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We consider a bilevel programming formulation of a freight tariff-setting problem where the
leader consists in one among a group of competing carriers and the follower is a shipper. At the
upper level, the leader’s revenue corresponds to the total tariffs levied, whereas the shipper
minimizes its transportation cost, given the tariff schedule set by the leader. We propose for this
problem a class of heuristic procedures whose relative efficiencies, on small problem instances,
could be validated with respect to optimal solutions obtained from a mixed integer reformula-
tion of the mathematical model. We also present numerical results on large instances that could
not be solved to optimality by an exact method.

This work is devoted to a tariff-setting problem
involving two decision makers acting non-coopera-
tively and in a sequential way. We focus our atten-
tion on a freight transportation application. In this
context, a shipper company (the follower) is set to
ship a prescribed amount of goods from origin nodes
to its customers at minimum cost. Supply at the
origin nodes and demand from the customers are
both assumed to be known and fixed. Hence, for a
given tariff schedule, the shipper’s problem consists
of satisfying demand at the lowest possible cost. The
ensuing flow repartition is obtained by solving a
standard transshipment problem where the tariffs
are added to the initial arc costs. This is the lower
level problem.

At the upper level, a given carrier (the leader)
strives to maximize its revenues by setting optimal
tariffs on the subset of arcs in its control. This car-
rier assumes no reaction from its competitors, but
explicitly takes into account the reaction of the ship-
per company to its price schedule. The remaining
carriers may represent different transportation
modes or agents within a mode. We explicitly divide
the freight rates on the links controlled by the leader
carrier into two parts: the carrier’s operating costs
and an additional tariff. The unit profit associated
with a given link is obtained by subtracting the unit
operating cost from the unit freight rate.

This sequential and non-cooperative decision-
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making process can be adequately represented as a
bilevel program where the upper level objective is
bilinear and the lower level’s bilinear objective is
actually a linear program parameterized by the up-
per level decision vector. This constitutes a particu-
lar case of the general taxation model introduced by
LABBÉ, MARCOTTE, and SAVARD (1998). This paper
focuses on algorithms aimed at solving large-scale
instances of this NP-hard problem.

Until recently, the literature on freight networks
mainly focused on the freight network equilibrium
problem, without addressing the problem of what
tariffs carriers should charge (cf., for example,
HARKER, 1988; MARCOTTE, 1987). However, with the
current emphasis on deregulation, it makes sense to
consider the carriers as active players in a game.
Game theory provides a framework for analyzing
the interactions between the carriers. More pre-
cisely, the routing of freight flows between supply
and demand sites, and the tariffs and service levels
set by the carriers, are determined by assuming that
the shippers minimize their respective transporta-
tion costs and that the carriers maximize their re-
spective profits, taking into account the response of
the shippers. For instance, FRIESZ, GOTTFRIED, and
MORLOK (1986) propose a sequential shipper–car-
rier model. Shippers first select sites to purchase
goods and the transportation agents who will ship
the goods to the desired destinations to minimize
their cost. This determines the transportation de-
mand. Then, carriers respond by routing freight on
the links of the network to minimize the total oper-
ation cost. In this model, tariffs are a constant frac-
tion of the cost incurred by carriers and conse-
quently not a decision variable for the agents. FISK

(1986) proposes a model where one or several com-
peting carriers achieve, through the selection of tar-
iffs and levels of service, a Nash equilibrium of the
resulting oligopolistic market. The demand side cor-
responds to production plants selecting carriers and
routes to move their products to destinations at low-
est cost. No procedure has been proposed to solve
this difficult problem, which subsumes ours.

More recently, HURLEY AND PETERSEN (1994a,b),
have described two models where carriers first de-
termine tariffs and, subsequently, shippers select the
production levels and a coalition of carriers that will
transport the production from origins to destinations
at minimal cost. Although their non-cooperative mod-
els have a bilevel flavor, they both reduce to the prob-
lem of maximizing the joint profit of shippers and
carriers. This single-agent problem possesses the

structure of a traffic assignment problem, for which
several efficient algorithms are known. Finally, the
distribution of the joint profit among the agents of the
system is obtained by solving a linear program. A key
feature of their models is the functional form of the
tariffs. Rather than assuming that tariffs are propor-
tional to the volume of shipments (linear tariffs),
which may fail to be optimal and is inconsistent with
usual practice (cf. WILSON, 1993; HURLEY and PE-
TERSEN, 1994b; and TIROLE, 1989), they analyze non-
linear, two-part tariffs. These involve a fixed cost for
an initial shipment, and, next, a smaller constant price
for additional shipments. The authors present numer-
ical results on small, simplified networks.

Our approach is different in that we focus on the
tariff side rather than on the allocation of freight
flows among the carriers. Also, in contrast to Fisk
(1986), Friesz, Gottfried, and Morlok (1986), Harker
(1988), and Hurley and Petersen (1994a,b), who con-
sider multicommodity flows, we only address the
single-commodity transshipment problem. This is
the case of lower level firms whose demand for
transportation depends solely on the location of its
supply and demand sites. Such a situation occurs in
the distribution of coal supplies in the gas industry,
the distribution of containers or seasonal products,
etc. Finally, note that the model described in this
paper is not bound to a specific, predefined analyti-
cal form of the tariff function. The tariff is deter-
mined with respect to the actual shipments. Should
these shipments vary, then the profit-maximizing
tariffs should be reevaluated.

This model could also be part of the yield manage-
ment process in the rail or airline industry, where
the pricing strategies must take into account the
competitors’ supply and fare structures. An under-
lying assumption of our approach is that the leader
is not a dominant player of the market. This implies
that it is reasonable to assume that total demand is
not influenced by leader’s prices (this could be the
case of the trucking industry) and that the competi-
tion does not react in the short term to the leader’s
prices. In that sense, our model is not oligopolistic.

