual stream decoders—the design of
PDP was initially motivated by the memory access
pattern behavior as observed for the MPEG4 Vi-
sual stream decoder from the MoMuSys reference
software; this paper however shows that other
multimedia applications can also benefit from
PDP. The basic idea of PDP is to inspect the se-
quence of data cache misses and to detect patterns
in this sequence. The patterns that we envision
contain information concerning the inter-miss
stride (the memory address stride between two
misses) and the inter-miss interval (the number of
cycles between two misses). Based on these miss
patterns, prefetch actions are initiated. An impor-
tant design issue for prefetchers is to know when to
stop prefetching ahead in order to reduce cache
pollution as well as the number of additional mem-
ory accesses. In PDP, prefetching stops as soon as
(i) a prefetched block was not read before the next
prefetch action is initiated or (ii) another cache
miss occurs.

Our experimental setup uses cycle-level simula-
tions of the MPEG4 Visual stream decoder from
the MoMuSys reference software and various
MPEG4 video streams. Our results show that
PDP reduces the data cache miss rate significantly
over a range of cache sizes: from 13% for a 2KB
cache up to 50% for a 32KB cache. In case PDP
is unable to hide memory latency completely,
PDP reduces the average load latency (up to 2.5·
for the 2KB cache). This translates itself in signif-
icant performance increases: 45% for a 2KB D-
cache, 24% for a 4KB D-cache and 10% for an
8KB D-cache. This leads to the interesting obser-
vation that a 2KB D-cache enhanced with PDP
outperforms a 4KB D-cache without PDP by as
much as 15%. We show that the increase in exter-
nal memory accesses due to PDP is limited to less
than 0.6%. The reduction in energy consumption
(on-chip plus off-chip) due to PDP is significant
as well: up to 20% for a 2KB D-cache, 12% for a
4KB D-cache and 6% for an 8KB D-cache. In
addition, various experiments show that PDP also
improves performance for other multimedia appli-
cations. We report significant speedups of up to
160%. Finally, we also compare PDP versus
stream buffers and conclude that PDP yields high-
er speedup and requires orders of magnitude less
additional external memory accesses.

This paper extends [11] in several ways: (i) we
study the miss patterns in more details, (ii) we
present a new stop criterion for our prefetch mech-
anism which significantly improves performance
due to reduced cache pollution with newly pre-
fetched blocks and which in addition minimizes
the number of additional memory accesses, (iii)
we evaluate PDP on a number of multimedia
applications other than the MPEG4 Visual stream
decoder, (iv) we now consider on-chip as well as
off-chip energy consumption when presenting en-
ergy results—this gives a more faithful view on
the overall system energy savings due to PDP;
[11] only considered on-chip energy consump-
tion—and (v) we compare PDP versus the stream
buffer.

The remainder of this paper is organized as fol-
lows. We first discuss related work on data pre-
fetching for multimedia applications. In Section
3, we study the memory access patterns of the
MPEG4 Visual stream decoder and show that
the miss patterns are regular and can thus be used
to drive our prefetch mechanism called PDP which
is presented in Section 4. Section 5 details our
experimental setup and Section 6 presents our re-
sults. Finally, we conclude in Section 7.
2. Related work

A large body of literature is devoted to data
prefetching for scientific and general-purpose
applications. Various authors have proposed soft-
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ware prefetching as well as hardware prefetching
techniques. Software prefetching [5] relies on stat-
ically inserting prefetch instructions into the bin-
ary of an application. These prefetch instructions
load the requested data from memory well in ad-
vance of the corresponding load instruction that
will access the same memory location. There are
a number of issues related to software prefetching,
namely the selection of loads for which to generate
prefetches and the scheduling of these prefetch
instructions sufficiently early to hide the memory
latency.

Hardware prefetching on the other hand, ob-
serves the run-time memory behavior of the appli-
cation and initiates prefetch actions according to
anticipated future memory accesses. Unlike soft-
ware prefetching, hardware prefetching does not
incur additional instruction overhead, but lacks
information about future memory references that
is potentially available at compile time.

