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Abstract

We propose fast heuristics for large-scale covering-location problems in which the set of demand points is
discrete and the set of potential location sites is continuous. These heuristics are compared on a set of 152
real-life instances arising in cytological screening. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Covering problems hold a central place in location theory. In these problems we are given a set
of demand points and a set of potential sites for locating facilities. A demand point is said to be
covered by a facility if it lies within a prespeci"ed distance of that facility. Using the classi"cation
proposed by Daskin [1], we identify two main classes of covering problems: mandatory coverage
problems which consists of covering all demand points with the minimum number of facilities, and
maximal coverage problems which consist of covering a maximum number of demand points with
a "xed number of facilities; see, e.g., Drezner [2]. Another important distinction relates to the
nature of the sets of demand points and potential sites as each can be discrete or continuous, but
this distinction is often blurred since continuous sets can sometimes be discretized and some
discrete sets with a very large number of elements can be considered as continuous. In most
practical applications both sets are discrete, but Schilling et al. [3] report examples in which at least
one of the sets is continuous.
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Fig. 1. Cervical specimen.

Our purpose is to describe fast heuristics for mandatory coverage problems in which the set of
demand points is very large but discrete, and the set of potential sites is continuous. This work is
motivated by a covering problem arising in cytological screening tests (PAP tests) for cervical
cancer but has applications in several other areas. In the cytology application, a cervical specimen
on a glass slide must be viewed by a screener. An example of such a specimen is depicted in Fig. 1.
The screener must be moved to di!erent locations on the glass slide in order to read the entire
specimen. To maximize e$ciency, the number of viewing locations must be minimized. The area
that can be viewed by the screener can be square or circular. For simplicity we will concentrate on
the case where the viewing area of the slide must be covered by squares called tiles. The square
screener moves up and down, or left and right, parallel to the sides of the rectangular glass slide.
Locating a tile amounts to determining its center anywhere on the glass slide. The cervical
specimen typically appears in the form of smears discretized into pixels. Since there are 625 pixels
per square millimeter, the number of demand points can be very large. In our application, it varies
between 2500 and 55 000. Another complicating factor of this problem is that it must be solved in
real-time while the slides are presented to a technician. The only possible approach is to develop
heuristics and these must be very fast, meaning that a standard problem should be solved rapidly,
typically in less than 2min on a fast Pentium. For this reason, time-consuming local search
methods such as simulated annealing or tabu search cannot be applied in this context. The best of
the heuristics we have developed can in fact solve these problems in less than 10 s on a Sun
Sparcstation 10 (50 MHz) which has approximately half the speed of a 100 MHz Pentium.

Our work has applications in other areas of location such as the siting of wells used to detect
contaminants in a ground water system [4], and ambulance location [5]. It is particularly relevant
to the latter application in that ambulance deployment decisions must be made quickly, in
real-time.

To our knowledge, with one exception, the scienti"c literature contains no description of any fast
heuristic for this type of problem: large-scale mandatory covering problems with a discrete set of
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demand points and a continuous set of potential sites. The exception is a previous heuristic
developed for the cytological screening problem [6], but our results will show that the best
heuristics described on this paper improve vastly upon that presented in [6]. As is done in cytology,
our problem will be referred to as the Tiling Problem.

The remainder of this paper is organized as follows. In Section 2, we investigate the complexity of
the problem and we propose a lower bound. Five new heuristics are described in Section 3.
Computational results on a series of real-life cytological problems are presented in Section 4,
followed by the conclusions in Section 5.

2. Complexity and lower bound

The Tiling Problem can be shown to be NP-hard. To see this, "rst consider the decision problem
associated with the Tiling Problem: is it possible to cover n demand points in a rectangle using
p tiles of side s, parallel to rectangle boundary? To answer this question, consider an instance of
a Tiling Problem and construct a tile of side s, parallel to the rectangle boundary, centered at each
of the n demand points. The decision problem associated with the Tiling Problem is then equivalent
to the following: do there exist p points in the rectangle such that each of the n tiles contains at least
one of them? This problem is precisely the Square Covering Problem shown to be NP-complete by
Megiddo and Supowit [7]. A similar reasoning applies to circle cover, using another result by the
same authors.