The remainder of this paper is organized as follows.
In Section 1, we give a mathematical formulation of
the freight transportation problem. Four primal–dual
heuristic procedures are described in Section 2. In
Section 3 we propose two strategies aimed at improv-
ing upon solutions initially obtained by the heuristics.
Computational results are presented in Section 4, fol-
lowed by a conclusion in Section 5.
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1. FORMULATION OF THE FREIGHT
TARIFF-SETTING PROBLEM

WE CONSIDER A transportation network based on the
underlying graph G � (�, �), where � (of cardinal-
ity n) denotes the set of nodes, and � (of cardinality
m) the set of arcs. A node represents either a supply
site, a demand site, or the end of an arc on which
goods are carried. The arc set � of the network G is
partitioned into two subsets �1 and �2, where �1

denotes the set of links operated by the leader car-
rier, and �2 the set of links operated by its compet-
itors. A service between two nodes operated by both
the leader and its competitors would be represented
in the network by two parallel links, respectively
members of the sets �1 and �2.

With each tariff arc a of �1, we associate a freight
rate composed of a fixed cost ca representing the unit
traversal cost of the arc, and an additional tariff Ta to
be determined by the leader carrier. A free arc a of �2

only bears a unit cost da, which is outside the control of
the leader, and might include both a fixed cost and the
cost charged by other carriers as well. We denote by
b � Rn the (fixed) demand for transportation, with the
tacit assumption that supply corresponds to negative
demand. Under this convention, demand at transship-
ment nodes, i.e., nodes that are neither origins nor
destinations, is zero. Furthermore, and without loss of
generality, we assume that each component of the
demand vector b is integer valued.

For given freight rates Ta set by the leader, the
shipper’s distribution problem is a transshipment
problem. Its optimal (basic) solutions will consist of
the unique assignment of the demand flow on some
subtree of the graph G. We make the assumption
that, among trees of equal costs for the follower,
goods will be shipped on a tree that maximizes the

leader’s profit. This is a standard assumption under-
lying the bilevel model that can be substantiated by
noting that a nearly optimal solution can be achieved
through an arbitrarily small tariff reduction.

Based on this notation (see also Table I), the
freight tariff-setting problem (FTSP) can be ex-
pressed as a bilevel program with bilinear objectives
and linear constraints, namely,

FTSP

max
T,x

�
a��1

Taxa

min
x,y

�
a��1

�ca � Ta� xa � �
a��2

daya

subject to

�
a�i���1

xa � �
a�i���2

ya � �
a�i���1

xa � �
a�i���2

ya � bi

@i � �,

xa � 0 @a � �1 ,

ya � 0 @a � �2 ,
(1)

where i� (respectively i�) denotes the set of arcs
having node i as its tail (respectively head). The
leader’s total profit is obtained by summing, over all
tariff arcs, the product of the unit profit with the
corresponding arc flow, thus naturally yielding a
bilinear objective. At the lower level, the shipper
firm satisfies the demand at lowest cost, by solving a
linear transshipment problem whose objective is pa-
rameterized by the leader’s tariff, thus yielding a
bilinear lower level objective for the bilevel program.

This fits the framework of the general taxation
problem studied by Labbé, Marcotte and Savard
(1998). If one incorporates into the leader’s objective
the reaction function of the follower, the resulting
single level objective is not a convex, indeed not even
a continuous, function of the tariff vector T. How-
ever, because the derived profit mapping is upper
semicontinuous, one can conclude that the set of
optimal solutions to the freight tariff-setting prob-
lem is nonempty if the profit is bounded from above.

Throughout the paper, we assume that there ex-
ists a feasible transportation schedule that uses
none of the arcs in control of the leader. This as-
sumption is both necessary and sufficient for the
leader’s profit to be bounded from above. This upper
bound will be finite whenever the fixed part of the
arc costs is non-negative, thus preventing the occur-
rence of profitable negative cost circuits in an opti-
mal leader’s solution. More precisely, let us denote

TABLE I
Notation

� Node set
n Number of nodes
� Arc set
�1 Set of tariff arcs
�2 Set of free arcs
m Number of arcs
m1 Number of tariff arcs
m2 Number of free arcs
i� {(j, i) � �: j � �}
i� {(i, j) � �: j � �}
bi Demand at node i
ca Cost per unit of a � �1

da Cost per unit of a � �2

Ta Tariff per unit on a � �1

xa Flow on arc a � �1

ya Flow on arc a � �2
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by �(T) the lower level transshipment cost induced
by a tariff schedule T. It is clear that the follower
will never accept a cost higher than �(�), correspond-
ing to a solution with no flow on the tariff arcs. Now,
consider an optimal solution vector (x*, y*, T*).
Because T*x* � 0, we have

�c � T*� x* � d y* � cx* � d y*

� min
x,y

cx � d y � ��0�,

i.e., that the follower’s cost at an optimal solution
will be at least �(0), the cost of a lower level solution
corresponding to null tariffs. Hence, an upper bound
on the leader’s profit is given by the difference �(�) �
�(0). However, as noticed by Labbé, Marcotte and
Savard (1998), this bound is not always reached,
even in the single-origin–single-destination case.

We do not impose sign constraints on tariffs, be-
cause negative tariffs can induce compensating ef-
fects that result in higher profits for the leader. For
instance, consider the example of Figure 1, where
arcs (5, 6) and (6, 4) are subject to tariffs, and the
demand for transportation is given by

b � ��1, 1, �1, 1, 0, 0�.

In this particular case, compensating interactions
are present and the optimal solution with profit 8 is
reached with tariff values T5,6 � 5 and T6,4 � �2.

The above bilevel program can be formulated as a
mixed integer linear program. This formulation will
be used to solve exactly small instances of the tax-

ation problem FTSP and thus to evaluate the quality
of the solutions produced by the proposed heuristics.
This formulation is obtained by first substituting,
for the lower level linear program, its necessary and
sufficient optimality conditions, thus yielding the
single level equivalent program.

BILIN

max
T,x,y,�

�
a��1

Taxa

subject to

�
a�i���1

xa � �
a�i���2

ya � �
a�i���1

xa � �
a�i���2

ya � bi

@i � �

xa � 0 @a � �1

ya � 0 @a � �2

� j � � i � ci,j � Ti,j � �i, j� � �1

� j � � i � di,j @�i, j� � �2

�
a��1

�ca � Ta� xa � �
a��2

daya � �
i��

� ibi .