In this paper, we consider hardware prefetching
for embedded systems running MPEG4 Visual
stream decoders. The amount of work done on
prefetching for multimedia applications, and more
in particular MPEG-like applications is rather
limited.

Zucker et al. [14] studied hardware and soft-
ware prefetching for MPEG applications. They
compared three hardware prefetch approaches
(the stream buffer [7,9], the stride prediction table
[6] and the stream cache [6]) versus a newly pro-
posed software prefetching approach. In their
evaluation and in contrast to this work, they only
used the fraction of eliminated misses as a perfor-
mance metric; we also consider overall perfor-
mance measured in the number of instructions
executed per cycle (IPC). Another important dif-
ference between this paper and the work done by
Zucker et al. [14] is the fact that they assumed an
infinite memory bandwidth and did not consider
energy consumption; we consider the amount of
additional memory accesses as well as the overall
energy consumption as important design issues
for our prefetch mechanism.

McKee et al. [8] investigated the performance
bottlenecks of MPEG4 applications on general-
purpose microprocessors without single-instruc-
tion-multiple-data (SIMD) support. Based on
experiments done on real MIPS hardware, they
conclude that MPEG4 is mainly computation
bound (not memory bound) and thus will not ben-
efit from memory system optimizations. Their
study was done on general-purpose microproces-
sors having fairly large caches, namely 32KB. In
this paper however, we show that on resource-lim-
ited embedded systems, MPEG4 Visual stream
decoders can benefit significantly from data pre-
fetching, more in particular PDP.

A well known problem with prefetching is cache
pollution, i.e., prefetch data replacing other data in
the cache that will be used in the future by the pro-
cessor. Cache pollution is especially a problem for
small caches since it seriously degrades overall per-
formance. This problem can be addressed by add-
ing a hardware structure to hold prefetch data as is
the case for stream buffers. In some circumstances,
adding additional hardware is not always a viable
solution and therefore Reungsang et al. [10] pro-
pose the fixed prefetch block approach which limits
the number of prefetch blocks in the cache to one
single block per set in the cache. In this paper, we
address the cache pollution problem using our
stop criterion which stops prefetching when the
previously prefetched block remains untouched
when the next prefetch is to be initiated.

In [13], Tang et al. compare fetch size adapta-
tion versus stream buffers for media applications.
In fetch size adaptation, the cache line size is ad-
justed according to the spatial behavior of the
application execution. Large line sizes are used
when good spatial locality is detected and small
line sizes are used when poor spatial locality is de-
tected. Different line sizes can co-exist at the same
time. Their comparison shows that fetch size adap-
tation performs equally well as stream buffers.
3. Memory access patterns in MPEG applications

As stated in Section 1, our prefetch mechanism
uses data cache miss patterns to drive the prefetch-
ing. In order to gain a better understanding on
those cache miss patterns, we first introduce a
number of concepts. We define the inter-miss stride

as the distance in the memory addresses between
two consecutive cache misses. If a memory access
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Fig. 1. The percentage of first-, second- and third-order miss
patterns relative to the total number of cache misses for QCIF
foreman (FQ) and container (CQ) video streams. This is shown
for different cache sizes.
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to address X causes a cache miss and if the next
cache miss is caused by an access to memory ad-
dress Y, then the inter-miss stride is computed as
S = Y � X. We also define the inter-miss interval

as the number of clock cycles between two consec-
utive cache misses. If a cache miss occurs at time
TX and if the next cache miss occurs at time TY,
the inter-miss interval is I = TY � TX. This can
be implemented using a hardware counter: it is
incremented each clock cycle and is reset to zero
on a cache miss. Note that the inter-miss interval
does not include the latency for servicing the cache
miss. For example, if a cache miss occurs at t10 and
the next cache miss occurs at t65 with a memory ac-
cess latency of 30 cycles, then the inter-miss inter-
val equals 25 cycles.