There exists, however, a polynomially solvable case of the Tiling Problem that occurs when tiles
are rectangular and all demand points belong to stripes parallel to the boundary (in either
dimension), separated by at least s distance units. In such a case, an optimal solution for each stripe
is easily determined by covering the points in a greedy fashion. The proof of optimality is done by
induction on the number of points of the stripe. Since no tile overlaps two stripes, this approach is
optimal for Tiling Problem. This principle will serve as the basis for one of our heuristics. This
heuristic runs in O(n log n) time if demand points have not previously been sorted, and in O(n) time
otherwise.

A lower bound for the Tiling Problem can be obtained from results related to the graph
colouring and largest clique problems. For this construct a con#ict graph G"(<, E) where the
vertex set < corresponds to the set of demand points, and E contains an edge between any two
con#icting vertices, i.e., vertices that cannot be covered by the same tile. Then, a lower bound on tH,
the minimum number of tiles necessary to cover the slide, is given by the chromatic number �(G) of
G, i.e., the least number of colours such that two vertices of G linked by an edge are coloured
di!erently. The size of the largest clique in G is a lower bound on �(G) and thus on tH. There exist
graphs for which �(G) is strictly inferior to tH, and graphs for which the maximum clique size is
strictly inferior to �(G). In the "rst case consider a circle of unit diameter with three equidistant
points A, B and C on its circumference, and a fourth point D outside the circle less than one unit
away from A, B and C. Then two circular tiles of unit diameter are necessary to cover all four
points, but �(G)"1. In the second case, consider a regular pentagon such that any two vertices
linked by a diagonal are con#icting, but any two consecutive vertices are not. The con#ict graph
G corresponding to such a pentagon is depicted in Fig. 2. It can readily be veri"ed that the size of
the largest clique in G is 2, but �(G)"3.
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Fig. 2. Con#ict graph G for a regular pentagon.

Beyond the fact that the clique lower bound is not tight for the Tiling Problem, solving the
maximum clique problem, even heuristically, is impractical for the instance sizes considered in this
study. Heuristics exist for large-scale maximum clique problems (see, e.g., [8]), but these do not
guarantee tight bounds and have a highly erratic behavior. They certainly cannot be used to assess
the quality of a Tiling Problem heuristic.

3. Heuristics

The "ve heuristics we have developed for the TP apply two or three of the following phases: (1)
First solution, (2) set covering, (3) improvement.

3.1. First solution (F1, F2 and F3)

Three variants have been developed for the construction of an initial solution: F1, F2, and F3.
Variant F1: Determine the point P lying at the intersection of the left and bottom boundaries of

all demand points. Superimpose on the rectangle a mesh of tiles of side s whose bottom left corner
coincides with P. Remove all empty tiles from the mesh.
Variant F2: Sort the demand points by lexicographic order of their abscissae and ordinates.

Construct a mesh as in F1. Here this mesh is used not to provide an initial tiling solution, but to
de"ne a neighbourhood structure on the points. More speci"cally, we are interested in six of the
tiles associated with any demand point: the tile to which it belongs, called the home tile, its top and
bottom neighbours, and the three tiles lying immediately to the left of the home tile, and of its top
and bottom neighbours (see Fig. 3).

The "ve tiles surrounding the home tile are called neighbour tiles. Then, using the demand points
with the lowest abscissa, gradually construct degenerate tiles. At this point these consist of only
a vertical side with a height not exceeding s (see Fig. 4). Then considering each other demand point
in turn, attempt to integrate it to a tile overlapping its home tile, or to a tile overlapping one of it
neighbour tiles, following the order A, B, C, D, E shown in Fig. 3. Integrating a point to an existing
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Fig. 3. Home tile (white) and neighbour tiles (shaded).

Fig. 4. Initial degenerate tiles.

tile is feasible only if the dimension of the resulting tile does not exceed s�s. Whenever an
integration is feasible, the tile is extended to include the new point (see Fig. 5). If the current point
cannot be integrated into an existing tile, a new tile is initiated.

Note that throughout this process, tiles are not necessarily square, but they are always rectangles
of sides not exceeding s. When all demand points have been considered and are part of a tile, then
all tiles are extended so that they become squares of side s.
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Fig. 5. Feasible extension of an existing tile.

Variant F3: Starting from the left boundary of all remaining demand points, construct a vertical
stripe of width s and repeat this procedure until no point remains uncovered by a stripe. Then apply
the polynomial algorithm of Section 2 to each vertical stripe separately.