If each arc flow were associated with a single origin–
destination pair, the objective and the nonlinear
constraint (sixth constraint) of the above nonlinear
program could quite easily be linearized. Unfortu-
nately, this is not the case. However one can achieve
the same goal through the binary expansion of the
flow variables. More precisely, because

0 � xa � �
i��:bi�0

bi ,

one can write

xa � �
k�0

k�

2kza
k ,

where za
k � {0, 1} for all k such that 0 	 k 	 k� , with

k� � log2(
i��:bi�0(bi � 1)). Next, one introduces a
tariff variable Ta

k � Taza
k for all k such that k � �

where � � [1, . . . , k� ], and we incorporate into the
model the constraints

�Mza
k � Ta

k � Mza
k @a � �1 @k � �

�M�1 � za
k� � Ta

k � Ta � M�1 � za
k�

� a � �1 @k � �

za
k � �0, 1� @a � �1 @k � �,

where M is some constant arbitrary large with re-
spect to data values. These modifications yield the

Fig. 1. Example with negative tariffs.

292 / L. BROTCORNE ET AL.

Copyright © 2000. All rights reserved.



following mixed integer programming formulation of
the freight tariff-setting problem:
MIP

max
T,y,z,�

�
a��1

�
k�0

k�

2kTa
k

subject to

�
a�i���1

�
k�0

k�

2kza
k � �

a�i���2

ya

� �
a�i���1

�
k�0

k�

2kza
k � �

a�i���2

ya � bi @i � �

� j � � i � ci,j � Ti,j @�i, j� � �1

� j � � i � di,j @�i, j� � �2

�
a��1

� ca �
k�0

k�

2kza
k � �

k�0

k�

2kTa
k� � �

a��2

daya � �
i��

� ibi

�Mza
k � Ta

k � Mza
k @a � �1 @k � �

�M�1 � za
k� � Ta

k � Ta � M�1 � za
k�

@a � �1 @k � �

za
k � �0, 1� @a � �1 @k � �

ya � 0 @a � �2 .

2. EFFICIENT HEURISTIC PROCEDURES

THE FREIGHT TARIFF-SETTING problem can be formu-
lated as a single level bilinear program with disjoint
constraints. Due to the size of these problems (thou-
sands of variables and constraints), a direct bilinear
programming approach (AUDET et al., 1999 or
THIEU, 1988) is not suitable. This justifies the devel-
opment of metaheuristic procedures that explicitly
take into account the network structure of the
problem.

In this section, we describe four primal–dual heu-
ristic procedures. A first group of algorithms is in-
spired by a primal–dual heuristic proposed by
GENDREAU, MARCOTTE, and SAVARD (1996) for solv-
ing linear bilevel programs. This scheme can be
applied in two different ways to each formulation,
which makes for a total of four algorithms. Symmet-
rically, a Gauss–Seidel-based algorithm can be im-
plemented in two different ways for each formula-
tion. This makes for a grand total of eight conceptual
heuristic procedures. Four of these have been imple-

mented and computationally tested in the present
paper.

The algorithms address a reformulation of FTSP
as a single-level bilinear. For convenience, let us
express FTSP in vector-matrix notation:

FTSP max
T,x

Tx

min
x,y

�c � T� x � d y

subject to A1x � A2y � b

x, y � 0,

where A1 � Rnm1 denotes the node–arc incidence
matrix of the subnetwork composed of tariff arcs and
A2 � Rnm2 denotes the incidence matrix corre-
sponding to the free part of the network. Using this
notation, the single level equivalent of the FTSP
takes the form,

max
T,x,y,�

Tx

subject to A1x � A2y � b

x, y � 0

�A1 � c � T

�A2 � d

�c � T� x � d y � �b � 0.

(3)

Next, we penalize the last constraint of Eq. 3 stating
the equality of the primal and dual objectives. The
left-hand side of this constraint is nonnegative
whenever (x, y) and � are feasible for the primal and
dual problems, respectively. This yields the bilinear
program,

max
T,x,y,�

Tx � M1��c � T� x � d y � �b�

subject to A1x � A2y � b

x, y � 0

�A1 � c � T

�A2 � d,

(4)

where M1 � 0. This penalty scheme is exact in the
sense that there exists a finite value M* such that
any optimal solution of Eq. 3 is also optimal for
BILIN, and vice versa, whenever M1 � M* (see
Labbé, Marcotte and Savard (1998) or, in the context
of linear bilevel programs, ANANDALINGAM and
WHITE (1990)).

For given vectors x, y, and �, the above problem
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reduces to

max
T

�1 � M1�Tx

subject to �A1 � c � T. (5)

Because the flow vector x is nonnegative, an optimal
solution of this linear program is obtained by setting
T to �� if 1 � M1 � 0 (yielding an infinite profit),
to its lower bound T � �A1 � c if 1 � M1 � 0, and
to an arbitrary feasible vector if 1 � M1 � 0. The
only interesting situation occurs when M1 is strictly
larger than 1, in which case problem 4 can be re-
written as the bilinear program,

PEN1

max
x,y,�

��A1 � c� x � M1��A1x � d y � �b� (6)

subject to A1x � A2y � b

x, y � 0

�A2 � d.

A slightly different reformulation of problem FTSP
as a single level bilinear program, proposed by
Labbé, Marcotte, and Savard (1998), may be ob-
tained by expressing the optimality conditions of the
lower level program through complementarity slack-
ness. This yields the mathematical program

max
T,x,y,�

Tx

subject to A1x � A2y � b

x, y � 0

�A1 � c � T

�A2 � d

�d � �A2� y � 0

�c � T � �A1� x � 0.

(7)

Then, from complementarity slackness and primal
feasibility, the objective function of problem 7 can be
written as

Tx � ��A1 � c� x

� ��b � A2y� � cx

� �b � cx � d y.

Thus, problem 7 is equivalent to

max
T,x,y,�

�b � �cx � d y�

subject to A1x � A2y � b

x, y � 0

�A1 � c � T

�A2 � d

�d � �A2� y � 0

�c � T � �A1� x � 0.

(8)

Note the role played by the toll vector T in the above
formulation: T is not part of the objective and, for
any values taken by the other variables, there al-
ways exists a value of T that satisfies the third and
sixth constraints of Eq. 8. Actually, after the re-
moval of those two constraints and the optimization
of the resulting problem over the variables x, y, and
�, an optimal solution to Eq. 8 can be recovered by
simply setting

T � �A1 � c.