Based on the inter-miss stride and the inter-miss
interval we now define the concept of the m-order

miss pattern. Consider a sequence of inter-miss
strides S0,S1, . . . ,Sn�1 and a corresponding se-
quence of inter-miss intervals I0, I1, . . . , In�1. An
m-order miss pattern of length n is then defined as

(hS0, I0i hS1, I1i� � �hSm�1, Im-1i)
(hSm, Imi hSm+1, Im+1i� � �hS2Æm�1, I2Æm�1i)� � �
(hSnÆm, InÆmi
hSnÆm+1, InÆm+1i� � �hS(n+1)m�1, I(n+1)m�1i)

with the following properties:

• S0 = Sm = � � � = SnÆm and I0 = Im = � � � = InÆm

• S1 = Sm+1 = � � � = SnÆm+1 and I1 = Im+1 = � � � =
InÆm+1

• � � �
• Sm�1 = S2Æm�1 = � � � = S(n+1)m�1 and

Im�1 = I2Æm+1 = � � � = I(n+1)m�1.

For instance, a sequence of second-order miss pat-
terns of length n is defined as

(hS0, I0i hS1, I1i)
(hS2, I2i hS3, I3i) � � �
(hS2Æn, I2Æni hS2Æn+1, I2Æn+1i)

with S0 = S2 = � � � = S2Æn, S1 = S3 = � � � = S2Æn+1,
I0 = I2 = � � � = I2Æn, and I1 = I3 = � � � = I2Æn+1. A
concrete example of a second-order pattern of
length 3 could be the following inter-miss stride
sequence 8,4,8,4,8,4 and the corresponding inter-
miss interval sequence 40,50,40,50,40,50.

Note that in the above definition of an m-order
miss pattern, we require that the inter-miss inter-
vals be equal. In practice though, approximate
equality of the inter-miss intervals is sufficient.

Fig. 1 shows the miss patterns that are observed
for the MPEG4 Visual stream decoder using the
foreman and container QCIF video streams (we
refer to Section 4 for a detailed description of the
experimental setup). The results for the other
video streams are very similar. This graph shows
the percentage of first-, second- and third-order
miss patterns. For example, for the 16KB cache,
30% of all cache misses are first-order miss pat-
terns, 19% are second-order miss patterns, and
3% are third-order miss patterns. Figs. 2–4 show
the pattern length distribution for the first-, sec-
ond- and third-order miss patterns, respectively,
for the foreman QCIF video stream. For example,
for the 16KB D-cache, see Fig. 2, we observe that
55% of the first-order miss patterns have a pattern
length between 1000 and 2000, and 20% have a
pattern length between 100 and 500. For the sec-
ond-order miss patterns, the pattern length seems
to be fairly large. The third-order miss patterns
on the other hand, have significantly shorter pat-
tern lengths (see Fig. 4). We conclude from this
section that the cache miss patterns that are ob-
served are simple, repetitive and have a fairly long
period. As such, we can exploit this notion to drive
the prefetch mechanism.
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4. PDP: Pattern-driven prefetching

PDP exploits the m-order miss patterns as ob-
served in the data memory access behavior of the
MPEG4 Visual stream decoder. PDP adapts itself
dynamically to the different inter-miss strides and
to the different inter-miss intervals. Our prefetch
mechanism is based on two hardware units: the
miss pattern detector and the block loader. The
miss pattern detector detects the beginning of an
m-order miss pattern. Once a miss pattern is de-
tected, the block loader prefetches ahead.

To detect the beginning of the first-order miss
pattern, the miss pattern detector compares two
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consecutive inter-miss strides S0 and S1, and their
corresponding inter-miss intervals I0 and I1. If they
are equal to each other, i.e., S0 = S1 and I0 = I1

(recall that approximate equality of inter-miss
intervals is sufficient), this indicates the beginning
of a new first-order miss pattern, namely (hS, Ii
hS, Ii� � �). Detecting the beginning of a higher-or-
der miss pattern is similar. In our evaluation setup
we only consider first- and second-order miss pat-
terns; we do not consider third-order miss patterns
because of their low occurrence (less than 3.5%,
see Fig. 1).