3.2. Set covering (S)

Given an intial solution, determine in each existing tile the smallest rectangle p
�
p
�
p
�
p
�

containing all points. Then construct four new tiles including the points and having a vertex at
p
�
, p

�
, p

�
or p

�
. This generates a pool of candidate tiles. A tiling solution can then be obtained from

this pool by solving a set covering problem. In our implementation, this is solved using the Balas
and Ho [9] PRIMAL1 heuristic. Since no cost is assigned to tiles, corresponding to variables in the
set covering problem, this amounts to selecting the tiles in a greedy fashion in non-increasing order
of the number of yet uncovered demand points they cover.

3.3. Improvement (I)

The improvement procedure attempts to determine a more economical tiling solution requiring
fewer tiles. It is applied four times, from the same solution, using in turn each of the four
orientations of the rectangular area. The best overall solution is "nally selected. For a given
orientation of the rectangle, existing tiles are considered according to the lexicographic order of
their bottom left corner. For a tile under consideration, "rst disregard all its points previously
covered by another tile within the improvement procedure. If no point remains within that tile, the
tile is then eliminated. Otherwise, construct the smallest rectangle containing all the remaining
points of the current tile and extend this rectangle to cover as many points as possible, "rst in the
upward then in the right direction as long as its sides do not exceed s. If either side of the rectangle
is strictly less than s, extend it fully so that it becomes a square of side s. This procedure amounts in
fact to shifting the tile so that it does not have to overcover some points, and in the hope that it will
cover points of some neighbouring tiles. The improvement process is illustrated in Fig. 6 for the
case where one tile is eliminated.
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Fig. 6. Improvement procedure. Demand points are represented by shaded areas.

Table 1
Summary of six heuristics

Heuristic First solution Set covering Improvement

H0 F1 S *

H1 F1 S I
H2 F2 S I
H3 F1 * I
H4 F2 * I
H5 F3 * I

3.4. Description of the xve new heuristics

Five new heuristics H1}H5 were de"ned and tested by using di!erent combinations of the above
procedures. These heuristics and the procedure H0 used in Laporte et al. (1998) are summarized in
Table 1.

To illustrate some of the procedures used in the new heuristics, we depict in Fig. 7 the e!ect of
applying F1, F2 and F1#I to the data set of Fig. 1.

3.5. Adaptation to circle covers

In some applications using Euclidean distances, demand points are naturally covered by circles
instead of squares. Circles are also used in some versions of the cytological screening problem.
Then our heuristics can be applied with some modi"cations. Let r be the radius of the circle. To
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Fig. 7. Illustration of F1, F2 and F1 followed by I on the data set of Fig. 1.
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construct the "rst solution, one can work as in F1, F2 or F3 with inscribed squares of side s"r�2
and then replace each square with its circumscribed circle. In the set covering phase, rectangles are
constructed using the points of each circle and they are then extended into squares of side r�2. The
set covering algorithm works with the circles circumscribing these squares. In the improvement
phase, we "rst consider circles in lexicographic order of their centers. All points of a circle already
covered are again disregarded. The smallest rectangle covering all remaining points of the circle is
considered and possibly extended to cover as many points as possible, only if its sides do not exceed
those of the inscribed square. In such a case, the same procedure as in Section 3.3 is applied and all
square tiles obtained at the end of this phase are replaced by their circumscribed circle.

(a) First solution obtained with F1,
(b) First solution obtained with F2,
(c) Final solution obtained with F1 followed by I.

4. Computational results

The heuristics just described were coded in C and "rst run on 152 real-life cytological examples
ranging from 2623 to 55 099 demand points. We also created from these examples 152 arti"cial
instances possessing the disjoint stripe property described in Section 2, and thus solvable in
polynomial time. These instances were obtained by removing points from the original data sets in
order to leave an empty stripe between two consecutive stripes of demand points. They contain
between 1159 and 28 659 demand points, approximately half the number of points contained in the
original data set. Since these modi"ed examples can be solved to optimality, it becomes easier to
assess the value of the heuristics. The original instances were solved using both square tiles and
circles; for the modi"ed examples we only used squares since this is the only case for which we can
prove that the polynomial algorithm yields an optimal solution. In these instances the size of
the glass slide is 1364�640, the size of the square tile is 41�41, and the diameter of the circular tile
is 56.