Actually, the equality only needs to hold for the
components of the flow vector x that are strictly
positive. For those components that are equal to
zero, one is free to select any value of T that is
sufficiently large, i.e.,

Ti,j � ��A1 � c� i,j ,

if xi, j � 0. In practice, it might be convenient to set
Ti, j to �� whenever xi, j � 0, to forbid the usage of
these arcs. This yields the mathematical program,

max
T,x,y,�

�b � �cx � d y�

subject to A1x � A2y � b

x, y � 0

�A2 � d

�d � �A2� y � 0.

(9)

Finally, we penalize the complementarity constraint
of 9 into the objective to obtain the bilinear problem,

PEN2

max
x,y,�

�b � �cx � d y� � M2�d � �A2� y (10)

subject to A1x � A2y � b

x, y � 0

�A2 � d,

where M2 is some positive constant. As was the case
for the formulation PEN1, PEN2 is equivalent to
FTSP whenever the penalty parameter M2 is suffi-
ciently large.
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All the proposed heuristic procedures are based on
two simple underlying principles:

● Approximate the original bilevel program by a
sequence of penalized problems with increasing
levels of penalty parameters;

● Solve (approximately) each penalized problem
by iteratively solving a sequence of linear pro-
grams.

The first principle allows to start from a best solu-
tion for the leader, from which to move toward fea-
sible solutions, i.e., solutions that satisfy the follow-
er’s optimality conditions. This best solution, which
provides an upper bound on the leader’s profit, cor-
responds to setting the penalty parameter to zero
(actually to one in the case of heuristic 1), yielding
the linear program,

max
x,y,�

�b � �cx � d y�

subject to A1x � A2y � b

x, y � 0

�A2 � d.

This linear program decomposes into two subpro-
grams, one with respect to the (x, y) vector, and the
other with respect to the dual vector �. One can thus
write this upper bound as

max
�

�b

subject to �A2 � d

� min
x,y

cx � d y

subject to A1x � A2y � b
x, y � 0,

or, replacing the left linear program by its equiva-
lent dual,

min
y�

d y�

subject to A2y� � b
y� � 0

�

min
x,y

cx � d y

subject to A1x � A2y � b
x, y � 0.

One observes that the LP on the left has to an
optimal lower level solution that uses none of the toll
arcs, whereas the solution of the right LP is a lower
level solution corresponding to a zero toll vector T.
This is exactly the upper bound alluded to in the
previous section.

The second principle allows replacement of a dif-
ficult problem by a sequence of easy problems. Note
that the constraint sets of the bilinear programs
PEN1 and PEN2 are separable in the dual vector �
on the one hand, and in the primal vector (x, y) on
the other hand. This suggests iteratively solving for
the primal vector (x, y) and the dual vector �. Note
that one could also have iterated based on the par-

tition {(�, y), x}, although this strategy was not
retained.

Alternatively, in the spirit of Gendreau, Marcotte,
and Savard (1996), one can associate with a dual
vector � an optimal (x, y)-solution to the lower level
LP parameterized by the toll vector T � �A1 � c.
The strategies that have been retained are described
in the next subsections.

2.1 Heuristic 1

Heuristic 1 iterates between the leader’s vector T
and the follower’s vectors x and y. At a given itera-
tion, the tariff vector T is set to �A1 � c, where the
dual vector � solves the penalized problem PEN1 for
fixed primal flow vectors x and y and penalty pa-
rameter M1. Next, the flow variables on both the
tariff and free arcs correspond to the optimal solu-
tion of the lower level distribution problem, with the
freight rates of the leader carrier set at c � T. So
that the penalized problem be bounded, we intro-
duce the artificial constraint,

��max � � � �max, (11)

where �max is some suitably large constant. (For
large values of the penalty parameter, this con-
straint becomes inactive.) The algorithm is illus-
trated by Figure 2, where FP designates the follow-
er’s problem, and the corresponding pseudo-code. In
the diagram, the updating of the penalty parameter
is performed at the northeast corner (see steps 5 and
6 of the pseudo-code).

Heuristic 1

Step 1. Initialization
1. Set x0 and y0 to an optimal solution of the

follower’s problem with T set to zero.
2. Initialize M1 and l to 1.
3. Set Z* (best profit achieved yet) to zero.

Step 2. Determination of the dual vector �

Fig. 2. Heuristic 1: the main steps.
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For xl�1 and yl�1 fixed, solve the problem

PEN1(�)

max
�

��A1 � c� xl�1 � M1��A1xl�1 � d yl�1 � �b�

subject to �A2 � d

� � �max

�� � �max.

(12)

Denote its solution by �l.
Step 3. Computation of the tariff vector

Compute Tl � �lA1 � c.
Step 4. Determination of flow vectors x and y

Let (xl, yl) be an optimal solution of the follower’s
problem

FP min
x,y

�c � Tl� x � d y

subject to A1x � A2y � b
x, y � 0.

Step 5. Update of the best profit
1. Determine the total profit: Zl � Tlxl,
2. if Zl � Z* then Z* 4 Zl and (T*, x*, y*) 4

(Tl, xl, yl).
Step 6. Stopping criterion

if �Zl � Zl�1� � 	
then STOP with solution (T*, x*, y*)
else increase M1, increment l by 1 and go to
Step 2.

If, at Step 4 of the algorithm, the solution of the
follower’s problem is not unique, then one should
favor the solution providing the highest profit for the
leader, i.e., given a tie, the solution favoring the use
of the tariff arcs. This can be achieved by decreasing
the tariffs Ta by a small amount 	, which amounts to
a local parametric analysis, and requires a few sim-
plex pivot.

At Step 2 of the algorithm, for fixed flow vectors x
and y, the penalized problem PEN1(�) is linear with
respect to the dual vector �. Let us denote by u �
Rm2, z � Rn, and v � Rn, the dual variables asso-
ciated with constraints 12. The dual of problem
PEN1(�) is

min
u,z,v

du � �maxz � �maxv

subject to

A2u � Iz � Iv � �1 � M1� A1x � M1b

z, u, v � 0.
(13)

Problem 13 is a transshipment problem on the net-
work G̃ � (�̃, �̃). The node set �̃ includes nodes of

the original network as well as an artificial node f.
The arc set �̃ contains:

● the free arcs (i, j) � �2, with costs di, j, whose
flow variables are denoted by ui, j.