The block loader initiates a prefetch operation
within c clock cycles after the occurrence of a miss,
with c the inter-miss interval minus the main mem-
ory latency. The address to prefetch from is ob-
tained from the memory address that caused the
last miss plus the inter-miss stride. Note that under
given circumstances main memory latency can be
bigger than the inter-miss interval. In that case,
the prefetch action is initiated immediately after
the current cache miss. By doing so, fetching the
cache block is anticipated which reduces the aver-
age load latency and which in its turn improves
performance significantly.

There are two conditions under which PDP
stops prefetching. First, when a new cache miss oc-
curs; this suggests that the current miss does not
correspond well to the previously detected miss
pattern. Second, when the line that is prefetched
is not accessed before the next prefetch action is
initiated. This stop condition involves one single
flip-flop that is set on each prefetch and reset on
each access to the most recently prefetched cache
line. If this flip-flop is still set when a new prefetch
action is initiated, prefetching is stopped. This sec-
ond stop criterion eliminates prefetching ahead
when the miss pattern does no longer occur. Note
that PDP for first-order and second-order miss
patterns requires very little additional hardware:

• two adders to calculate the inter-miss strides
and intervals,

• four comparators to detect first-order and sec-
ond-order miss patterns,

• six registers to hold the latest cache miss
addresses, inter-miss strides and inter-miss
intervals,
• two adders to calculate the next prefetch
address and the cycle to initiate the next pre-
fetch action.
5. Experimental setup

In this paper, we use Sim-Panalyzer1 which is a
power/performance simulator for the ARM ISA
based on the SimpleScalar simulator [4]. The pro-
cessor simulation model closely resembles the Intel
XScale microprocessor [1] (see Table 1). For the
data cache, we considered five different configura-
tions ranging from 2KB to 32KB in order to quan-
tify the sensitivity of our prefetch mechanism to
the cache configuration (see Table 2). Further,
we assume a non-blocking cache which means no
multiple outstanding cache misses are sup-
ported—this is a viable assumption for many
contemporary embedded processor systems. Sim-
Panalyzer computes performance as well as energy
consumption from cycle-level simulations. Since
Sim-Panalyzer only calculates on-chip energy con-
sumption, we extended Sim-Panalyzer to also
incorporate energy consumption due to accesses
to (off-chip) main memory as well. This is done
by adding 4.95 nJ per access to main memory.
As such, for a line size L, the additional energy
consumption for a cache miss is 4.95 nJ Æ L. This
memory energy consumption model is taken from
[12].

For the MPEG4 Visual stream decoder, we use
the MoMuSys reference software (version 2, ISO/
IEC 14496-5:2001) [2,3]. We use three different
video sequences as input from three different levels
of complexity: foreman, news, and container. The
frame resolutions are CIF (352 · 288) and QCIF
(176 · 144). These small frame sizes are typical
for embedded systems given the small displays of
portable devices. For each of those videos and
for each of those resolutions, we decode four
VOPs: I, P, P and P. We only decode four frames
because the variability between different frames
from the same type is relatively small. In other
words, we can drastically reduce the total simula-

http://www.eecs.umich.edu/~panalyzer


Table 1
Micro-architecture configuration simulation model

IFQ, RUU and LSQ sizes 8
Branch predictor 128-entry bimodal and 128-entry

direct-mapped BTB
Processor width 1 decode, 2 issue and 2 commit
L1 instruction cache 32KB 32-way set-associative

with 32 byte blocks
Memory access latency 32
Memory access bus width 8
Functional units 1 integer ALU, 1 integer

multiply, 1 data memory port,
1 floating-point ALU and 1
floating-point multiply

Execution mode in-order

Table 2
Data cache configurations

Data cache size # of sets Line size Associativity

2KB 128 16 1
4KB 256 16 1
8KB 256 16 2
16KB 256 32 2
32KB 256 32 4
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tion time without sacrificing accuracy by only sim-
ulating four VOPs.
6. Results