The results corresponding to these three problem classes are summarized in Tables 2}4. We
report results for heuristics H1}H5 described in Section 3. In addition, for comparison purposes,
we provide statistics obtained with the heuristic H0 of Laporte et al. [6]. As mentioned in Section 2,
meaningful comparisons with a lower bound cannot be obtained from the current state of
knowledge. For each heuristic, we provide the following average statistics over the number of
instances of each size class:
Ratio: Ratio of the objective function value (number of square tiles or circles) over the best known

value;
Seconds: CPU time in seconds on a Sun Sparc 10 station.
The minimum, average and maximum statistics for all instances are also provided at the bottom

of each table.
Results for square tile cover, presented in Table 2, show that in terms of solution quality, H3 has

the best performance, followed by H1, then, almost equally, by H2, H4 and H5, and "nally by H0.
However, a closer examination reveals that H3 is the best heuristic in most cases, except on the
smaller instances (n(10 000) where H2 and H4 have a better performance. In terms of computing
time, the ranking is H5, H4, H3, H2, H0 and H1, but there is not much to choose from between H5,
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Fig. 8. Generation of instances according to the Cordeau et al. [10] procedure. Seed points H; other points #.

H4 and H3. As a rule, the set covering phase is the most time consuming, as seen by the computing
times of H0, H1 and H2. This time is smaller in the case of H2 because this heuristic generates fewer
potential tiles for the set covering problem. Our recommendation is therefore to use H3 for
n*10 000 and H2 or H4 for n(10 000.

Computing times increase signi"cantly when circles are used instead of squares since more
operations are then required. Results shown in Table 3 indicate that in the case of circles, the
relative ranking of the six heuristics is H3, H1, H2, H4, H5 and H0. In terms of computing times,
the ranking is H3, H5, H4, H2, H0 andH1. Again our recommendation is to use H3 except possibly
when n(10 000, in which case H2 is probably the best choice if both solution quality and
computing time are taken into account.

Results presented in Table 4 indicate that for stripe instances, H5 always provides the optimum
in about 1 s, irrespective of n, and H1 typically provides solutions within 2.2% of optimality.

In addition to the tests carried out on the cytological examples, we have also performed some
computations on randomly generated instances. A "rst set was obtained by generating n points
with integer coordinates in the 1000�1000 square, according to a discrete uniform distribution.
A second set was generated as in Cordeau et al. [10], by "rst randomly generating k integer
coordinate seed points in the 1000�1000 square, and then n integer coordinate points, according
to the following procedure governed by an input parameter �:
Step 1: Set i :"1.
Step 2: While i)n, do

(a) Randomly generate a point v
�
in the 1000�1000 square according to a discrete uniform

distribution, and compute its distance d to the nearest seed point.
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(b) Let u be a number randomly chosen in the [0, 1] interval according to a continuous uniform
distribution. If u(e�(�, set i :"i#1. Otherwise delete v

�
.

This generation procedure produces instances in which the point concentration around the seeds
is higher (see Fig. 8), as observed in several real-life geographical settings. A smaller value of
� produces a smaller concentration.

All randomly generated instances had n"10 000, 20 000 and 30 000 points. For the second
generation mode k"n/100 seed points were used and the values of � were equal to 0.04, 0.06 and
0.08. In all cases, 41�41 square tiles were used. Computational results for these instances are
presented in Tables 5 and 6.

Tests results indicate that for the uniform point generation, H5 consistently produces the best
results within very short computing times. For instances generated with seed points, H3 is the best
heuristic for n"10 000 and H5 is superior for n"20 000 or 30 000. However, the performance of
H3 becomes close to that of H5 when � increases.

5. Conclusions

We have described "ve new heuristics for large-scale covering-location problems arising in
a variety of contexts. In these problems the solution space is continuous in the sense that the set of
potential sites is a plane as opposed to a discrete set. Our main example was derived from
a problem arising in cytology, but our heuristics apply equally well to other situations such as
ambulance location (see, [5]). For cytological instances our best heuristic is H3 for larger cases
(n*10 000), and H2 or H4 otherwise. For randomly generated instances, H5 usually produces the
best results. As a rule, these heuristics can be executed in only a few seconds, which is what is
required for real-time decision making. It is interesting to observe that our best heuristics do away
with the set covering algorithm which is widely considered as the standard methodology in
covering-location. We believe this conclusion should be kept in mind when solving large-scale
covering problems arising in real-life settings.
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