● the arcs linking each node j of � to the artificial
node f, with costs �max, and whose associated
flow variables are denoted by zjf.

● the arcs linking the artificial node f to each node
i of �, with costs �max, and whose associated
flow variables are defined by vfj. These arcs
prevent the transshipment problem from being
infeasible.

The purpose of the parameter M1 is to penalize the
duality gap (c � T)x � dy � �b. However, the
vector �l obtained at Step 2 of the algorithm is also
dual–optimal for problem FP solved at Step 4.
Hence, at the end of Step 4, the duality gap is zero.
To prove this result, let us write down the optimality
conditions of PEN1(�) where we remove, for simplic-
ity, the bounds on �, and where the objective,

��A1 � c� xl�1 � M1��A1xl�1 � d yl�1 � �b�,

is replaced by the equivalent scaled objective

��b � �1 �
1

M1
� A1xl�1� .

The optimality conditions are:

● dual feasibility: �A2 	 d
● primal feasibility:

(1 � 1/M1)A1xl�1 � A2u � b, u � 0
● complementarity:

�(b � (1 � 1/M1)A1xl�1) � du

and we denote by (ul, �l) an optimal solution of the
above system. In contrast, the optimality conditions
of the linear program FP are:

● primal feasibility:
A1x � A2y � b, x, y � 0

● dual feasibility:
�A1 	 c � Tl � �lA1, �A2 	 d

● complementarity:
�b � �lA1x � dy.

It is clear that (x, y, �) � ((1 � 1/M1)xl�1, ul, �l)
constitutes an optimal (maybe non-basic though)
primal–dual solution for the linear program FP,
hence �l is dual–optimal for FP, and the correspond-
ing duality gap is zero. It follows that, for any opti-
mal primal solution (x*, y*) of FP, and in particular
(xl, yl), the duality gap corresponding to the triple
(x*, y*, �l) is zero.

This result provides some insight on why the
number of basis solutions encountered by this algo-
rithm is quite small. Actually, modifications of the
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y-vector can only be induced by modifications in the
supply–demand patterns resulting from an increase
of the penalty parameter M1. If the corresponding
solution (x, y) � ((1 � 1/M)xl�1, u) is not basic,
then a change of basis will occur when solving for
the follower’s problem FP. As a consequence of this
remark, it is important to carefully select the initial
solution (x0, y0). Indeed, if x0 had been inadver-
tently set to zero, then it could never have assumed
positive values in the sequel, and the profit would
have stayed at zero for the entire course of the
algorithm! To circumvent that problem, a diversifi-
cation strategy, to be described in Section 3, has
been implemented.

2.2 Heuristic 2 and Heuristic 3

Heuristics 2 and 3 are based on similar principles.
The penalized problem PEN1 (respectively PEN2 for
heuristic 3) is first solved for fixed values of the
vector x (respectively y). The resulting linear pro-
gram yields the vectors y (x for heuristic 3), �, and
T. In other words, one determines the leader vector
T and one follower vector (either x or y) that maxi-
mizes total profit while respecting, to some extent,
the follower’s optimality conditions. Both subprob-
lems are decomposed into a primal and a dual prob-
lem.

Next, the vector x (y for heuristic 3) is determined
by solving the follower’s problem. As in heuristic 1, a
constraint is introduced to bound problem PEN1
with respect to the � variables in heuristic 2. Such a
constraint is not required for heuristic 3 since, in
PEN2, the variable part of the objective �b �
M2�A2y is less than or equal to M2dy � �b, because
�A2 	 d and flows are nonnegative. Now, due to our
assumption that there exists a lower level solution
that uses only free arcs, the dual objective �b must
be bounded. Heuristics 2 and 3 are illustrated in
Figures 3 and 4, from which the pseudo-codes are

readily derived along the lines of the pseudo-code of
heuristic 1.

As in Section 2.1, the objective of the follower’s
problem (diagonal arc in the diagrams) is perturbed
to induce the optimal lower level solution that max-
imizes the leader’s profit. For fixed flow vector x (y
for heuristic 3), the penalized problems PEN1(y, �),
(respectively PEN2(x, �)) are separable and linear.
Exactly as in heuristic 1, one solves their dual prob-
lems, which are transshipment problems similar to
problem 13.

2.3 Heuristic 4

The last heuristic proposed for the FTSP consists
of applying a block Gauss–Seidel procedure to the
bilinear problem PEN1 (Fig. 5). More precisely,
PEN1 is iteratively solved for fixed flow vectors
(x, y) on the one hand, and for the dual vector � on
the other hand. Both problems are linear in � and
(x, y) respectively. As before, constraint 11 is intro-
duced to prevent the occurrence of unbounded solu-
tions in the dual problem, i.e., infeasibility in the
transshipment subproblems. Because T � �A1 � c,
the objective function 6 of PEN1 can be rewritten as

Tx � M1��c � T� x � d y � �b�.

Fig. 3. Heuristic 2: the main steps. Fig. 4. Heuristic 3: the main steps.

Fig. 5. Heuristic 4: the main steps.

297A FREIGHT TARIFF-SETTING PROBLEM /

Copyright © 2000. All rights reserved.



Thus, for fixed x, y vectors, a trade-off is achieved
between profit maximization at the upper level and
optimality at the lower level. Note that the objective
function of the penalized problem PEN1 is monoton-
ically decreasing and has a discontinuity for each
new solution (x, y), of the follower’s problem solved
for a given value of T. Heuristic 4 is described below.

Heuristic 4

Step 1. Initialization
1. Set x0 and y0 to an optimal solution of the

follower’s problem with T set to zero.
2. Initialize M1 to 1 and l to 1.

Step 2. Determination of the dual vector �
For xl�1 and yl�1 fixed, solve

PEN1(�)

max
�

��A1 � c� xl�1 � M1��A1xl�1 � d yl�1 � �b�

subject to �A2 � d

� � �max

�� � �max.

The solution is denoted �l and we set Tl � �lA1 �
c.

Step 3. Determination of the flow variables
For �l fixed, solve

PEN1(x, y)

max
x,y

�� lA1 � c� x � M1�� lA1x � d y � � lb�

subject to A1x � A2y � b

x, y � 0.