In this section, we evaluate PDP. We first show
by how much PDP removes cache miss patterns,
and by how much PDP reduces the data cache
miss rate and average load latency. Second, we
quantify the performance speedup gained from
PDP. Third, we measure the amount of additional
external memory accesses due to PDP. Fourth, we
show that PDP reduces system-level energy con-
sumption. Fifth, we evaluate PDP for multimedia
applications other than the MPEG4 Visual stream
decoder. Finally, we compare PDP versus stream
buffer prefetching.

6.1. Data cache miss rate

Fig. 5 shows miss pattern percentages that are
eliminated by applying PDP. We observe that
PDP is capable of removing more than 60% of
all first- and second-order miss patterns. The
remaining 40% miss patterns that are still present
even after applying PDP, are due to the following
reasons. First, miss patterns of unit length cannot
be removed by our prefetching mechanism; PDP
has to detect the miss patterns before it can initiate
prefetches. Second, by applying PDP new miss
patterns may be introduced. This is due to the fact
that PDP removes cache misses thereby introduc-
ing new cache miss patterns which remain unde-
tected by PDP. Fig. 6 shows the pattern lengths
of the first-order miss patterns that remain after
applying PDP. We observe that the pattern length
of the remaining first-order miss patterns is very
short, typically smaller than 10–20. For the sec-
ond-order miss patterns, we observed that PDP
is capable of eliminating all miss patterns with a
length longer than 1.

Fig. 7 shows the reduction in data cache miss
rate (in percent point) due to applying PDP. Fig.
8 shows the same data relative to the data cache
miss rate (in percentage). As expected, the data
cache miss rate decreases for larger caches; for a
2KB cache, the cache miss rate is around 6%
whereas for the 32KB cache the miss rate varies
between 0.5% and 1%. The number of cache misses
eliminated through PDP also decreases for larger
cache sizes (Fig. 7). However, relative to the cache
miss rate, the percentage of eliminated cache
misses increases (see Fig. 8). This is to be expected
given the large number of miss patterns for larger
cache sizes (see Fig. 1). We observe that for larger
cache sizes, 16KB and 32KB, PDP removes
around 33% and 45% of the data cache misses,
respectively. For smaller cache sizes, 2KB to
8KB caches, the reduction in data cache miss rate
varies from 12% to 17%.

6.2. Average load latency

In the previous section, we quantified the reduc-
tion in data cache miss rate through PDP. How-
ever, in practice it may be the case that PDP
does not completely hide the memory latency on
a cache miss, however, PDP can hide a substantial
portion of the memory latency. Consider for
example the case where the memory latency M is
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larger than the inter-miss interval I, i.e., M > I. In
that case, PDP is unable to timely prefetch the
cache block from memory into the cache—a timely
prefetch requires that M 6 I. (Recall that the pre-
fetch is initiated after the previous cache miss; and
the cache is a non-blocking cache.) In case M > I,
PDP will hide I cycles of the memory latency M.

Fig. 9 quantifies the average load latency reduc-
tion through PDP. This graph clearly shows that
PDP substantially reduces the average load la-
tency, up to 2.5· for the 2KB cache.

6.3. Performance

Fig. 10 shows the IPC improvement in percent-
age relative to the baseline IPC (without prefetch-
ing). Fig. 11 shows the improvement in raw
IPC over the baseline configuration without
prefetching.
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For the smallest cache size (2KB), PDP im-
proves performance by 40–45%; this is because of
the significant reduction in the average load latency
(see Fig. 9). For the 4KB and 8KB cache, perfor-
mance is improved by 20–25% and 10–12%, respec-
tively. For the largest cache sizes (16KB and
32KB), the improvement in IPC is in the range of
1–2.5%. The reason why the IPC improvement
for larger cache sizes is limited is due to the limited
reduction in the average load latency (see Fig. 9).
An interesting observation that can be made from
Fig. 11 is that the performance for the 2KB cache
plus PDP is better (by 12–15%) than for the 4KB
cache without PDP. Similarly, the performance
for the 4KB cache plus PDP is better (by 2–4%)
than for the 8KB cache without PDP. As such,
we conclude that for small caches, enhancing the
memory subsystem with PDP is a better design op-
tion than doubling the size of the cache.
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6.4. External memory accesses