The solutions are denoted xl, yl.
Step 4. Stopping criterion

If the duality gap Gl � (c � Tl)xl � dyl � �lb is
equal to zero
then

1. compute the profit Z � Tlxl where Tl �
�lA1 � c,

2. STOP with the solution (T*, x*, y*) 4
(Tl, xl, yl),

else increase M1, increment l by 1 and go to Step
2.

Problem PEN1(�) at Step 2 is solved as in Section
2.1. Note that, for a fixed value of the vector �, the
problem PEN1(x, y) is equivalent to the scaled prob-
lem

min
x,y

�c � Tl� x � d y �
1

M1
Tlx.

This objective can be interpreted as a perturbation
of the follower’s problem. As M1 becomes large, the
solution coincides with a solution that maximizes
the leader’s profit while satisfying the optimality
conditions of the lower level.

3. IMPROVEMENT STRATEGIES

THE FOUR HEURISTICS developed previously gener-
ate a sequence of basic solutions for the lower level
problem that may, or may not, correspond to optimal
solutions of the original problem FTSP. In this sec-
tion, we introduce two strategies aimed at generat-
ing improved solutions.

3.1 Inverse Optimization

It is frequently the case that the set of arcs that
carry positive flow in an optimal or near-optimal
solution can be obtained through some (unspecified)
heuristic procedure, whereas the exact values of
these flow are unknown. If this is the case, one can
recover, at small computational cost, the values of
these flows that maximize the leader’s revenue. This
technique was first described in the case of a multi-
commodity toll problem by Labbé, Marcotte, and
Savard (1998).

More specifically, let us consider the situation
where lower level vectors x and y are provided, and
one wishes to determine a profit-maximizing tariff T
that is compatible with the lower level optimality of
(x, y). Because the positive entries of the vector y
are known, one can get rid of the complementarity
constraint in formulation 9 of FTSP, which decom-
poses into a dual linear program in the variable �
and a primal LP in x and y. Let �� denote the set of
indices for which ya is positive. The dual LP takes
the form,

max
�

�b

subject to ��A2 � d�a � 0 � a � ��

��A2 � d�a � 0 � a��� .
(14)

The dual of this dual problem is the primal problem

min
y�

d y�

subject to A2y� � b

y�a unconstrained � a � ��

y�a � 0 � a��� .

(15)

This is nothing but a transshipment problem on a
modified network where the tariff arcs have been
deleted and the free arcs carrying positive flow are

298 / L. BROTCORNE ET AL.

Copyright © 2000. All rights reserved.



two-way arcs. The optimal dual vector �� of this LP
yields the desired tax vector T� � �A1 � c. This
process, which consists of optimizing an auxiliary
objective while forcing some solution to be optimal,
is sometimes referred as “inverse optimization.”

Note that the sole knowledge of the index set ��

allows one to conduct the above analysis. However,
one would much prefer to base this analysis on the
vector x, which will usually be of smaller dimension.
Unfortunately, the knowledge of the entire vector x
is required to recover the vector y through the solu-
tion of the LP:

min
y

d y

subject to A2y � b � A1x

y � 0.
(16)

Of course, knowing the values of the x-variables is
equivalent to knowing which ones are positive,
whenever the solution of the lower level problem is
binary valued. This is not the general situation of a
transshipment problem, and we compromized by
solving an LP where the positive x-variables are
required to be at least one. More specifically, corre-
sponding to an (x, y)-solution with zero duality gap
generated by a given heuristic, we solve the linear
program,

min
x,y

cx � d y

subject to A1x � A2y � b

xa � 1 � a � ��1

xa � 0 � a���1 ,

(17)

where ��1 denotes the set of tariff arcs carrying pos-
itive flow. A tariff vector T is then obtained by solv-
ing problem 15, with the set �� corresponding to the
partial optimal solution (in y) of problem 17.

3.2 Diversification

In this section, we consider simple perturbations
of the best solution obtained by any given heuristic,
in the hope of generating neighboring solutions of
higher profit. If the process is successful, then the
heuristic is applied starting with this improved so-
lution. In meta-heuristic parlance, this may be in-
terpreted as a diversification strategy around the
current best solution. For each tariff arc of the solu-
tion with maximum profit, three diversifications are
considered. The first one consists of forbidding the
use of an arc with positive flow and in initializing
the tariffs to zero. The second and third ones consist,

respectively, of decreasing by half the tariff associ-
ated with an arc or in increasing it by half. Let ��*
denote the set of tariff arcs at the current best solu-
tion (T*, x*, y*), and 
 be the index of the selected
strategy. The diversification procedure can then be
described as follows.

Diversification

Step 1. Initialization
1. Let (T*, x*, y*) be the solution produced by

a primal–dual heuristic.
2. Z* 4 T*x*.
3. ��* 4 {a � �1: x*a � 0} and 
 4 1.

Step 2. While ��* � A, repeat Steps 3 to 6.
Step 3. Let ã be the most profitable arc in ��*.
Step 4. Define the strategy:

If 
 � 1 then cã 4 � and Ta 4 0 for all a � �1.
If 
 � 2 then Tã � 1⁄2 Tã.
If 
 � 3 then Tã � 3⁄2 Tã.

Step 5. Determine a new solution
1. Solve the follower’s problem FP.
2. Apply a primal–dual heuristic starting from

this solution.
Let (T, x, y) the solution and Z the associ-
ated profit.

Step 6. Update of the solution with the best profit
If Z � Z* then:
(T*, x*, y*) 4 (T, x, y) and Z* 4 Z,
��* 4 {a � �1: x*a � 0},

 4 1 and go to Step 2.
else 
 4 
 � 1.
If 
 � 4
then 
 4 1, ��* 4 ��*�{ã} and go to Step 2
else go to Step 3.

4. NUMERICAL RESULTS

THE HEURISTIC procedures developed in this paper
have been applied to a set of random instances cre-
ated using the NETGEN generator of KLINGMAN,
NAPIER, and STUTZ (1974). Network sizes range
from 50 nodes and 250 arcs to 200 nodes and 9950
arcs. The proportion of tariff arcs varies from 5% to
20%. The arc costs vary from 5 to 35, with 20% of the
costs set at their maximum value of 35. In some
instances, the tariff arcs are scattered throughout
the network, whereas some test problems consid-
ered chains of tariff arcs, as would occur in the case
of toll highways, for example.

The tariff arcs are generated as follows. Given an
ordering of the arcs, the first arc is given the tariff
status with probability p if its deletion leaves at
least one feasible path from any supply to any de-
mand node of the network. At the kth iteration of
the selection process, the kth arc is selected, with
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probability p, if its deletion, together with that of
previously selected tariff arcs, leaves at least one
feasible path from any supply to any demand node.
The process is halted whenever the required propor-
tion of tariff arcs is reached. The selection process
obviously rules out unboundedness of the leader’s
profit resulting from the presence of captive mar-
kets.

To favor the use of tariff arcs by the carriers, we
compute the number of times that a given arc is part
of a shortest path from a supply to a demand node.
According to this ordering, arcs are retained until 2⁄3
of the total number of desired tariff arcs is attained.
The remaining third is selected at random according
to the process previously described. Furthermore, to
make the tariff arcs attractive, their random costs
have been halved.

For generating toll highways, the arcs are sorted
with respect to the frequency with which they occur
in shortest paths from supply to demand nodes. The
procedure first builds the toll highway forward, se-
lecting the arcs in decreasing order of their respec-
tive frequencies, until either the list of admissible
arcs leaving the current node is empty, a demand
node is reached, or the prespecified maximum
length of the highway is reached. (Arcs forming a
circuit are forbidden.) The process is then performed
backward from the current initial node of the path.
The entire process is repeated until the number of
desired toll highways is reached. If the density of toll
arcs is less than required, additional tariff arcs are
selected according to the random procedure de-
scribed in the previous paragraph.

This process is applied to the bipartite network
illustrated in Figure 6, where the demand for trans-
portation is set to

b � ��1, 1, �1, 0, �1, 2�.

The shortest paths linking supply nodes to demand
nodes are (1, 3, 4, 2), (1, 3, 4, 6), (3, 4, 2), (3, 4, 6),
(5, 3, 4, 2), (5, 3, 4, 6). Assume that the length of any
toll highway has to be 	3. We first select the arc
with the highest frequency, i.e., arc (3, 4) of fre-
quency 6. The next arc to be selected is arc (4, 6),
with a frequency of 3. Inasmuch as node 6 is a
demand node and the maximal number of arcs of a
path is not yet reached, we now proceed backward
from the initial node 3. Next, we select arc (5, 3),
which is the only remaining acceptable arc. Because
node 1 is a demand node, the algorithm stops with
path (5, 3, 4, 6).

The transshipment subproblems are solved using
the minimum cost flow code of GOLDBERG and TAR-

JAN (1990). To assess the quality of the heuristics,
smaller instances of the problems are solved to op-
timality by feeding the solver CPLEX6.0 (CPLEX,
1993) with the mixed integer programming formu-
lation MIP of the FTSP. The value of M in MIP is
fixed to 200 while the penalty factor M1 is updated
according to the parameters given in Table II. The
heuristics are coded in C on a Sun Ultra 60 (360
Mhz).

The numerical results are summarized in Table
III. The reports for Heuristics 1, 2, and 3 involve a
diversification phase. This strategy having proved
too costly for heuristic 4, the corresponding results
are not reported. The first column (%T) provides the
percentage of tariff arcs. The second column (SN)
gives the number of supply nodes (the number of
demand nodes is set equal to the number of supply
nodes). The third column (NB) indicates the number
of instances where CPLEX has been halted, either
because the number of nodes or the CPU times ex-
ceeded the upper limit of 400,000 nodes or 18,000
seconds.

Each algorithm has been tested on a series of 10
randomly generated problems. For each algorithm

Fig. 6. Definition of a tariff path.

TABLE II
Update of the Penalty Factor M1

H1 H2 H3 H4

initial value 1 1.01 1.1 1.1
increment 1 0.01 0.01 0.01
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(with the exception of CPLEX), the first line displays
the average ratio of the heuristic objective over the
optimal value, and the CPU time (in seconds). On
the second line of each cell, the corresponding stan-
dard deviations are displayed. In the first three sec-
tions, the averages and standard deviations have
been taken only over those problems that could be
solved to optimality (10 � NB).

In the first CPLEX column, the optimality ratios
have been replaced by the number of nodes explored
in the branch-and-bound tree.

On small networks, the heuristics are much faster
than CPLEX. Typically, the number of iterations
required by the primal–dual methods 1, 2, or 3

(without diversification) is less than four, whereas it
varies between 1 and 26 for the fourth method. On
the large instances, heuristics 1, 2, and 3 (without
diversification) require less than 10 seconds. This
number increases to 280 seconds if the diversifica-
tion phase is implemented. CPU times vary from 2
to 167 seconds for heuristic 4. We note that the CPU
time for heuristic 4 decreases when the percentage
of tariff arcs increases. In all cases, the number of
iterations is quite insensitive to the size of the net-
work.

Heuristics 2, 3, and 4 are halted as soon as a
solution with zero duality gap is obtained. This
strategy was justified by preliminary experiments

TABLE III
Numerical Results

%T SN NB H1 H1DIV H2 H2DIV H3 H3DIV H4 CPLEX

Networks with 50 nodes and 250 links
5 5 0 0.968 0.57 1.000 0.92 0.917 0.12 0.990 0.47 0.960 0.13 0.996 0.54 1.000 0.23 25863 62

0.090 0.43 0.001 0.24 0.147 0.02 0.028 0.06 0.090 0.01 0.008 0.11 0.001 0.07 41065 101
10 5 2 0.971 0.15 0.998 1.11 0.916 0.13 0.996 0.82 0.984 0.14 0.998 0.66 0.990 0.25 17866 143

0.072 0.02 0.005 0.15 0.144 0.01 0.007 0.19 0.038 0.01 0.005 0.07 0.023 0.10 31873 204
15 5 1 1.000 0.14 1.000 1.08 0.995 0.12 0.995 0.73 0.999 0.12 1.000 0.82 1.000 0.21 11785 111

0.001 0.02 0.000 0.35 0.014 0.02 0.015 0.17 0.002 0.02 0.000 0.20 0.000 0.13 19802 186
20 5 2 0.999 0.14 1.000 1.23 1.000 0.11 1.000 0.64 0.999 0.12 1.000 0.63 1.000 0.11 16953 181