It is well known that prefetching introduces
additional accesses to higher levels in the memory
hierarchy. The stop criterion is crucial in this re-
spect to timely stop prefetching so that the number
of external memory accesses is limited. This is an
important issue when taking energy consumption
into account. Accesses to external memory are
costly due to the energy consumed on the bus as
well as in external memory. As such, it is impor-
tant to limit the amount of additional external
memory accesses. Fig. 12 depicts the increase in
external memory accesses due to PDP. We observe
that the number of external memory accesses only
slightly increases by a maximum of 0.6%.
6.5. Energy consumption

Fig. 13 shows the energy consumption reduc-
tions that are obtained through PDP. Recall that
these numbers are overall system (on-chip plus
off-chip) energy reductions. For the smallest data
cache size (2KB), the energy reduction is as high
as 20%. For the 4KB data cache, the energy reduc-
tion varies around 11.5%; for the 8KB data cache,
an energy reduction is achieved of around 7%.
Note that the energy consumption reduction, for
example 20% for the 2KB cache, is not as high
as the IPC increase which is 40% for the same
example. This is due to the fact that the total exe-
cution time reduces proportionally to the increase
in IPC thereby reducing the energy consumption.
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However, due to the higher IPC, the energy con-
sumption per cycle increases. By consequence, an
increase in IPC does not result in a proportional
decrease in energy consumption.

6.6. PDP for other multimedia applications

As mentioned in the introduction, the design of
PDP was initially motivated by the cache miss pat-
terns as observed in the MPEG4 Visual stream de-
coder. Until now, we only considered the MPEG4
Visual stream decoder as our benchmark. The pur-
pose of this section is to verify whether PDP could
also be used for multimedia applications other
than the MPEG4 Visual stream decoder. We con-
sidered a selection of MediaBench I and II bench-
marks [15] in our analysis. Intuitively, PDP should
work well if cache miss patterns exist in other mul-
timedia applications. As such, a first step in our
analysis is to verify whether cache miss patterns
exist. For the benchmarks that we studied we ob-
served at least three benchmarks exhibiting a sig-
nificant amount of cache miss patterns, namely
epic, unepic and ghostview (see Fig. 14). Fig. 15
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shows the performance speedup obtained from
PDP. For unepic and a 4KB cache we observe a
speedup up to 160%. Fig. 16 quantifies the increase
in external memory accesses in terms of percent-
age. Again, we observe that PDP incurs a very
small increase in external memory accesses, less
than 1%. It is also important to note that the per-
formance for the other multimedia applications
having a small number of cache miss patterns
(not shown here) was unaffected by PDP.

6.7. Comparing PDP versus stream buffer

In this section we present a comparison of PDP
versus stream buffers. A stream buffer, as originally
proposed by Jouppi [7], is a FIFO buffer that pre-
fetches a stream of sequential cache blocks. On a
cache miss, the stream buffer initiates a prefetch
of the next sequential cache block. The stream buf-
fer then continues prefetching sequential cache
blocks, as memory bandwidth permits, until the
stream buffer is full. We evaluated the stream buffer
for a different number of entries (from 2 to 8). We
only present the results for 2 entries since the per-
formance of 4 and 8 entries was very close to 2 en-
tries; and the 2-entry stream buffer results in
significantly fewer external memory accesses. Fig.
17 shows the performance improvements obtained
by PDP versus stream buffers; PDP clearly attains
higher performance improvements (42% for a
2KB cache) than the stream buffer (29% for a
2KB cache). Fig. 18 shows the reduction in data
cache miss rates (note that we consider a hit in
the stream buffer as a hit in the cache). PDP clearly
attains higher cache miss rate reductions for larger
caches. For smaller caches (2KB and 4KB) how-
ever, the cache miss rate reduction is similar for
PDP versus the stream buffer. Note that although
the cache miss rate reduction is similar for small ca-
ches, the IPC improvement is much higher for PDP
than for the stream buffer. This is due to the signif-
icantly lower number of additional external mem-
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ory accesses for PDP compared to the stream buf-
fer. These additional external memory accesses oc-
cupy the external bus and by consequence increase
the average memory access time. We measured an
up to 70% increase in external memory accesses
for the stream buffer; recall that the number of
additional external accesses was less than 1% for
PDP. This obviously also has a positive effect on
overall energy consumption since PDP has less
bus accesses and less external memory accesses.
This makes PDP a better design option than the
stream buffer for embedded processors.
7. Conclusion

In this paper we have proposed a simple data
prefetch mechanism called PDP that was shown
to be effective for video processing (the MPEG4
Visual stream decoder in our setup) as well as
other multimedia applications running on con-
strained embedded processors. The basic idea of
PDP is to detect miss patterns in the sequence of
data cache misses. These miss patterns are based
on the inter-miss stride (the memory address stride
between two data cache misses) and the inter-miss
interval (the number of clock cycles between two
data cache misses). We have defined the concept
of the m-order miss pattern. These miss patterns
are exploited in PDP to drive the prefetch mecha-
nism, i.e., when a miss pattern is detected, a pre-
fetch action is initiated. One particular important
design issue for our PDP mechanism was the stop
criterion in order to reduce cache pollution and the
number of additional memory accesses (typically
less than 1%). Experimental results using cycle-le-
vel power/performance simulations running vari-
ous MPEG4 video streams show that significant
performance increases and energy decreases can
be obtained using PDP for embedded processors.
For example, a 40%, 20% and 10% performance
increase in conjunction with a 17%, 10% and 5%
overall system (on-chip plus off-chip) energy
reductions are observed for 2KB, 4KB and 8KB
caches, respectively. Our experimental results indi-
cate that multimedia applications (other than the
MPEG4 Visual stream decoder for which PDP
was initially designed) can also benefit significantly
from PDP; we report performance improvements
up to 160%. Finally, we compared PDP versus
stream buffer prefetching. We conclude that the
performance improvement obtained through
PDP is significantly higher than for the stream buf-
fer. This is mainly due to the lower number of
additional external memory accesses for PDP com-
pared to the stream buffer.
Acknowledgements

The authors would like to thank the anony-
mous reviewers for their helpful comments. This
research was made possible through the Tournesol
project for research exchange between Flanders
and France.
References

[1] Intel corporation, The Intel XScale microarchitecture
technical summary. Available from: <ftp://down-
load.intl.com/design/intelxscale/XSacleDatasheet4.pdf>.

[2] International Standard ISO/IEC 14496-2, Information
Technology—Coding of Audio–Visual Objects—Part 2:
Visual, second ed., 2001-12-01.

[3] International Standard ISO/IEC 14496-5, Reference Soft-
ware, second ed., 2001-12-15.

[4] D. Burger, T.M Austin, The SimpleScalar tool set, version
2.0, Computer Architecture News (June) (1997) 13–25.

[5] D. Callahan, K. Kennedy, A. Porterfield, Software pre-
fetching, in: Proceedings of the 4th International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems, 1991, pp. 40–52.

[6] J. Fu, J. Patel, B. Janssens, Stride directed prefetching in
scalar processors, in: Proceedings of the 25th International
Symposium on Microarchitecture, December 1992, pp.
102–110.

[7] N.P. Jouppi, Improving direct-mapped cache performance
by the addition of a small fully-associative cache and
prefetch buffers, in: Proceedings of the 17th Annual
International Symposium on Computer Architecture,
May 1990, pp. 364–373.