0.002 0.01 0.000 0.23 0.000 0.02 0.000 0.10 0.002 0.01 0.000 0.09 0.000 0.02 27067 237
Networks with 75 nodes and 1400 links

5 10 4 0.995 0.83 0.996 7.28 0.988 0.57 0.988 5.29 0.989 0.52 0.997 3.89 0.997 1.72 51230 1563
0.006 0.29 0.006 2.26 0.016 0.09 0.016 1.46 0.016 0.07 0.006 1.04 0.006 0.87 49136 1739

10 10 3 0.999 0.63 0.999 8.87 0.999 0.51 0.999 4.79 0.999 0.49 0.999 4.19 1.000 0.72 12789 1082
0.002 0.02 0.002 0.83 0.002 0.04 0.002 1.34 0.002 0.03 0.002 0.31 0.000 0.23 9933 911

15 10 2 1.000 0.65 1.000 9.84 1.000 0.52 1.000 5.64 0.997 0.48 1.000 4.55 1.000 0.86 26770 2475
0.000 0.01 0.000 0.98 0.001 0.04 0.001 1.04 0.008 0.02 0.000 0.74 0.000 0.44 36877 246

20 10 0 1.000 0.60 1.000 9.43 1.000 0.50 1.000 5.77 1.000 0.49 1.000 4.90 1.000 0.78 28668 6051
0.000 0.03 0.000 2.33 0.000 0.04 0.000 1.54 0.000 0.03 0.000 1.41 0.000 0.14 33021 6123

Networks with highways (50 nodes and 250 links or 75 nodes and 1400 links)
N1-10 5 1 0.996 0.14 0.997 1.16 0.971 0.14 0.984 0.85 0.996 0.13 0.997 0.99 1.000 0.35 2553 55

0.010 0.01 0.001 0.28 0.061 0.01 0.029 0.16 0.010 0.02 0.010 0.40 0.000 0.18 1876 110
N1-20 5 0 1.000 0.13 1.000 1.34 1.000 0.13 1.000 0.78 1.000 0.12 1.000 0.73 1.000 0.13 3097 40

0.000 0.02 0.000 0.21 0.000 0.02 0.000 0.21 0.000 0.01 0.000 0.10 0.000 0.01 800 12
N2-10 10 0 1.000 0.65 1.000 8.56 1.000 0.52 1.000 5.01 1.000 0.51 1.000 4.70 1.000 0.94 6945 547

0.000 0.02 0.000 1.12 0.000 0.02 0.000 0.72 0.000 0.02 0.000 0.73 0.000 0.06 4628 444
N2-20 10 0 1.000 0.63 1.000 8.89 1.000 0.50 1.000 4.96 1.000 0.50 1.000 4.77 1.000 0.93 8883 1533

0.000 0.01 0.000 0.82 0.000 0.02 0.000 0.60 0.000 0.02 0.000 0.45 0.000 0.04 7038 1795
Networks with 100 nodes and 2475 links

1 15 0.964 1.70 0.99 10.63 0.834 1.50 0.872 6.93 0.947 1.70 0.98 8.04 0.996 14.67
0.035 0.15 0.022 4.12 0.093 0.06 0.099 2.22 0.058 0.17 0.022 1.64 0.007 8.24

2.5 15 0.986 1.40 0.995 18.17 0.971 1.30 0.972 11.67 0.983 1.40 0.994 12.19 0.996 10.41
0.015 0.21 0.010 5.22 0.022 0.12 0.022 2.89 0.020 0.12 0.012 3.81 0.007 4.86

5 15 0.999 1.30 0.999 22.40 0.998 1.10 0.998 14.05 0.999 1.00 0.999 11.82 1.000 2.62
0.002 0.10 0.002 3.68 0.003 0.07 0.003 2.10 0.002 0.12 0.002 2.31 0.000 1.87

10 15 1.000 1.3 1.000 24.23 1.000 1.06 1.000 12.9 1.000 1.06 1.000 11.93 1.000 1.52
0.000 0.12 0.000 3.78 0.000 0.09 0.000 2.21 0.000 0.09 0.000 2.27 0.000 0.91

Networks with 200 nodes and 9950 links
1 30 0.979 9.25 0.984 179.01 0.924 8.32 0.945 120.18 0.980 8.91 0.987 107.86 0.998 165.20

0.021 0.55 0.020 51.37 0.061 0.42 0.029 41.18 0.021 0.84 0.011 18.80 0.006 94.40
2.5 30 0.992 9.77 0.997 242.84 0.995 8.69 0.996 142.47 0.993 8.99 0.996 145.24 1.000 92.39

0.012 0.58 0.006 55.43 0.006 0.50 0.006 27.83 0.013 0.85 0.006 18.13 0.001 35.11
5 30 0.996 8.11 1.000 279.51 0.999 7.96 0.999 157.37 0.999 7.94 1.000 166.89 0.999 75.23

0.005 0.53 0.000 55.35 0.001 0.78 0.001 20.00 0.002 1.02 0.000 48.71 0.002 35.92
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that revealed that this solution is seldom improved
upon. Note also that distinct optimal solutions, i.e.,
solutions involving distinct tariff vectors, are some-
times obtained by different heuristics.

As a general rule, heuristics 1, 2, and 3 with the
diversification phase, and heuristic 4, based on the
Gauss–Seidel method, sharply outperform the other
heuristic procedures. On the smaller instances, the
primal–dual heuristics 1 and 3 without the diversi-
fication phase produce, on the average, solutions
within 0.7% of optimality (the worst case being at
4%), whereas 1 and 3 with the diversification phase,
and 4, fall within 0.3% of optimality (the worst case
at 0.4%) on the average. On larger test problems,
heuristic 4 comes up slightly better than either 1 or
3 with the diversification strategy, the solutions be-
ing within 1% of the best known solution, which is
quite good.

5. CONCLUSION

NOT ONLY ARE tarification problems pervasive in
decision making, but they also constitute a rich class
of structured bilevel problems. In this paper, we
considered a special member of this class, which is
amenable to solution techniques that allow us to
solve instances of significant size within reasonable
computing times.

Research is currently underway on a multi-com-
modity version of this problem, where the lower
level consists of individuals traveling on arcs of a
network subject to tolls set by a profit-maximizing
leader.
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