[8] S. McKee, Z. Fang, M. Valero, An MPEG-4 performance
study for non-SIMD, general purpose architectures, in:
Proceedings of the 2003 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS-
2003), March 2003.

[9] S. Palacharla, R.E. Kessler, Evaluating stream buffers as a
secondary cache replacement, in: Proceedings of the 21st
Annual International Symposium on Computer Architec-
ture, April 1994, pp. 24–33.



212 H. Sbeyti et al. / Journal of Systems Architecture 52 (2006) 199–212
[10] P. Reungsang, S.K. Park, S.-W. Jeong, H.-L. Roh, G. Lee,
Reducing cache pollution of prefetching in a small data
cache, in: Proceedings of the International Conference on
Computer Design: VLSI in Computers and Processors,
September 2001, pp. 530–533.

[11] H. Sbeyti, S. Niar, L. Eeckhout, Adaptive prefetching for
multimedia applications in embedded systems, in: Proceed-
ings of the 2004 Design, Automation and Test in Europe
Conference and Exhibition (DATE�04), Vol. 1, February
2004, pp. 1350–1351.

[12] W.-T. Shiue, C. Chakrabarti, Memory exploration for low
power embedded systems, in: Proceedings of the 36th
Annual ACM IEEE Design Automation Conference
(DAC), June 1999, pp. 140–145.

[13] W. Tang, R. Gupta, A. Nicolau, A. Veidenbaum, Fetch
size adaptation vs. stream buffer for media benchmarks, in:
Third Workshop on Media and Streaming Processors (in
conjunction with MICRO-34), December 2001.

[14] D.F. Zucker, R.B. Lee, M.J. Flynn, Hardware and
software cache prefetching techniques for MPEG bench-
marks, IEEE Transactions on Circuits and Systems for
Video Technology 10 (5) (2000) 782–796.

[15] C.Lee, M. Potkonjak, W.H. Mangione-Smith, Media-
Bench: a tool for evaluating and synthesizing multimedia
and communications systems, in: Proceedings of the 30th
International Annual Conference on Microarchitecture,
December 1997, pp. 330–335.

Hassan M. Sbeyti received the Dipl.-
Ing degree in Electrical Engineering
and Information Science form the
Ruhr Universitt Bochum (Germany) in
1993. He worked many years in the
development of PC I/O devices and
their drivers. In 2001, he received the
DEA (Masters) in Informatics, Mod-
eling and Intensive Calculation from
AUF and the Lebanese University in
Beirut. He started his PhD at the
University of Valenciennes (ISTV, LAMIH ROI) in 2002. His
main research interests include computer architecture and
memory optimization of embedded systems.

Smail Niar obtained his PhD degree in
Computer Science from the University
of Lille, France, in 1999. He currently
is an associate professor in computer
science at the University of Valenci-
ennes, France. His main area of
research is computer architecture. He is
interested by all aspects of the design
and evaluation of computer systems
for high performance as well as for
embedded systems.
Lieven Eeckhout was born in Kortrijk,
Belgium in 1975. He received the
Engineering degree and PhD degree in
Computer Science from Ghent Uni-
versity, Belgium, in 1998 and 2002,
respectively. Lieven Eeckhout cur-
rently is a Postdoctoral Fellow of the
Fund for Scientific Research—Flan-
ders (Belgium) (F.W.O.—Vlaanderen).
His research interests include computer
architecture, performance analysis and

workload characterization.


	Pattern-driven prefetching for multimedia applications on embedded processors
	Introduction
	Related work
	Memory access patterns in MPEG applications
	PDP: Pattern-driven prefetching
	Experimental setup
	Results
	Data cache miss rate
	Average load latency
	Performance
	External memory accesses
	Energy consumption
	PDP for other multimedia applications
	Comparing PDP versus stream buffer

	Conclusion
	Acknowledgements
	References


